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Abstract—Despite the urgent need to conduct computer-driven
experiments in a reproducible fashion, there is no widely-
accepted, established approach to this problem. The rise of
Open Data surely helps in understanding and verifying some
of the research findings, but the true verification comes from
a means to reproduce the original tests. This paper proposes
a framework for conducting such reproducible experiments. It
leverages Docker to facilitate exchange of, not just source code
used in test trails but rather whole, ready-to-run experimental
environments. The lightweight virtualization provided by Docker
makes it very portable across a wide variety of hardware and
software platforms. We explain the framework in detail, discuss
its advantages as well as shortcomings, and assess how future-
proof it is. The usability of the proposed framework was verified
by conducting a reproducible evaluation of the possible storage
options for semantic annotations. This use case emerged in
the context of a particular distributed infrastructure, where
users requested a possibility to annotate stored digital objects.
There are many possible technologies that can be used to store
semantic annotations. We evaluated performance and suitability
of relational databases, document stores, and graph databases,
to conclude that the graph database is the best candidate to
efficiently handle the task. Although, it has also some limitations,
which we will point out. By using the proposed framework in
the aforementioned evaluation, we enable other researchers to
repeat it, but also benchmark alternative technologies if required.
Furthermore, the framework can be reused in an iterative process
of performance tuning of the selected storage option, to quantify
and verify the influence of particular configuration changes. The
main output of this paper is a framework which allows to easily
redo the evaluation of semantic storage options.

Keywords–Deploying Linked Data; Reproducibility; Distributed
Infrastructures; Benchmarking.

I. INTRODUCTION

This work is an extended version of our previous publica-
tion [1], it presents new experiments, new results, and a more
detailed literature review.

Distributed research infrastructures like EUDAT (EUropean
DATa [2]) provide generic services to manage research data
in an efficient and cost-effective way. Since the research
communities using the services advance over time, they are
constantly expressing new requirements with respect to kinds
of data and possible usages that the infrastructure should
support. An example of a community requirement EUDAT,
was confronted with, was the support for semantic annotations
across its data management services.

Semantic annotations are a very powerful tool to work with
data in a distributed environment. They extend the context of
the data, and by that increase the data understandability. One
can conjure the semantic annotations as a facility to add meta-
data and comments to entities managed in the infrastructure.

An example would be a keyword attached to a digital object,
but more sophisticated cases are envisioned as well. We will
explain the model in more detail later in this paper, but astute
reader can imagine that efficient annotations handling should
enable different types of search queries. It should be possible
to retrieve all annotations for a given object, but also reverse
lookups (i.e., localizing all data objects with given keyword in
our example) will be used. The uptake of this new service will
only happen if sufficient performance of both kind of queries
can be granted.

This paper is focused on evaluating semantic storage op-
tions. We consider a technology to be a valid option for storing
annotations if it allows for permanent storage and very basic
retrieval operations as described above. There are a lot of
products on the marked that advertise much more sophisti-
cation with respect to handling specific semantic operations
but we wanted to remain generic and include broad range of
products in our evaluation. There are many ways in which
annotations can be stored. The EUDAT service plans to use
the World Wide Web Consortium (W3C) Annotation Data
Model [3]. As it is based on JavaScript Object Notation for
Linked Data (JSON-LD [4]), an obvious approach would be
to use document stores for the task. Such storages (also called
document-oriented databases) are optimized to handle semi-
structured data (called documents). The managed documents
are usually in JSON format. Examples of document stores are
MongoDB [5], CouchDB [6], or Elasticsearch [7].

Because annotations are attached to the data objects, the
whole data set forms a graph with managed entities and
annotating metadata as nodes and annotations as relations
between them. Thus, we have included the graph database
neo4j [8] into the evaluation of possible storage backends.
Lastly, based on the feedback to the original conference
paper describing our first results [1], we include relational
database management system (RDBMS) MySQL [9] into our
evaluation. Relational databases are mature technology, their
operations are well understood, and they have high prolifer-
ation in distributed infrastructures. Therefore, they constitute
an excellent reference point for the above mentioned (perhaps
less known) alternatives.

Requirements submitted to EUDAT are analyzed from dif-
ferent view angles. One of them is the performance evaluation
of candidate technologies. To this end, resource and service
providers are constantly testing and benchmarking possible ap-
proaches and new technologies. Such evaluations, must adhere
to scientific standards in terms of methodology, transparency,
and reproducibility. This is absolutely necessary to make the
transparent decisions whether or not a given requirement is
implemented and how. Furthermore, such evaluation can be
reused by other infrastructures and service providers. The trend
to share the results subsumed under the term of Open Data [10]
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is an important first step in sharing the results. But much
more beneficial would be to move the sharing beyond just
the results and to make the programs and experimental setups
sharable as well. Currently, there is no established solution
for such a sharing. The paper includes the results we obtained
and their discussion. But our overarching goal was to make
the result reproducible, i.e., provide all the tools we used in
our evaluations in such a form that an independent researcher
can not only retrieve and analyze them but also redo the
evaluation and obtain the same results (at least quantitatively).
We limit ourselves to the software layers of the conducted
experiments starting from the used operating system, libraries,
up to the software used for generating the data, measuring the
scalability and visualizing the results. This working definition
of reproducibility we use across the paper lays somewhat
between terms reproducibility and replicability as used in
science philosophy.

In one of our previous papers [11], we have already shown
that Docker [12] can be leveraged to provide on-demand
instances of popular web services in the context of a distributed
research infrastructure. Although, such seamless provisioning
of services can be used to conduct reproducible research,
there are more aspects to it. In this paper, we will exercise
a whole workflow from testing, through result processing, up
to visualization of the outcomes. We will use Docker and
docker-compose [13] to conduct the steps in a transparent,
sharable, and reproducible way. We will test our approach
by evaluating storage options to handle semantic annotations.
Based on our results, one can select a technology to best fit
her particular use case. The selection of the technology is,
however, only the first step towards a working solution. The
software used to manage the data must be tuned to obtain
best possible performance. Such a tuning is usually done in
an iterative way, where the influence of each particular change
in configuration on the overall performance is measured and
evaluated. The reproducibility framework presented in this
paper makes such iterative tests easier to run.

This paper is an extended version of a conference contri-
bution [1]. It includes more experiments and a new possible
technology candidate (MySQL). Beside providing more details
on the our testing framework, we devoted an additional sec-
tion to a discussion of functional suitability of the selected
technologies. In particular, we elaborate on how the JSON-LD
model can be stored in different backends. A new feature of our
framework, which we describe in detail here, is the possibility
to orchestrate all the experiments and run all the tests, process
the results, and visualize the results in a fully automated
fashion. This was a remaining step for seamless sharing of the
complete experimental setups. We also include an assessment
of how future-proof our solution is and a detailed review of
the related work.

The rest of this paper is structured as follows. In Section II
we will review the state of the art of both semantic storage
options and reproducible evaluations in computer science and
lay down our vision. Section III explains what semantic anno-
tations are and discuss suitable storage options. Subsequently,
we present the selected storage technologies in more detail
and touch on the related subject of data modeling. Section V
is devoted to the detailed experimental setup and we describe
how our reproducibility framework is built and should be used.
In particular, the section also discusses how future-proof the

approach is. Section VI is presenting the results for the selected
semantic storage options. Detailed discussion of the evaluation
of the different storage options can be found in Section VII.
We conclude the paper with a summary and an outlook on the
future work.

II. RELATED WORK

De Witte et al. [14] prepared a benchmark for evaluating
triple stores to store Linked Data. Interestingly, they rely
on official images available in the Amazon Web Services
Cloud [15] to make the results of the evaluation more repro-
ducible. In the later work of this authors also approaches of
running the benchmarks with help of Jupyter Notebooks [16]
resemble some similarities with our framework. In our work
we concentrated more on semantic annotations (with different
benchmarks) and did not include triple stores in our evalua-
tions. Also our focus was on making the complete evaluation
reproducible beyond particular cloud solutions.

Pacaci et al. [17] examined applicability of relational
databases to store social-media-like graphs and compared their
performance with graph database systems. Their results are
similar to ours. The advantage of the graph database is very
good visible for shortest-path queries. In terms of point queries,
relational database systems perform better. Also in terms of the
writing performance the results are pretty analogous. The rela-
tional database (PostgreSQL [18]) exhibited significantly better
update performance and maintain up to an order of magnitude
faster write throughput compared to their competitors. It should
be mentioned that the experimental setup used there differs
significantly. In the referred work, unlike our experiments, the
whole database are loaded into memory. We believe that this
is very beneficial for the relational databases as joins become
much faster. The results surely speak for including relational
databases in our evaluation.

Hernandez et al. [19] used Wikidata [20] knowledge-
base to define a set of benchmarks for popular semantic
storage solutions. The focus of the work lays on creating
a benchmark with queries close to the observed in real life
deployment. It would be interesting to combine the approach
into the presented experimental framework to produce more
meaningful results. With respect to benchmarks it is worth
to mention one more effort. The Linked Data Benchmark
Council (LDBC) [21] is a joint effort of academia and industry
devoted to establishing benchmarks, benchmark practices, and
benchmark results for graph data management software. It has
developed two benchmarks: Social Network Benchmark [22]
and Semantic Publishing Benchmark [23]. Even if the pro-
posed benchmarks might not necessarily be the best indicators
whether a selected technology can provide good performance
when storing semantic annotations, they give a lot of useful
hints in this regard. It would be also very interesting to in-
corporate this standardized benchmarks into our experimental
framework, we might pursue this direction in the future. The
final result should be a standardized set of benchmarks and a
agreed-on framework for conducting reproducible experiments
using the benchmarks.

There exists a body of work on reproducible research
in computational science. Donoho et al. [24] provide an
interesting philosophical background on the problem of re-
producible research, underlining the potential credibility crisis
lack of it can lead to. Finally, they describe their approach to
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reproducibility research in harmonic analysis. The approach
are developed for different kinds of problems, and use dif-
ferent (discipline-specific) tools. Freire et al. [25] provides
an overview of the state-of-the-art of reproducible research
in the context of data management. Another example of a
community defining standard practices for sharing computer
code and programs is the publication of Eglen et al. [26],
discussing the issue in the context of neuroscience. It might
be expected that more and more research communities will
undertake the effort of explicitly defining best practices and
tools for reproducible experiments. Our work is parallel to such
efforts. The proposed framework is not tailored to a specific
community. It can, however, accommodate many community-
specific tools and thus serve as a basis for the community
specific standard testing procedures.

The problem of reproducibility is closely related to the
idea of research collaboration. Chandy et al. [27] present how
experiments can be conducted in a fully distributed fashion.
Where both resources and researchers are spread across the
world, yet still are able to conduct reproducible research. We
believe that our work, conducted in context of a distributed,
inter-disciplinary infrastructure offered by EUDAT, fits well in
the authors’ vision.

III. SEMANTIC ANNOTATIONS

Roughly speaking, the EUDAT distributed infrastructure is
built to manage research data in form of digital objects (DOs).
The objects are composed of bit streams and uniquely iden-
tified by persistent identifiers (PIDs) [28]. In some cases
the objects also include metadata descriptions. The PIDs are
offered by the ePIC system [29]. They can be used to reference
the particular objects, for instance in scientific publications.
The PID system constitutes an indirection layer that simplifies
(future) access to the digital objects, also allowing to move
the data between locations without invalidating publications
referring to them.

On the other hand, PIDs are just opaque identifiers and on
their own provide very little information about the DO they are
pointing to, hence, they are not very well suited for browsing
and searching through the EUDAT data repositories. Therefore,
EUDAT is working on enabling semantic annotations for the
objects stored in its distributed research infrastructure. Such
annotations describe the DO they are pointing to, extend their
context and thus have the potential to facilitate efficient search
of data. The current approach is to use the W3C format for
annotations. The W3C web annotation data format is pretty
simple: Each annotation is a relation between a body, e.g.,
EUDAT data object, and target, e.g., metadata describing that
object. A basic annotation, as proposed by W3C, is shown in
Figure 1.

It is important to notice that both target and body objects in
the annotation have unique identifiers. These are crucial from
the user’s perspective. It can be expect that the users will be
interested to view a list of all annotations for a given body id,
i.e., all metadata descriptions for a specific data object. Also, a
reverse lookup producing all the data objects with specific tag
(i.e., a retrieval by target id) represents important functionality.
Those expected usage scenarios were used as major hints for
our benchmarks. We use three kinds of operations to mesure
suitability of a semantic storage option:

• creation of a new, non-existing annotation,

Figure 1. A Basic Annotation in W3C Annotation Data Model Format
(source: [3]).

• retrieval of an existing annotation by its target id,
• retrieval of an existing annotation by its body id.

All those operations are expected for the final service
offering the storage and management of semantic annotations
in EUDAT infrastructure. The ratio between the operations is
not yet known, but it can be expected that retrieval will be
more frequent than store operations. In the long term, more
annotations will be read than written.

IV. STORAGE OPTIONS

There are many options to store semantic annotations. One
obvious approach would be to stick to the JSON-LD rendering
as proposed by W3C, use it as the internal storing format,
and find a storage backend that can support it. There are
many NoSQL solutions (called document stores), which are
optimized to manage JSON documents. MongoDB [5] is one
of the most popular document stores on the market.

Another storage option we considered is based on the fol-
lowing observation. Annotated objects with annotating meta-
data form a graph (with annotations as edges). To account for
this way of thinking, a graph database like neo4j [8] could be
used as a storage backend.

Finally, we included a relational database representative
MySQL [9] in our evaluation. It is a mature technology,
familiar to both system administrators and users. Although
its direct suitability will be discussed later, we believe that
a traditional relational database can server very well, at least
as a reference point for the remaining results.

For our experiments we used a very simplified form of
annotations. We reduced them to just having a target, body
id, and creation time. So they were in fact much simpler
than the one presented on Figure 1, yet sufficiently complex
to approximate the real-world usage. Thus, there were no
problems in storing the annotations in the selected database
backends. The question of the performance of the products
will be discussed later. Firstly, we would like to discuss the
suitability of the single products in terms of their functionality,
i.e., whether or not they can handle more complex annotations.

The JSON-LD “internal representation of an annotation is
the result of transforming a JSON syntactic structure into the
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core data structures suitable for direct processing: arrays, dic-
tionaries, strings, numbers, booleans, and null” [4]. Modeling
arrays and dictionaries in a relational database might be hard.
Two obvious options are to store the content of an array as
concatenated strings or store the content in a separate table and
subsequently use joins to render the complete representation
of an annotation. Former approach has its obvious limitations.
String comparisons are costly, and for more sophisticated
searching criterion, even more expensive regular expressions
will have to be used. The later approach, comes at the cost
of performance penalty of joins. Similarly, storing “internal”
JSON objects, encapsulated in JSON-LD is not an easy task
for a relational database. It would probably require to again
use distinct tables for each of such an internal objects and rely
on laborious joins to render the complete annotation object.

The relational databases require rigid database schema
defining fields of single tables, whereas JSON-LD enables far-
reaching flexibility in this regard. Some annotations might have
fields that other annotations do not have. Depending on the
application it might be possible to pre-define a set of annotation
fields or again use joins to make the schema more flexible. As
mentioned above, each join influence the performance in a
negative way. It also makes the queries required to gather all
the data from all tables more complex. For our experiments
we have modeled annotations as a single table in the relational
database. With a primary key composed of target and body id.
Because we avoid joins, we obtain lower limit of the response
times. Each join, required by more sophisticated models, would
increase the response times.

MongoDB is a document store, which supports JSON
natively and, therefore, it can handle JSON-LD without ad-
ditional adaptation. It does not require (and in fact does not
allow) to define an equivalent of a database schema. The
JSON documents (i.e., annotations) stored in one database can
differ significantly with respect to fields they contain. This
high flexibility comes at a cost. Although, an explicit, up-
front schema model is not required, an implicit model (at
the query time) is still present. The application logic has
to get to grips with potential heterogeneity of the records,
for instance, when presenting the results to the users. Also
the lack of a schema makes the definition of constrains and,
thus reduction of redundancy, harder. Each document in the
document store contains a complete annotation with both target
and body objects. The most popular keywords will be stored
many times. Such redundancy is relevant for the typical kind
of queries the database would have to handle. For instance,
to identify all the data objects marked with a given keyword,
a full scan of the database would be required. Also, to avoid
duplicates, a search would have to be conducted before a new
item is inserted into the database. In our experiments, we don’t
create redundant annotations, the benchmarking program takes
care of generating unique content, and we see no redundancy
problems, which would occur in real-world applications.

The graph database we used in our experiments (neo4j)
does not support JSON-LD natively, but it does not require a
rigid schema either. It is possible to have graph nodes with
a varying list of fields. At the same time, neo4j occupies a
middle ground position with respect to defining constrains.
It is possible, yet not mandatory, to define fields that each
annotation has to have. It is also possible to define uniqueness
constraints to ensure that no duplicates of annotations are

stored. We have modeled annotations as two nodes connected
by a single relation. In the labeled graph model that neo4j
implements, it is possible to add properties to nodes and
relations. Properties can be defined as lists and maps so there
is no mismatch between JSON-LD and the neo4j model.

V. EXPERIMENTAL SETUP

To obtain meaningful benchmarking results it is important
to minimize the number of “moving parts” and reduce the
testing environment to components, which are absolutely nec-
essary. In particular, we were not interested in the performance
of the web interface that will be used to work with annotations
or the performance penalty caused by its integration with other
EUDAT services. Therefore, we have written a Python program
with methods for generating annotations with unique body and
target identifiers, and for storing and retrieving of the data.
The methods use simple interfaces to access selected database
stores: MongoDB, neo4j, and MySQL.

A. Docker

To enable easy reproducibility of the conducted tests, we
have prepared a Docker-based environment. Docker [12] is
a lightweight virtualization solution based on Linux Kernel
features like namespaces and cgroups to isolate guests from the
host system. Docker uses image templates to start containers
(i.e., guest processes). Furthermore, Docker provides tools to
easily exchange images via the public Docker Hub [30], or
private on-site repositories. Docker introduces a notion of an
official image, which is created and maintained by the provider
of a given technology. There are official images for major
Linux distributions, but also for popular content management
systems and databases. It is possible (and common) to take
such images as basis, modify them (e.g., by installing soft-
ware, or changing their configuration), and publish them as
new images in the Docker Hub. The images are built in a
hierarchical fashion by applying a “write-on-modify” principle.
Thus, it is possible to trace back all the changes done to a given
image during the installation and configuration of the software
it comprises. It is also possible to review the content of an
image before running it. This significantly increases the mutual
trust between Docker users and reduces security implications
of running Docker containers.

One way of creating images, which we used in our work, is
to create a Dockerfile describing all the steps required to
setup the dependencies, install the software, and configure it.
An example of such a Dockerfile is depicted in Figure 3.
It is an image file of our testing program. Readers with
some Debian/Ubuntu experience will recognize initial steps
of installing, e.g., python, starting from the 3rd line of
the file. A sequence of following RUN commands set up the
python dependencies required by our testing program. The
CMD directive is defining a command to run upon creation
of a container. By default, it will run a bunch of tests against
all the supported database backends. The command can be
overwritten for each container created from this image. The
VOLUME instruction states that /results/ directory in the
containers created from this image will store unique data (in
our case results) and is not part of the image. As we will show
later, upon creation of a container, it is possible to map the
volume on any directory of the host machine.
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Figure 2. An example of the docker-compose deployment descriptor for
our experimental environment.

The Docker ecosystem embraces many tools, among them
docker-compose [13], which is a tool for defining and
running multi-container applications that we are going to use in
our experiments. In our case we run the testing program and re-
spective backends. The deployments for docker-compose
are defined via yaml files, describing what containers should
be started and how they are connected to each other. The
deployment descriptor for our testing environment is depicted
in Figure 2. It defines three containers for the storage backends,
and how they should be created (by using official images).
Finally, a container with our benchmarking program is defined.
It is created from a Dockerfile (Dockerfile-tester)
and is connected to the remaining containers. For Docker
images it is possible to define explicit versions that shall be
used. Usually also an image with a tag latest is available,
and points to the most up-to-date version of the given product.
As can be seen in Figure 2, we use explicit versions of the
images.

There are many reason why we are using Docker as a basis
of our framework. Firstly, due to the virtualization it is possible
to run our test programs on almost any platform (regardless
of the operating system it uses). The images also contain the
dependencies and libraries required, so again the configuration
of the host system may be neglected. The possibility to review
all the changes done in a particular Docker image enables
transparency and understandability of the obtained results.
The Docker Hub facilitates an easy exchange of the Docker
images containing programs used in the evaluations between
researchers. Last but not least, by using Docker volumes, it
is possible to separate data from the programs, in our case:
results and processing tools.

B. Solution details
All technology providers we considered (MongoDB, neo4j,

and MySQL) offer official images for their databases, which
we used for our evaluation [31] [32] [33]. We created
a Docker image for our testing program and prepared a
docker-compose-based testing environment. The source
code and the documentation is stored on GitHub [34], enabling
the verification and repetition of the benchmarking. In fact, we
plan to reuse this framework to do some further testing of dif-
ferent EUDAT-inspired use cases in the future. Given a system

with a running Docker daemon and docker-compose, it is
first required to build, and retrieve official images.

docker-compose build .
docker-compose pull
cd processor
docker build . -t processor && cd ..
cd visualizer
docker build . -t visualizer && cd ..

Starting the evaluation benchmark is done by merely issu-
ing one command like:

docker-compose run \\
--volume=/path/:/results/ \\
--name exp1
tester

The --name parameter of the above command is not
strictly required, it attaches a user-defined name (exp1) to the
particular experimental run, which is convenient for the further
analysis. The --volume parameter maps the /results/
directory from the container on /path/ directory on the host
system. Hence, it is possible to separate results for different
experiments from each other. It only requires to map the
container volume to different physical paths of the host.

Also, Docker images for processing of the results and
visualizing them are provided. The first step transforms the
results from the evaluation by using command:

docker run --volumes-from exp1 \\
processor

The processing step is transforming raw results from the
first step into a more human readable form. If multiple results
for a given set of parameter are available, an average value
with standard deviation is calculated.

The --volumes-from parameter is used to attach the
storage volume with the data produced in the first step to
the newly created Docker container. Please note that we are
using the name assigned to the experiment in the previous
step (exp1) rather than a physical path on the host system. It
should be stressed that for a volume of a container to be used
by different container, it is not required for the former to be
running. In our case, at the time of processing of the results, the
benchmarking program is no longer running. Docker maintains
its volumes, unless they are explicitly deleted by the user. So
there is some persistence of the volumes beyond the lifetime
of single container (and experiment run).

Finally, the plots that we will present in the following
section are created with help of gnuplot [35] and other
tools embodied in a Docker image, which again uses volume
with data from previous steps and can be run with following
command:

docker run --volumes-from exp1 \\
visualizer

To enable the sequential processing of the data, we in-
ternally agreed to store all the data (results, visualizations,
etc.) in the same path defined as a Docker volume. Thanks
to this contract, we can guarantee that data are not becoming
part of the Docker images and thus will not hinder their
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Figure 3. Dockerfile of the Tester image.

reuse. Secondly, it is easily possible to extend the workflow
by adding new steps or modify existing ones, for instance,
if different types of visualization are required. It must be,
however, safeguarded that the processing steps don’t overlap
their outputs, e.g., don’t use the same file names to store the
results.

C. Orchestration
Although it is hard to quantify, we found Docker tools

pretty easy and intuitive to use. In fact, not much deep knowl-
edge of Docker is required to just run the above commands.
Nevertheless, our goal is to make the results highly and easily
reproducible. We aim at ways of sharing complete, running,
testing environment with all the dependencies required to
repeat the tests.

Docker does not support the execution of workflows (i.e.,
subsequent commands). Thus, we had to search for alterna-
tives. One solution would be to use scripts or programming
languages to automate the execution of the commands. It is
not an easy task to make the scripts understandable, adjustable,
and really portable. It would require a lot of effort to create
scripts for all the platforms on which prepared Docker can be
deployed. Alternatively, the scripts could be encapsulated in
a virtualization solution to enable cross-platform compatibil-
ity. In fact we already presented a lightweight virtualization
solution, namely Docker.

It is possible to chain commands as mentioned before
in a CMD directive of a new Docker container, which we
call orchestrating container. It would not be, however, very
beneficial to then create the testing environment in the con-
tainer as this would substantially increase the virtualization
overhead. Therefore, we propose a different solution. The
orchestrating container could access the Docker interface of
the host it is running on, use this interface to create the testing
environment, run the tests, process the results, and produce
the visualizations. An overview of this approach is depicted
in Figure 4. The socket file used for communication between
Docker client and Docker daemon can be injected into the
orchestrating container and subsequently used by the Docker
and docker-compose clients installed in the orchestrating
container. After starting the container it will pull all required
images from Docker Hub and afterwards run them in the

proper order. Therefore, to execute the whole workflow, it is
only required to issue just one command:

docker run \\
-v /var/run/docker.sock:\\
/var/run/docker.sock \\
httpprincess/orchestrator:1.0

The main disadvantage of the solution is its lack of
flexibility in terms of managing volumes. Volumes used for
storing the results are mounted from the host machine and not
from the orchestrating container. Thus, to change the location
the /results/ volume is mapped on, one would have to
manipulate docker-compose setup files confined in the
orchestrator image or use the default location. It is still possible
to refer to the volumes by using container names though. Also,
to change the evaluation parameters it would be required to
change the image. To this end, a feature of running Docker
containers in an interactive way might be beneficial.

We expect that the provided orchestration container will
be used to automate the parameter tuning or for just repeating
the experiments we did. For more advance usages (like testing
against different technologies), the orchestrator will provide
hints on how to conduct the experiments and setup the testing
environment, but the researcher will have to step in and make
some changes anyhow.

D. Making the framework future-proof
Our main goal was to make the evaluation of the semantic

storage options reproducible. It also means that the researchers
wishing to repeat our experiments should be able to do so even
in some distant future. In this section we would like to discuss
how future-proof the presented solution is.

It is hard to predict changes in the technology landscape.
The main corner stone of our framework is Docker. Although
this technology is pretty new, it is based on Linux Kernel
features available already for a longer period of time. It
should be stressed that Docker (unlike typical virtualization
technologies) does not include a Kernel in the containers
but rather use the Kernel of the host system and rely on
its features for process isolation. The Docker images we
use as a basis for our images will become obsolete, but by
publishing our Dockerfiles we enable the rebuilt of the
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Figure 4. Schematic explanation of the orchestration solution.

images with new versions. Using just the Dockerfiles
to built the images, has some drawbacks. As can be seen
in Figure 3, in the process of building the image, software
from the official Linux distribution repository is retrieved and
installed. When (in not so distant future) new versions of this
software become available, the produced images will also be
different. To circumvent this limitation we uploaded the images
to the Docker Hub [36] [37] [38] [39]. It is no longer required
to build the images, they can be retrieved from this repository
with a pull command:

docker pull httpprincess/tester:1.0

Docker allows for tagging of the images with versions.
Even if the images change in the future, and new version
becomes available, it is still possible to retrieve old images.
All the images used for the experiments presented in this paper
were tagged as version 1.0.

When discussing a more distant future we run into different
kinds of issues. If Docker become obsolete, the availabil-
ity of our source code [34], together with the respective
Dockerfiles becomes important. Although the images can-
not be built anymore (presuming there is no Docker), they
still constitute a formal description of the installation and
configuration process.

The future availability of the selected storage technologies
is not in our hands, but this is the motivation for making
the process of performance evaluation reproducible. The same
tests can be run against new version of the products or (after
some modifications) against similar products that will become
available. As mentioned before, in the docker-compose file
describing our testing environment, we use explicit versions
of the official images of the storage technologies (rather than
opting for latest images). As long as those versions are
available in the Docker Hub, it would be possible to repeated
our experiments.

VI. RESULTS

All the tests were run on the same virtual machine with
16 VCPUs, 16 GB RAM, using Ubuntu 16.04 LTS. We used
official Docker images for MongoDB in version 3.4.5, neo4j
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Figure 5. Difference between retrieval by target and by body for neo4j and
MySQL (reps = 10000 records are added and retrieved in each round).

in version 3.2, and MySQL in version 5.7.8. The Docker
daemon was running version 1.12.6, and docker-compose
in version 1.14.0.

Our experiments are defined by three parameters:

1) engine: database engine (currently MongoDB, neo4j,
and MySQL),

2) rounds: number of rounds,
3) reps: number of repetitions in each round.

The tests were divided into rounds and in each round all
the previously defined database operations (see Section III)
were conducted in the following order. Firstly, reps number
of records were created, subsequently random (with repeti-
tion) reps annotations were retrieved by specifying existing
target.id, finally reps random annotations were fetched by
body.id. We measured the time of each activity, that is the
complete time to create records, time to retrieve all reps record
by target and body id. Three time measurements were made
in each round. Please note, that no records were removed, i.e.,
for given reps = 1000, the database grown in each round by
new 1000 records. If not stated differently, each experiment
was repeated three times and the average value of response
times with standard deviation were calculated for each round.

A. Retrieval scalability
Figure 5 presents the response times for retrieval of the

annotations by target and by body. We only compare the results
for neo4j and MySQL. As can be seen, for a given technology
there is not much difference in the response times. Situation
looks a little bit different for MongoDB, which is depicted
separately in Figure 6 as the absolute values are much higher,
and would make the previous plot less readable. There is a
difference between body and target retrieval, yet the differences
lay within the standard error value. For the reminder of this
section (if not stated differently) only retrieval by the body id
will be presented.

In Figure 7, Figure 8, and Figure 9, we depicted the
retrieval scalability of each technology tested. For that we
conducted three experiments with different values of reps
(1000, 5000, 10000), each had 10 rounds. Figure 7 shows
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that the performance of MongoDB is dramatically decreasing
with the increasing number of records in the store. Also, the
absolute values achieved by MongoDB are not very good, to
retrieve 10000 random annotations from a database with 90000
documents, almost eight minutes are required.

The retrieval times for the same amount of data from the
neo4j database of the same size are much lower as can be seen
in Figure 8 (please note that the y axis was scaled comparing
to Figure 7). Also, the scalability of neo4j is much better,
neo4j produces constant answer times regardless of the size
of the database. For comparison with the MongoDB, time to
retrieve 10000 random entities from a neo4j graph (regardless
of its size), varies around 1.37s. When comparing neo4j with
MySQL (i.e., Figure 8 with Figure 9), one can see that neo4j
is faster across the parameter range by roughly a factor of 3,
but MySQL remains much faster than MongoDB.

B. Storing scalability
The situation is a little bit different for creation times. We

depicted them in Figure 10 and Figure 11. This time MongoDB
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Figure 9. Retrieval scalability for MySQL (reps new records are added, and
reps random records are retrieved in each round).

outperforms its competitors. Both neo4j and MySQL suffer
under high variance in the query times. For higher value
of reps = 10000, neo4j is clearly the slowest in creating
new annotations. We believe that the main reason for this is
the fact that neo4j is using the most sophisticated model for
annotations. A creation of an annotation requires creation of
two nodes in the graph (one for target and one for body) and an
edge connecting them. Upon creation, neo4j is also verifying
the uniqueness constrain for the created nodes. MySQL is
storing the values for annotation in one table, and MongoDB
does not verify the uniqueness. As stated above, in a more
realistic scenarios, one would have to use multiple tables for
storing annotations in MySQL, and run transactions to add new
values. Also in case of MongoDB, firstly a laborious search
across the database would be required to avoid duplicates. It
would increase the query times by the amount depicted in
Figure 7.

VII. DISCUSSION

Our evaluation included three distinct classes of products:
document store (MongoDB), relational database (MySQL),
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and a native graph database (neo4j). The evaluation can be
roughly split in two main experiments: storing and retrieving.
In terms of retrieving of annotations the neo4j is a clear winner,
followed by MySQL. The storing part was best handled by
MongoDB, which displayed very good scalability. On the
overall, we have two products that excel in one metric: neo4j
in retrieval and MongoDB in storing. MySQL occupies the
middle position in both dimensions.

We discussed the suitability of the products. We argued that
neo4j might be best suited also for handling more sophisticated
use cases than those in our tests. On the other hand, the results
for MySQL would be probably degraded in case of more
complicated (and thus more join-intensive) queries.

The final recommendation with respect to kind of storage
that should be used to manage semantic annotations depends
on the ratio between reads and writes the service has to
handle. In most of the cases the reading would be the most
dominant operation and then probably neo4j is the best option.
In case of very write-intensive applications, MongoDB might
be a better option. Also more complex deployments with both

MongoDB and neo4j supporting respectively write and read
operations (and synchronizing the storage in the background)
are conceivable.

The evaluation was conducted with the help of the above
described framework. It is hard to quantify how easy it is to
use, but the actual deployment of the software and starting of
experiments was done with help of Docker and took very little
time and effort. We stick to our definition of reproducibility
(see Section I) and exclude the influence of the hardware. We
can, however, see that it has some influence on the results. A
clear indicator for that is the variance of the measured values
across test runs. We include the variance in the evaluation
plots. The goal of the reproducible evaluation is not to obtain
exactly the same curves on the plot, but rather quantitatively
same results within given range of confidence intervals.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have evaluated different options for
storing semantic annotations. From these options native graph
database seems to be the best general candidate technology,
some specific use cases can be better off with other tested
solutions.

Our main contribution is the framework for conducting
the above described experiments in a reproducible fashion.
This framework is based on a novel technology and allows
a seamless exchange of not only code used for benchmarks
but complete, ready-to-run experimental setups between the
researchers. We implemented the framework in such a way
that it is possible to reproduce our experiments, process the
results, and produce plots by issuing just one command.
Furthermore, by sharing both the source code of our testing
scripts and formal Docker-based description of their installa-
tion, we allow researchers to reuse and adjust them to answer
different research questions. We discussed how future-proof
the framework is and, although, such predictions are always
hard, we argued that the framework has some potential to better
understand and repeat our experiments even in the future.

In our future work, it would be interesting to follow two
directions. Firstly, incorporate more sophisticated benchmarks
in our framework to validate our current recommendations
with respect to the tested technologies. Such benchmarks could
bring to surface currently hidden scalability and redundancy
management problems we alluded to. Secondly, the application
of the framework to other use cases and other technologies
could cast some light on its extensibility. Such more extensive
applications would also help in defining more robust ways of
exchanging data between the steps of the workflow.
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