
Analysis of Hardware Implementations to
Accelerate Convolutional and Recurrent Neuronal

Networks
Florian Kästner, Osvaldo Navarro Guzmán, Benedikt Janßen, Javier Hoffmann, Michael Hübner

Chair for Embedded Systems of Information Technology
Ruhr-University Bochum

Email: {Florian.Kaestner;Osvaldo.NavarroGuzman;Benedikt.Janssen;Javier.Hoffmann;Michael.Huebner}@rub.de

Abstract—Hardware platforms, like FPGAs and ASICs, turned
out to be a viable alternative to GPUs for the implementation
of deep learning algorithms, especially in applications with
strict power and performance constraints. In terms of flexibility,
FPGAs are more beneficial, while ASICs can provide a better
energy efficiency and higher performance. Deep Learning is a
subgroup of machine learning algorithms that has a major impact
on modern technology. Among these algorithms, Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN)
have been of great interest due to their accuracy in comparison
to other methods. In this article, we conducted an analysis of the
hardware implementation of these two popular network types.
Different types of neural networks offer different opportunities
to create an optimized hardware implementation due to their
specific characteristics. Therefore, we split the analysis into two
parts, discussing CNN and RNN implementations separately. Our
contribution is an inside view on several hardware approaches
and a comparison of their architectural characteristics. We aim
to propose hints for their implementations.

Keywords— FPGA; Recurrent; Convolutional; Neural Network;
ASIC.

I. PREAMBLE

This article targets to collect solutions for hardware im-
plementation of special types of Neural Networks (NNs)
presented in [1]. The scope of this is, therefore, the discussion
of hardware implementations of convolutional and recurrent
neural networks. However, experience has shown that a short
recapitulation of basics is beneficial. That is the reason why,
this section is dedicated as a short review on the principles of
NN.

NNs are a collection of connected units called neurons,
which are typically organized in layers. In a NN each
neuron is equipped with a linear and / or non-linear
activationfunction, mapping the weighted inputs to the
output. The layers can be connect in many different ways. For
instance if they are connected in a sequential manner from
the input to the output of the network, we are talking about a
feedforward NN. The variation of the structure of neurons and
their connections allow a wide field of NN types. The internal
layers, i.e., not the one receiving the input or generating the
output, are called hidden layers. If the network has several
hidden layers, then it is said to be a Deep Neural Network.
Both, Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs) are implementations of these Deep
Learning Networks (DLN).

II. INTRODUCTION

Over the last 30 years Deep Learning (DL) has become
consistently more powerful providing accurate prediction or
recognition. The breakthrough in the academic area was
achieved in 2012 at the ImageNet Large Scale Visual Recog-
nition Challenge [2] when a convolutional neural network
(CNN), a specific type of Deep Neural Network (DNN), firstly
won this challenge. After this breakthrough, the popularity and
sets of application, not only of CNNs but of DL in general,
has grown dramatically. In contrast to traditional machine
learning principles the data representation models are trained
without the need of handcrafted feature engineering. Within
the structure and learning process of DNNs, features are
extracted from the input data by itself rather than by humans.
This is a mandatory advantage designing machine learned
classifications or regressions for highly complex applications
like detecting objects, for instance animals or everyday objects,
from input images.

The resulting DNNs are capable of representing functions of
high complexity with the help of connected simple, mostly hi-
erarchical, components [3]. The supported complexity depends
on the amount of layers and neurons or units inside each layer.
Due to this structure, NNs can be trained to extract features
at different levels of representations.

Two varieties of DNN have especially shown great potential
to real life applications, CNNs and RNNs. CNNs are typically
used for imagery classification [4], [5]. RNNs are suitable
for time-variant problems such as speech recognition [6],
due to their recursive structure. While the idea and structure
of NNs are not new, their recent success is based on new
training methods, namely backpropagation and pretraining.
The increasing amount of collected data in combination with
the processing power of modern compute platforms enables
the exploitation of massive parallelism. Parallelism of data
processing is a key principle regarding the training and also the
inference phase, when only the feedforward path is active. The
data flow driven architecture of DNNs allow coarse and fine
grained parallelism. Additionally, distributed learning, batch

308

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

processing and mini-batch processing increase the model’s
parallelism possibilities for accelerating the training of DNNs.

Nowadays Graphics Processing Units (GPUs) or clusters
of GPUs are usually used to accelerate the training. Thus,
highly complex models can be trained with a huge amount
of data within days instead of weeks. GPUs are originally de-
signed to accelerate data-flow driven graphic applications with
massively parallel multi-core architectures. This architecture is
also beneficial accelerating DL. Furthermore, improvements
in the software infrastructure have lowered the effort of GPU
implementations of DL algorithms. Frameworks like Caffe [7],
Theano [8] or Tensorflow [9], in combination with efficient
libraries like cuDNN[10] or cuBLAS [11] are designed to
simplify the DNN implementation and enable a more efficient
usage of GPUs.

However, GPUs have a high power consumption, compared
to other processing units. Due to this disadvantage they are
not suitable for an integration in most embedded devices,
with strong power limitations. While service oriented appli-
cations, communicating via Internet and executing DNNs in
the cloud, dont suffer due to that fact, applications with high
safety criteria like autonomous driving need to have onboard
processing of the inference phase of this DNNs to classify or
predict. While GPU implementations have good framework-
support and provide great performance capabilities, hardware
acceleration implementations on Field Programmable Gate
Arrays (FPGAs) or Application Specific Integrated Circuits
(ASICs) represent an interesting and promising research area.
However, currently such implementations are rarely used in
industry.

In this paper we extend our previous work presented in
[1] focusing on hardware implementations, their analysis
and comparison. We further elaborate current trends in deep
learning and how these trends could affect the popularity
of hardware platforms like FPGAs. The rest of this paper
is organized as follows. Section II-A describes the general
structure and the improvements of popular and state-of-the-art
CNNs. The same is done in Section II-B for RNNs. In Section
III, we explain how the current trends could affect the choice
of future platforms accelerating DNNs. The major part of this
paper focuses on the analysis and comparison of hardware
implementations of CNNs in Section IV and RNNs in Section
V. The paper ends with a short conclusion in Section VI.

A. Convolutional Neural Networks

CNNs are a type of DNN for processing data that has a
grid-like topology [3], [12]. CNNs are widely adopted for
practical applications, especially in image processing tasks
like object recognition or tracking. The input data of such
tasks can be interpreted as a 2D grid of input pixels. The
processing of these input pixels is depicted in Figure 1. One
major advantage of CNNs is the absence of the need to flatten
the input to a single dimension, avoiding information loss
like positional relationships. CNNs usually consists of the
following components: convolution layer, evaluation of a non-

linear activation function, subsampling layer, fully-connected
layer and classification or regression layer.

The convolution component extracts features from the input
image with a set of adaptive filters called kernels. The con-
volution computation is done through a dot-product between
the elements of the kernel and the input section of same
size across the entire input frame and channels. Figure 2
shows a detailed demonstration of the computations applying
a 2x2x2 convolution and max pooling on a 3x3x2 input
image. Firstly, a multi-dimensional dot product is computed
through the convolution layer consisting of 2 kernels. Each
of these kernels possess dimension of 2x2x2. The depth of
the input data, which can be defined as channels of an input
image like Red-Green-Blue(RGB), has to be equal with the
depth of the kernels. The resulting dimension of the output
of the convolution layer is dependent on the dimension of
the kernel and the used stride and padding behavior. Stride
controls how the kernel convolves around the input data in
a shifting manner. Padding is used to avoid a fast decrease
of the output data adding data around the border of the input
image. Thus, the height and width of the input image can
be remained. The convolution layer in Figure 2 has a stride
of one without padding. Therefore, the resulting output owns
a dimension of 2x2x2, which can be described as a double-
channel image or an output with two feature maps with a size
of 2x2. Another possible method is to share one kernel for
all channels to create decomposed images. The output of the
dot-product is forwarded to an non-linear activation function,
typically sigmoid(), ReLU() or tanh(), which increases the
nonlinear properties of the CNN. In practice, the rectified
linear unit (ReLU), defined as f(x) = max(0, x), is the most
popular activation function used for CNNs due to its sparse
activation, efficient computation and benefits regarding back
propagation reducing the effect of vanishing gradients. Then,
the pooling component, also called subsampling, reduces the
spatial dimension of each feature map and keeps relative
positional informations. The main purpose of this layer is
generalization to avoid overfitting, by reducing the amount
of parameters and keeping relative relationships. The most
popular type of subsampling is max pooling as applied in
Figure 2. In traditional CNNs like ImageNet [13], these
three stages alternate several times. At the next stage of the
feedforward path one or more Fully-Connected (FC) layers
are applied. Typically, all neurons within these layers have
full connections to the previous layer, while CNN layers are
characterized through local connections and parameter sharing.
However, both layers still compute dot products and therefore
it is possible to replace fully-connected with convolution layer.
At the last stage of a CNN a classification or regression
layer is used to extract the desired information and build the
quadratic cost function to train the network with the help of
logistic or linear regression. The training of CNNs is done
via a gradient-based backpropagation algorithm. Since the
breakthrough in 2012, many researchers and companies mod-
ified the architecture and training methodologies for CNNs
improving generalization and precision. The developers of

309

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Convolution +
Activation Function Pooling Pooling Fully Connected LayerConvolution +

Activation Function

Feature Extraction Classification/RegressionInput

Fig. 1: Common processing flow of a convolutional neural network [3].

a2 b2 c2

f2e2d2

g2 h2 i2

j2 k2

m2l2
a1 b1 c1

f1e1d1

g1 h1 i1

Pm1=max(
Fm11,Fm12,
Fm13,Fm14)

Fm11=max(0,
a1j1+a2j2+

b1k1+b2k2+
d1l1+d2l2+

e1m1+e2m1)

Fm12=max(0,
b1j1+b2j2+
c1k1+c2k2+
e1l1+e2l2+

f1m1+f2m2)

Fm13=max(0,
d1j1+d2j2+
e1k1+e2k2+
g1l1+g2l2+

h1m1+ h2m2)

Fm14=max(0,
e1j1+e2j2+
f1k1+f2k2+
h1l1+h2l2+
i1m1+i2m2)

Fm21=max(0,
a1o1+a2o2+
b1p1+b2p2+
d1q1+d2q2+
e1r1+e2r2)

Fm22=max(0,
b1o1+b2o2+
c1p1+c2p2+
e1q1+e2q2+

f1r1+f2r2)

Fm23=max(0,
d1o1+d2o2+
e1p1+e2p2+
g1q1+g2q2+
h1r1+h2r2)

Fm24=max(0,
e1o1+e2o2+
f1p1+f2p2+
h1q1+h2q2+

i1r1+i2r2)

Pm2=max(
Fm21,Fm22,
Fm23,Fm24)

l1

j1 k1

m1

o2 p2

r2l2

q1

o1 p1

r1

Fig. 2: Demonstration of the computations by applying a 2x2x2 convolution with max pooling on a 3x3x2 input image

VGGNet [14] (2014) proved that keeping CNNs simple and
deep is a useful method in order to improve their performance
to a certain degree. Karen Simonyan and Andrew Zisserman
archieved the lowest error rate with 16 layer CNN using
3x3 kernels with a stride of one and 2x2 max pooling with
a stride of two in every layer [14]. Another approach to
improve the precision of CNNs was presented by Szegredy
et al. [15] in the same year with a similar error rate compared
to VGG-16, but with a model size which consists of only 6
million instead of 140 million parameters. The introduction
of inception modules leads to the evolution of GoogleNet.
The basic idea of GoogleNet is to break with the traditional
sequential order of layers. The inception module proposed in
[15] consists of a 3x3 max pooling, a 3x3 convolution and

a 5x5 convolution executed in parallel. The output of these
components are concatenated in the depth dimension. In order
to reduce dimensions to 1x1 convolutions to each component
are applied. Furthermore, instead of FC layers, average pooling
layers are used. Thus, the amount of parameters, mainly arised
from the FC layers, has been significantly decreased. As a
result the decreasing size of the model and the increasing data
parallelization possibility is beneficial for accelerating training
and inference phase. However, the current state of the art CNN
for object classification, detection and localization is ResNet
[16]. These CNN introduced by He et al. 2015 is by far the
biggest network of the mainly used ones with a total size of
152 layer and 60 million parameters. Due to the huge size of
the network even applying ReLU activation units the vanishing

310

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

gradient problem is exacerbated. Therefore, the basic idea of
ResNet is to sequentially apply shortcuts over convolutional
layer. The output of the convolution is then added to the
original input. Thus, a slightly different representation of the
input data is created. The resulting residual mapping simplifies
the backpropagation optimization and allow models to be even
deeper.

B. Recurrent Neural Networks

Recurrent neural networks (RNNs) can be utilized for
recognition, production or prediction problems [17]. Unlike
conventional NNs, they can include temporal information
in the processing, as they can handle information relation
between sequential data for sequences of arbitrary length.
RNNs extend the concept of conventional acyclic feedforward
NNs by maintaining a hidden state. This ability is enabled
by cycles inside the network, and it is a key feature for
tasks such as speech and handwriting recognition [18]. The
cycles inside the network are connections from the output of
a layer looping back, either to itself, or to a previous layer. The
feedback connection enables the network to represent previous
information as activation [19]. Thereby, the activation of the
hidden state depends on previous activations [20]. In [21],
Schmidhuber describes RNNs as more powerful general com-
puters in comparison to acyclic feedforward NN. According to
Schmidhuber, RNNs can learn from arbitrary data inputs, as
well as create such data as output. Even a mixture of sequential
and parallel data can be processed. Similar to other DNNs,
RNNs can benefit from a massive parallelism in processing,
as offered by todays computing platforms. In comparison to
Markov chains, which can also handle dependencies in time
between sequential input data, the state space of RNNs is
growing slower for growing context windows. In a Markov
model the growth of state space is exponential, for RNNs, it
is quadratic at most [22].

One of the first approaches for NN to include temporal
information, is the work of Hopfield [23]. He describes an
early NN that allows temporal dependencies of the neurons
state and an encoding of temporal information of data. One
of the first approaches in the direction of todays RNNs was
done by Jain et al. They developed a partially RNN to learn
character strings [24]. According to [24] the architecture of
RNN can be anything between a fully interconnected network
and a partially interconnected network. In fully interconnected
networks, every neuron is connected to every other neuron, as
well as to itself via feedback connections. This structure is
depicted in Figure 3. However, in contrast to Figure 3, for
a fully interconnected RNN, there are no distinct input and
output layers.

In the 90s, there have been difficulties to train RNNs
for applications whose data includes dependencies over long
temporal intervals. The results from Bengio et al. in [25],
indicated that it is more likely for the learning process to
take into account dependencies with short temporal character,
rather than those with long-term dependencies. In [17], Bengio
et al. discuss this issue for a better understanding of the

Fig. 3: General architecture of RNNs with optional input and
output layer.

problem. They suggest alternative optimization algorithms to
gradient-descent, which showed encouraging results. Within
their paper, they reveal the vanishing gradient problem and
the exploding gradient problem. Pascanu et al. investigated
this problem further and proposed a regularization term that
hinders the error signal to vanish [26].

The first contribution to a network to overcome the issue
of learning long-term dependencies, was made by Hochreiter
and Schmidhuber in 1997 [19]. They proposed a new recurrent
network architecture, together with a gradient-based learning
algorithm, called long short-term memory networks (LSTM).
These networks can be categorized as a sub-group of RNNs.
The network architecture contains an input layer, a hidden
layer, and an output layer. The hidden layer contains so called
memory cells and is fully connected. A LSTM cell architecture
is depicted in Figure 4.

Another notable approach was presented by Schuster and
Paliwal [27]. They proposed bidirectional recurrent neural
networks (BRNNs). BRNNs are designed to overcome the
issue of choosing the right time for the output delay to include
future input data. Therefore, Schuster and Paliwal proposed to
split the neuron state to cover positive time direction and the
negative time direction. This means that the network structures
includes positive and negative delays. Their results show a
significant improvement for the classification of phonemes
from the TIMIT speech database over other types of RNNs
and multi-layer perceptron networks.

More recently, Cho et al. proposed a new type of hidden
units, called gated recurrent unit (GRU) [28]. The approach
was motivated by the LSTM approach, but instead of three or
four gating units in LSTM, depending on the implementation,
it uses only two gating units. In [20], Chung et al. show that
GRUs can gain advantage over LSTM-based RNNs.

311

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 4: LSTM architecture with four gated units. The S denotes
the Sigmoid function [18].

III. HARDWARE ACCELERATION ON GPU AND FPGA

The advantage in energy efficiency of FPGAs in comparison
to other computing platforms is well known [29], [30], [31].
However, in the area of DNNs, GPUs are a more prominent
platform for implementations in comparison to FPGAs. This
dominance is, among other aspects, based on a higher comput-
ing performance and more efficient programmability in e.g.,
CUDA programming language. The advantage in performance
is based on the heavy use of floating-point operations of cur-
rent DNN implementations. In [32], Nurvitadhi et al. compare
the implementation of RNNs on FPGAs, CPUs, GPUs and
ASICS. Without the usage of batch processing, the FPGA im-
plementation performs better than its counterpart on CPUs and
GPUs. This is due to its customizable hardware architecture.
With the usage of batch processing, the implementation on
CPUs and GPUs achieve a better performance, however, their
utilization is not as optimal, leading to a worse efficiency.

In [33], the authors present their follow-up work. They
analyzed the capabilities of upcoming FPGA technology, and
the latest developments of DNN, to identify benefits of FPGA-
based implementations. For their evaluation, they compared
implementations on Intels Arria 10 and Stratix 10 FPGAs to
implementations on Nvidias Titan X Pascal GPU. According
to the authors, the latest developments in the field of DNNs
are reported to be an increase in efficiency, compact data
types, and network sparsity. Architectures with more efficient
data paths are necessary, as the size of current DNNs is
growing, due to a coherence in inference accuracy. Moreover,
the data processing can be optimized by exploiting zero
values in the network weights and biases, called sparsity. It
is necessary to take advantage of zero values by avoiding
their computation [33]. Recent publications [33] have shown a
significant improvement in representing the data inside DNNs
with less bits, while still maintaining a high accuracy.

Modern GPUs are often based on a single-instruction
multiple-thread (SIMT) compute model, meaning that mul-
tiple threads are processed in parallel, executing the same

instructions on different data. This is the case for the compute
model of OpenCL, where a single program counter is used
for a group of threads, called wavefront [34]. Thus, thread-
level divergence is an issue, as only one execution path can
be followed at a time. Therefore, a homogeneous processing is
beneficial for GPU implementations. Moreover, GPUs usually
support a fixed set of native data types. Thus, compact
data types with only a few or single bits are less likely
beneficial for GPU implementations and can even become a
performance disadvantage. Modern FPGAs on the other hand
offer an increasing amount of on-chip memory. For instance,
Intels Stratix 10 offers up to 28 MB [35], and Xilinx Virtex
UltraScale+ offers more than 45 MB [36]. Moreover, their
maximum frequency is increasing due to improvements in the
production process, as well as new features, such as Intels
HyperFlex. In addition, the number of hardwired DSPs cores,
equipped with native floating-point support, is increasing.
Furthermore, the achievable bandwidth is increasing too, for
instance the usage of high-bandwidth memory (HBM) in
future FPGA generations.

Based on these properties of GPUs and FPGAs, as well
as the trends of current DNN development, the authors of
[33] foresee a possible performance benefit for DNN imple-
mentations on FPGAs, in addition to the performance/Watt
advantage.

Nurvitadhi et al. results indicate that for single-precision
floating-point implementations of DNNs, FPGAs still fall
behind the performance of GPUs. However, as stated earlier,
the results show an advantage for FPGAs when looking at
performance/Watt. To evaluate sparsity, the Nurvitadhi et al.
evaluated AlexNet with matrices with 85 % sparsity. This
means that only 15 % of the elements are non-zero. Due
to the shortcomings of GPUs thread-divergence, FPGAs can
offer a benefit. In fact, the results show that the Stratix 10
FPGA outperforms the Titan X GPU in matrix multiplication
for DNNs with pruning for implementations with a clock
frequency of 500 MHz and more. The evaluation of an extreme
case of compact data types, binary neural networks with data
types of 1bit width, reveal the disadvantage of a fixed set
of natively supported data types. The results of Nurvitadhi
et al. show that the Stratix 10 FPGA outperforms the Titan
X GPU in matrix multiplication for binarized DNNs for all
implementations. This is even the case for the implementation
on the lower-cost Arria 10.

Another DNN type with compact data types are ternary
DNNs, which use a ternary representation of the network
weights, e.g., +1, 0, -1. For their evaluation, Nurvitadhi et al.
analyzed Ternary ResNet. Their implementation takes advan-
tage not only of compact data types but also sparsity in layers.
On average, they report 51 % sparsity of the weights, and
60 % sparsity of the neurons. In their experiments, the FPGA
implementation, running at 450 MHz, was able to beat the
implementation on the Titan X GPU in terms of performance,
as well as performance/Watt.

As indicated by the results of Nurvitadhi et al., in addition
to the advantage in performance/Watt, there is a good chance

312

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for next-generation FPGA technology to beat GPUs for DNN
implementations.

Therefore, within this paper we will analyze implementation
details of the two prominent kinds of DNNs, namely CNNs
and RNNs, and discuss their properties and benefits.

IV. ANALYSIS OF CNN IMPLEMENTATION

As mentioned in Section II-A, CNNs are data flow oriented
and offer great possibilities to design hardware accelerators
and even coprocessors exploiting fine and coarse grained par-
allelism. Filtered Connections (FC) and convolution layers can
be seen as big matrix multiplications. Within the convolution
layer of the example shown in Figure 2, 64 Multiplications
and Accumulate Computations (MACs) can be executed in
parallel. The amount of operations without data dependencies
which are able to be executed in parallel increases, due to
the kernel and input data size. However, several challenges
arise designing an efficient hardware accelerator for CNNs.
Obviously, modern CNNs with a huge amount of layers like
ResNet are not suitable to implement it as a whole. Therefore,
methods and architectures have to been found facing a trade-
off between resource utilization and performance. Further-
more, the biggest challenge focuses on the memory allocation
and access, which is the main bottleneck in every architecture.

While image processing cores have already been extensively
studied and widely used on FPGAs, to the best of our
knowledge Sankaradas et al. firstly designed and implemented
a coprocessor able to execute and accelerate the inference
phase of an entire CNN [37]. The authors of [37] bypass
the bottleneck of memory access and allocation with the
help of off-chip memory with a large bandwith. The off-chip
memory, including 4 banks of DDR2 SDRAM of 256MB, is
connected to a Xilinx Virtex-5 FPGA via PCI. The basic unit
of this architecture is a handcrafted 2D convolver using Single
Instruction Multiple Data (SIMD) processing elements called
Vector Processing Elements (VPEs). These VPEs consist of
fixed amount of chained digital signal processing processor
(DPS) units optimized for an efficient execution of MAC
operations and a First In First Out (FIFO) buffer as can be seen
in Figure 5. Furthermore, these VPEs are organized in clusters
whereby the output of each VPE tile is added to the previous
one with the help of an additional DSP unit. The advantage
of dynamic reconfiguration is not used due to the fact that the
FPGA is used as a prototyping platform. Thus, the size of the
clusters and amount of DSP units inside each VPE is fixed.
Although the VPEs are programmable to skip convolutions, the
size of the baseline kernel has to be previously determined.
Thus, bigger kernels are not suitable for executing convolution
on this architecture. The clusters also include subsampling and
non-linear activation function primitives performed by look-
up tables. The input data is streamed in a sequential manner
and no intermediate data is stored on the on-chip memory. To
further increase the communication performance, Sankaradas
et al reduce the data precision from floating point to fixed
point operations of 20 bits. Later studies [38] proved that
reducing the data precision in a certain region does not impact

the accuracy loss significantly. Sankaradas et al. achieved with
the first coprocessor, capable to accelerate a complete CNN
on hardware, a performance of 3, 37GMAC per second with
a total power consumption of 11W . This baseline coprocessor
is a very well designed architecture. However, this architecture
still does not use the parallelization possibilities properly
and seems to be very inefficient applied to a CNN with
varying kernel and sampling sizes. On the other side, this
static architecture is perfectly suitable applied to simple and
homogenous CNNs like VGG.

In contrast to the architecture described in [37] the authors
of [39] abandon the option of using external memory and
a persistent connection to a local host computer in their
hardware accelerator design focusing on mobile embedded ap-
plications. Jin et al. use a Xilinx Zynq-7000 device including a
dual ARM Cortex-A9 core and an Artix-7 FPGA to implement
their architecture consisting of 2 main components, namely
a memory router and a collection network. A collection is
defined as a group of operator blocks performing arithmetic
operations like convolution. Within a single pass through
the collection, an output of a 1-to-1 convolution plane is
applied. Each collection can be executed in parallel with an
interval of 1, which means that every clock cycle, an output
datum is produced. To control the data flow between each
operator, each collection owns a router. This router is also
able to bypass an incoming data stream from neighbored
collections. The operators inside each collection are arranged
in a sequential manner similar to the VPE described above.
The other major component of this architecture is the memory
router, which consist of 3 AXI Direct Memory Access (DMA)
IP cores. These DMAs, performing the memory access via
AXI4-bus coupled with AXI4 Stream, acting as a gateway
to the collection. Furthermore, the memory router is able
to distribute incoming streams to not occupied collections.
Unfortunately, Jin et al. did not describe properly how the
streams are built or how the exact operator blocks are designed
in order to synchronize kernels and input data. The authors
mention that the peak performance of 40Gops/s consuming
less than 4W significantly decreases, applying deep CNNs
producing deep feature maps according to the huge amount of
intermediate data. However, the smart routing technique and
reduced number of global connections is a promising method
to execute inference phase of CNNs keeping intermediate data
in a pipelined stream.

Although the above described architectures are carefully
designed and programmable in a certain degree, they are very
static and inflexible to introduce changes, which leads to inef-
ficiency implementing different types of CNNs. Redesigning
the hardware to improve different stages of different CNNs
produces high engineering effort. Therefore, newer approaches
and design flows implementing custom CNNs on hardware try
to overcome this issue with the help of High Level Synthesis
(HLS). HLS is an automated design process producing hard-
ware description at the Register-Transfer-Level (RTL) from a
higher level of abstraction, namely the algorithm-level. Thus,
Verilog or VHDL code can be automatically generated from

313

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C/C++, SystemC or OpenCL code. Typically, the architectural
design of the resulting hardware architecture can be influenced
with a set of constraints and directives. This method ensures
a fast design space exploration and an easy customization of
the hardware to accelerate DNNs. The authors of [40] use
Vivado HLS from Xilinx to implement a five-layer CNN on a
FPGA including 2 convolutions with 5x5 kernels and 2 average
pooling layer. Instead of data streaming combined with smart
routing or external memory, Zhou et al. use mainly the on-
chip memory of a Virtex7 to store parameters, intermediate
and input data. After noticing that the onboard Block RAM
(BRAM) has only two ports preventing convolution to be
executed in parallel sufficiently, Zhou et al. switch to a
sea of registers through a line buffer chain. In combination
unrolling the most inner loop of the convolution they were
able to execute 25 11bit-MAC operations in parallel. The
hardware accelerator is driven with a clock frequency of 150
MHz. Therefore, this design has a theoretical maximum peak
performance of 3.75GMACs. However, this paper shows the
advantage of HLS designing custom CNN accelerators due to
the easy handling and the hardware generation speedup with
state-of-the-art HLS tools.

The authors of [41] use the properties of HLS to effec-
tively perform a Design Space Exploration optimizing FPGA
hardware accelerators for CNNs. This research is based on
the roofline performance model described in [42] relating
the system performance to off-chip memory traffic and the
peak performance. The goal of the design space exploration
is to achieve a certain computation to communication ratio
in order to reach the computational roof of the attainable
performance. Due to that goal the authors of [41] first started
to optimize the computation of the convolution by generating a
series of valid CNN implementations. Thus, specific directives
provided by Vivado HLS, namely unrolling and pipelining,
are used to generate a series of valid hardware accelerators
of CNNs with an equivalent functionality with the help of
loop scheduling and loop tile size enumeration. More precisely
Zhang et al. investigated in the impact of tile size selections
in order to find the computational roof of a convolution with
the given loop scheduling. To reduce the amount of memory
access, local memory promotion is proposed for keeping the
intermediate data on-chip as long as possible. In order to
increase the reusability of intermediate data, a polyhedral-
based optimization framework is used, identifying all legal
loop transformations. As a result Zhang et al. performed
a Design Space Exploration of a convolution layer with
multiple input channels and feature maps to compute a set
of Pareto points. Thus, a hardware implementation can be
chosen achieving the best performance in combination with a
suitable communication to computation ratio. The synthesized
IP-core is coupled to two ping-pong buffers for each input
and output AXI4 bus. The off-chip data transfer is managed
by two data transfer engines to perform DMA access. In
order to gain the needed bandwidth, the amount of AXI4 bus
interfaces has been adjusted. However, the multi-layer CNN
accelerator suffers due to a chosen global unroll factor. This

fact leads to inefficient hardware utilization in heterogeneous
CNNs especially by performing the feedforward path of FC
layers. The 5 layer CNN hardware accelerator is implemented
on a Xilinx Virtex 7 device achieving 61.62GFLOP/s. The
hardware is working with 100MHz consuming 18.61W .
Instead of fixed point Zhang et al. only use floating point
operations in their design.

To further increase the performance of FPGA based accel-
erators of CNNs, Li et al. investigated the opportunities to
customize every type of layer due to their specific characteris-
tics. Therefore, the authors of [43] try to optimize the memory
access method and the level of parallelism depending on the
layer type and their properties. While the system architecture
and the parallelism space exploration is very similar to the
architecture presented in [41], the major difference is the
fact that Li et al. treat convolution and FC layers differently
in terms of optimizing the level of parallelism and off-chip
memory access. The FC layers are handled as big matrix mul-
tiplications and divided into small scale matrix multiplications.
Furthermore, computing the optimal data parallelism Li et al.
took the limitation of the hardware resources, namely DSP
and BRAM units, directly into account. Due to the fact that
FC layers are very memory-bounded and less computation-
bounded caused by their dense interconnections, a batch-based
processing method for FC layers has been proposed. The basic
idea of this approach is to continuously run the FC feedforward
path without waiting for data. Therefore, Li et al. compute a
batch size matching the computing pattern for the FC layers
in order to increase the operations executed in parallel without
increasing the needed bandwidth. Hence, the 8-layer AlexNet
hardware implementation on a Virtex 7 device is working
concurrently in a pipeline structure achieving 565.94GOP/s
with an energy consumption of 30.2W .

While Li et al. used floating point operations, the authors
of [44] used a data quantification strategy reducing the bit-
width down to 8-bit without increasing the accuracy loss
significantly. The data quantification strategy aims to search
for radix point positions for each layer for a given bit-width
while the CNN is still trained with floating point operations
on a GPU. By producing a histogram of the logarithmic values
of the feature maps, initial radix point positions are set. Then,
a greedy strategy is used to optimize the positions layer by
layer. After the best accuracy is achieved with a set of radix
point positions, the CNN was fine-tuned converting back to
floating point format. However, Guo et al. used a 24 bit-width
to store intermediate data avoiding an increasing accuracy loss.
Another major benefit of the architecture described in [44]
is the fact, that this design is reconfigurable during runtime.
The architecture supports kernel sizes of 1x1, 3x3 and 5x5.
To configure the accelerator Guo et al. extend their previous
work [45] with flexible set of instructions. Furthermore, a
compiler is provided for mapping the network descriptor to
the instructions. This compiler performs a set of optimizations
to achieve a good computation communication ratio with the
use of all available hardware resources. The coprocessor was
tested with different CNNs such as GoogleNet, VGG-16 or

314

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SquezzeNet achieving 137GOP/s on a Xilinx Zynq-7020
device with a power consumption of 3.5W .

As a novel idea for improving the performance of the
system, [46] presents the Global Summation, designed to
minimize resource consumption on the latest layers in favor
of the overall performance. In contrast, [47] presents several
techniques to improve the control method of the process,
among several improvements, for instance, it is important
to mention the input reuse and the concatenation of data.
The Input reuse, consists on extending the information to
convolution modules even though if the amount of available
ports is smaller than that of free convolution modules. Those
convolution modules that have access to the port can share the
information to those who are idle. The concatenation of data
profits of the Q8.8 format. The Q8.8 format uses 16 bits in a
32 bitstream, so that 2 different data words can be transmitted
in a unique stream.

Another approach is proposed in [48]. Yuan et al. design a
coarse-grain array to accelerate the arithmetic operations. The
basic unit of the hardware accelerator is the Neural Element
(NE) including 9 multiplication and 1 adding operation units.
This basic unit is optimized to convolve 3x3 kernels. Figure
6 shows the coarse grain array formed by 16 NEs, which
are arranged to form a Configuration Neural Block (CNB).
To reconfigure this array two configurable routing units are
used, namely Filter conncetions (FCs) and Input Connections
(ICs). As their name suggest, these switching ressources are
responsible to route kernel weights and input data to their
desired location. Furthermore, 5 adding operation units are
placed adding the output of multiple different NEs. In this
way other kernel sizes can be supported from 1x1 to 12x12.
Additionally, the overall architecture owns 2 CNBs to further
increase the parallelism. Like the authors of [45] Yuan et al.
provide a compiler taking trade-offs due to the computation
to communication ratio and on-chip resources into account
to optimize the routing. However, this architecture does not
fully utilize the on-chip resources applied to other kernel sizes
than 3x3 like 5x5 due to its coarse grained nature. Although
the non-used processing elements can be turned off during
execution and the smart arrangement and routing are producing
a low degree of overhead, the circuit of the coarse grain
array cannot be reconfigured as this architecture is designed
as an ASIC implementation under a TSMC 65nm CMOS
process. The ASIC is clocked by 100MHz and achieve a peak
performance of 57, 6GOP/s with a power consumption of
107mW .

ASIC-based approaches offer great performance and low
power capabilities; however, they lack flexibility and have
a larger design flow process. The approaches based on this
platform are highly customized for an application. Under this
category, [49] introduced Eyeriss, accelerator for deep CNNs
that aims for energy efficiency. The accelerator consists on
an SRAM buffer that stores input image data, filter weights
and partial sums to allow fast reuse of loaded data. This data
is streamed to a spatial array of 14x12 processing engines
(PE), which compute inner products between the image and

filter weights. Each PE consists on a pipeline of three stages
that computes the inner product of the input image and filter
weights of a single row of the filter. The PE also contains local
scratch pads that allow temporal reuse of the input image and
filter weights to save energy. There is also another scratch
pad in charge of storing partial sums generated for different
images, channels or filters, also with the aim of reusing data
and saving energy. To optimize data movement, the authors
also propose a set of input Network on Chips (NoC), for
filter, image and partial sum values, where a single buffer read
is used by multiple PEs. This approach was implemented in
a 65nm CMOS, achieving a frame rate 44.8fps and a core
frequency of 250MHz.

The work in [50] proposes an analog-digital hybrid archi-
tecture for CNNs targeting image recognition applications,
focusing on high performance at low power consumption.
The architecture consists on a pulse-width modulation circuit
to compute the most common operations of a CNN and a
digital memory to store intermediate results. Additionally, the
design makes use of a time-sharing technique to execute the
operations required by all the connections of the network
with the restricted number of processing circuits available in
the chip. This architecture was implemented with a 0.35µm
CMOS pieces. The paper reports an execution time of 5ms for
a network with 81 neurons and 1620 synapses, an operation
performance of 2GOPS and a power consumption of 20mW
for the PWM neuron circuits and 190mW for the digital
circuit block.

The work in [51] proposes Yodann, an ASIC architecture for
ultra-low power binary-weight CNN acceleration. In this work,
a binary-weight CNN is chosen for implementation because
limiting a CNN’s weights to only two values (+1/-1) avoids
the need of expensive operations such as multiplications,
which can be replaced by simpler complement operations and
multiplexers, thus reducing weight storage requirements. This
also has the advantage of reducing I/O operations. Moreover,
this approach implements also a latch-based standard cell
memory (SCM) architecture with clock-gating, which provide
better voltage scalability and energy efficiency than SRAMs,
at the cost of a higher area consumption. The architecture
was implemented using UMC 65nm standard cells using a
voltage range of 0.6V −1.2V . The article reports a maximum
frequency of 480MHz at 1.2V and 27.5MHz at 0.6V and
an area of 1.3 MGE (Million Gate Equivalent).

Recently, in February 2017, the company ST Microelec-
tronics published a System-on-Chip (SoC) design in FD-SOI
28nm accelerating CNNs on embedded devices. Desoli et al.
[52] achieved a theoretical peak performance of 676GOP/s
with a peak efficiency of 2.9TOPS/W (Tera Operations Per
Second/ Watt). The interesting components of this architecture
are the hardware convolutional accelerators supporting ker-
nel kompression and the on-chip reconfigurable data-transfer
fabric. The data-transfer is managed by 10 fully configurable
DMAs. Additionally, a configurable stream switch guides 53
input and 40 ouitput streams to their desired locations like one
the eight Convolution Accelerators (CAs). Hence, the CAs can

315

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be arbitrarily chained. Therefore, a configurable accelerator
framework is used in order to configure the SoC during
design-time. The CA is equipped with 4 stream interfaces,
namely feature stream input, kernel stream input, intermediate
data stream input and an output stream. The feature line
buffer can store up to 12 channels with up to 512 pixels and
provides 36 read ports fetching data in parallel. Moreover, up
to 484 kernels values can be stored inside the kernel buffer.
Convolution is done by 36x16x16bit overlapping and column-
based fixed-point MACs able to convolve 4 kernels in parallel
followed by an adder tree. This design is able to consistently
reuse available hardware ressources due to its fully scalable
configuration. It is worth to mention that Desoli et al. complete
the SoC with a set of extensions like pheripherals, high-speed
interfaces for imaging and a chip-to-chip multilink in order to
offer a basic platform for sophisticated image processing and
to connect several devices to a bigger accelerator.

In the same year, the Envision architecture was presented
by Moons et al. The authors of [53] focus on increasing
the energy efficiency of their CNN hardware accelerator
with the help of subword-parallel Dynamic-Voltage-Accuracy-
Frequency Scaling (DVAFS) enabling Envision to achieve
10TOPS/W in 28nm FDSOI. Therefore, Moons et al. extend
the principle of DVAS with reusing inactive arithmetic cells
at reduced precision. As a result, frequency and voltage of the
processor can be significantly decreased compared to DVAS.

Although ASIC implementations offer greater performance
capabilities in combination with a lower energy consumption
they lack in terms of flexibility. While homogenous networks
are great for ASIC implementations, executing heterogeneous
ones owning different kernel sizes and feature maps often
lead to an inefficient use of the hardware or parallelism
possiblities. Thus, the application of FPGAs can overcome
this problem. While the above described architectures aim
to be realized in future as hard wired coprocessors, the
utilization of the FPGA serves as a rapid prototyping platform.
The development of new variants of CNNs is rapid and is
improved due to their specific applications. Thus, the size
and structure of the network also can be adjusted to specific
applications. As mentioned earlier in this section, HLS is
a promising way to accelerate the design time of hardware
accelerators. Additionally, newer HLS tools like Vivado HLS
provide a methodology to perform design space exploration
with the help of tcl-scripts automatically. This offers great
possibilities to create frameworks automatically generating
bitstreams executable on reconfigurable devices. Solazzo et
al. propose a web-based framework in [54] interfacing directly
with Vivado HLS. Although HLS synthesis is not complicated,
the synthesis time can be huge. Hence, the main contribution
of [54] is to predict the resource utilization of a given network
configuration. Unfortunately, no optimization methodologies
are used. The C/C++ language was not designed taking par-
allelism into account, though. Hence, OpenCL is more native
way to describe parallelism. Xilinx also provide a HLS tool
called SDAccel focusing on the synthesis of OpenCL code.
DiCecco et al. use this tool in [55] to add FPGA support to

the Caffe deep learning framework. While OpenCL support in
Caffe is already given DiCecco et al. designed their OpenCL
implementations to be suitable to many architectures rather
than only GPUs. While optimizations are CNN specific and
can be easily performed by the SDAccel tool DiCecco et
al. focusing on the integration and synchronization of FPGA
accelerators in Caffe. Hence, Wang et al. describe in their
work [56] methods to improve CNN accelerators with the help
of SDAccel and OpenCL optimizing the pipelining structure
and level of parallelism. All the approaches described in this
section aim to maximize the performance of CNNs by explot-
ing the level of parallelism and bandwidth for computing the
feedforward path of CNNS. However, the resulting architec-
tures heavily depend on the available target hardware ressouces
and the desired application CNN. The less ressources are
available, the harder is the task of keeping intermediate data
on the on-chip memory avoiding bottlenecks. Furthermore,
the paralellism level is dependent on the amount of feature
maps, which have to be evaluated. The roofline-model and
the optimization exploration, which was described regarding
CNN in [41], is a good baseline for evaluating custom CNN
accelerators. In combination with data quantification tech-
niques, discussed in [44], sophisticated routing methods [39]
and embedding methodologies into common deep learning
frameworks [56], hardware implementations, esspecially on
FPGAs, of CNNs could become a promosing alternative to
GPU CNN acclerators not only applied on embedded devices.

W1K W1K-1W1K-1 W11W11

W2K W2K-1W2K-1 W21W21

WKK WKK-1WKK-1 WK1WK1

Out

Image
Row h+1

Image
Row h+1

Image
Row h+k

Image
Row h+k

Image
Row h
Image
Row h

Load
from

Off-chip

K
FIFOs
(Dual

Ported
BRAMs)

K² + K DSP units chained

Fig. 5: A VPE array implementing the primitive 2D convolver
unit by Sankaradas et al. [37].

V. ANALYSIS OF RNN IMPLEMENTATIONS ON FPGAS

In general, similar to the optimizations regarding CNN
implementations, two possibilities exist to increase the overall
performance of RNNs regarding the inference phase on FP-
GAs. However, due to the recursive structure of RNNs and
the differences of the computations inside the neurons, the
optimization has to be handled differently. On the one hand
the computations, which must be done while passing the input
through the network can be optimized. This includes adjusting

316

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

NE11NE11NE11 NE12NE12NE12

NE22NE22NE22NE21NE21NE21

ICICIC

FCFCFC

ADDB1

NE13NE13NE13 NE14NE14NE14

NE24NE24NE24NE23

ICICIC

FCFCFC

ICICIC

FCFCFC

ADDB1

NE33NE33NE33 NE34NE34NE34

NE44NE44NE44NE43NE43NE43

ICICIC

FCFCFC

ICICIC

FCFCFC

ADDB1

NE31NE31 NE32NE32

NE42NE42NE41NE41

ICIC

FCFC

ICIC

FCFC

ADDB1

NE31 NE32

NE42NE41

IC

FC

IC

FC

ADDB1

ICIC ICIC ICICADDB0

FCFCFC

ICICIC

ICIC

Fig. 6: Coarse grain array design to acclereate CNNs by Yuan
et al. [48].

the level of parallelism due to the hardware constraints, the
choice of hardware accelerator module and approximations
of computation, in case of an acceptable minimal loss of
precision. On the other hand, the data communication, which
includes weight parameters and inputs, between the FPGA
and an external memory, like DRAM, can be optimized to
improve the throughput. This is necessary because typically
the FPGA on-chip-memory, BRAM or distributed memory, is
too small to store all parameters of real-life RNNs. Thus, the
developer of FPGA accelerators for RNNs have to consider
both optimization paths. Moreover, to increase the overall
performance both optimization paths must collaborate to avoid
bottlenecks.

In [18], the authors focused on both optimization paths pre-
viously mentioned. Regarding the computation optimization,
the authors profiled a typical LSTM-RNN inference structure
and found out that the main bottleneck is caused by the compu-
tations, which mainly include floating point multiplication and
addition, inside each LSTM gate. To optimize these operations,
they split the computations in each gate into tiles, each of
them carry out a portion of the inference process. Then, the
execution among tiles is pipelined to optimize the throughput
while the inner loops within each tile are unrolled and executed
in parallel to improve the latency. The second most executed
block of operations are the activation functions. These were
replaced with a piecewise linear approximation of nonlinear
function (PLAN), which was originally introduced by Amin
et al. [57]. This approach consist of simple additions and
shifting operations, which can be more efficiently implemented
in hardware. This comes at a price of a small loss of accuracy,
which can be ignored.

LSTM Functional Logic

Sf Sf Sc Sc Si Si So So

Cell BufferCell Buffer

Output Group 0Output Group 0

Input Group 0Input Group 0

Output Group 1Output Group 1

Input Group 1Input Group 1

Fig. 7: Architecture of the accelerator for a LSTM-RNN
proposed in [18].

Regarding the optimization of communication requirements,
the authors tackle the issue of irregular data access, which is
caused by the transposition and tiling of the computation opti-
mization described previously. This irregularity in the memory
accesses causes a significant overhead on the communication
between the DRAM and the FPGA. To solve this issue, the
matrices used in the computations are modified offline in
such a way that they can be accessed sequentially during the
inference phase. Furthermore, 2 input buffers and 2 output
sets of buffers working in a ping-pong fashion were added to
further improve communication. Finally, a data dispatcher was
added to maximize the the use of the bandwidth between the
DRAM and the buffers.

To implement these optimization methods, they separated
the computation scheme into four LSTM gate modules: the
input, forget, cell and output. These models are shown in
Figure 7. These modules receive tiled input vectors from the
input buffers in parallel through a crossbar and carry out
the inference process. The multiplications within this process
are carried out in parallel within each LSTM gate module.
Then, the results are summed up using an addition tree. the
summed up results are delivered next to a LSTM Functional
Logic module, which executes the remaining operations, such
as element-wise multiplication, addition of gate vectors, acti-
vation, etc. Moreover, the current state of the LSTM cell is
stored in a module called Cell Buffer. Finally, the complete
results are sent to the output buffers through another crossbar.
The Accelerator is designed with Vivado HLS and the system
is implemented on a XILINX VC707 board with a Virtex7
FPGA chip. A DDR3 DRAM is used as external memory,
which holds the parameters of the LSTM-RNN, as well as the
inputs and outputs. A MicroBlaze processor is used to control
the accelerator and to measure execution time. An AXI4 and
an AXI4Lite are used for communication between the modules
and to transfer commands, respectively. The evaluation shows
that the system achieves a maximum performance of 7.26
GFLOP/s,

A different architecture is proposed by Chang et al. [58].
Like in the previously mentioned architecture, they focus on
optimizing the operations of the LSTM inference process

317

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and the communication. The architecture of their approach
is shown in Figure 8. This architecture has 3 LSTM gates,
each of which carry out either an hyperbolic tangent or a
logistic sigmoid function, and an element-wise multiplication
module. Another similarity with the previous approach is
the simplification of these functions, using piecewise linear
approximation. This means, the functions where segmented
into linear functions, i.e., y = ax + b, which are easier to
be implemented on hardware. The values of each of these
functions are stored offline in the Configuration Registers
module. Each of these linear functions where implemented
using a MAC operation and a comparator. In contrast to
the previous design, Chang et al. [58] used fixed point 16-
bit operations for MAC operations resulting in 32 bit values
for further operations. While fixed-point computations are
far more efficient for hardware implementations, a loss of
accuracy has to be considered, which was denoted as a
maximum of 7.1%. Furthermore, the gating computations are
separated into two sequential steps. The input and cell gate
computations are done in parallel as well as the output and
forget gate computations. As a result, the output of the LSTM
module is provided after 3 sequential steps. Thus, the coarse
grained parallelism is not fully exploited. For communication
optimization purposes, the authors of [58] use a combination
of memory mapping and streaming interface. Therefore, four
direct memory access (DMA) cores are used to access the
external DRAM and reshape the data to be forwarded through
8 AXI4-Stream modules, which activity depends on the current
routing, and are buffered with FIFOs. In comparison to the
communication architecture presented by Guan et al. [18], the
methodology is equal but the differences in implementation
details are mainly arise because of the different coarse grained
parallelism of the LSTM accelerator. The design is imple-
mented on a Zedboard with Zynq 7020 FPGA from Xilinx.
The architecture was tested with a character level language
model, which, given a character from a text as input, it predicts
the next character. The network consisted of 2 LSTM cells,
each of which including 128 hidden units, and running with
a frequency of 142MHz. The performance was outlined to
264.4 million operations per second.

Lee et al. [30] used two LSTM-RNNs to build a speech
recognition system. The general structure of the system is
shown in Figure 9. The system uses a LSTM-RNN for acoustic
modeling and another one for character-level modeling. The
acoustic modeling LSTM-RNN analyzes the input speech and
calculates the probability of occurrence of each character. The
character-level modeling LSTM-RNN calculates the probabil-
ity of the occurrence of each character given a previous one.
Similarly, another language model calculates the probabilities
at the word level. Finally, these results are combined using the
N-best search algorithm.

Figure 10 shows the hardware architecture that implements
this system. The architecture has a LSTM cell and an output
tile, which are used intermittently for the acoustic modeling
and for the character-level modeling operations, according to
a control signal. The output of the LSTM cell is stored in a

LSTM
Router

Gate
sigmoid

Gate
tanh

Gate
sigmoid

Ewise

FIFOs

it

ct

ft

ot

Configuration
Registers

ARM
Processor

Main
Memory

AXIS
DMA

It: input gate
ct: candidate
memory cell gate
ft: forget gate
ot: output gate

Fig. 8: Block diagram of the accelerator for a LSTM-RNN
proposed in [58].

context memory, and is used in the next block of operations
and by the N-best search algorithm.

In contrast to [58] and [18], the authors of [30] use a
retrained based method to reduce the word-length of the
weights. As a result, they achieve a quantification to 6 bits
per weight. Due to this fact, for the desired speech recognition
application all weight parameters can be stored on the on-
chip-memory (BRAM) of the XC7Z045 FGPA device from
Xilinx without loss of precision differences of retraining and
hardware implemented inference computation. Without the
requirement to optimize the communication from an external
DRAM the focus of this work is the accelerator module opti-
mization. Although the proposed LSTM accelerator module is
separated into two different modules, the parallelism and task
granularity differs from those proposed in [18] and [58]. All
matrix-vector multiplications are computed inside one (PE)
array, which consist of 512 PEs. The remaining computations
including evaluating activation functions are done using an
additional block called Extra Processing Unit (EPU). The out-
puts of the PE array are buffered and forwarded to the LSTM
EPU. As mentioned above, the design benefits from a high
level of fine-grained parallelism. However, the architecture
is not comparable to the other design as no communication
bottleneck has to be handled and the authors focus on the
optimization of the whole speech recognition algorithm while
considering real-time constraints for the desired application.

Besides, Ferreira et al. [59] follow a modular extensible
architecture, they assume a similar reduction of communi-
cation complexity as assumed in [30]. A diagram of the
architecture is shown in Figure 11. In contrast to [30] the
word-length of the weights are 18 bits, which leads to a high

318

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

N-best Beam Search

Recognition
Results

Speech

Statistical Language Model
with Memory Look-up

Statistical Language Model
with Memory Look-up

RNN for Character-level
Language Model

RNN for Character-level
Language Model

Acoustic
RNN

Acoustic
RNN

Fig. 9: Speech recognition system proposed in [30].

LSTM TileLSTM Tile
Context
Memory
Context
Memory

Output
Tile

Output
Tile

Context
Manager
Context

Manager

Input
Vector

Output
Vector

Fig. 10: Hardware architecture for the speech recognition
system shown in Figure 8, as proposed in [30].

utilization of the DSP48E1 slices of the FPGA, and they are
stored in LUTRAM. On the one hand, this distributed memory
represents the fasted way of accessing the weights due to the
physical closeness to the accelerator and the unlimited simulta-
neous port access to each LUTRAM array. In contrast BRAM
supports a maximum of two port access. On the other hand,
this method consumes a high amount of resources especially
when the implemented network consists of many layers and
LSTM-tiles. The architecture does not explore full parallelism
in a coarse-grained manner. The matrix-vector multiplications
are done in parallel for all four gates. Instead of directly
implementing the activation functions tanh() and sigmoid(),
polynomial approximations where carried out, in order to find
equivalent polynomials within an acceptable error range. The
strategy Least Maximum Approximation was used to find the
optimal polynomial for each activation funtion. Due to the
negligible small amount of additional clock cycles needed
for elementwise multiplication and polynomial approximations
of tanh() and sigmoid(), each of these computations where
carried out in one single hardware module. The gate outputs
are forwarded to a multiplexer and further routed to the desired
hardware module. The design was implemented on a Xilinx
XC 7Z020SoC device with different amounts of neurons per
layer. The network size is not allowed to extend 31 neurons per
layer due to the limited number of DSP-slices on the device.
The frequency of the hardware accelerator was adjusted to the
maximum with respect to the layer size. Thus, the design is
capable achieving 4534.8 MOP/s, which is 17 times more than
the performance reached in [58].

Han et al. [60] proposed a hardware accelerator for a
speech recognition system based on LSTM-RNNs, which
involves a compression method that significantly decreases
the LSTM-RNN’s size while keeping an acceptable accuracy.
The compression method consists on pruning and quantization.
The pruning is carried out by removing the weights from

Gate f(t)

Gate i(t)

Gate z(t)

Gate o(t)

0

1

2

Sel

0

1

2

Sel

0

1

2

Sel

0

1

2

Sel

N.A.

c(t)
tanh(x)tanh(x)

σ(x)σ(x)

0

1

0

1C(t-1)

Sel

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

D Q

CK

y(t-1)

C(t) C(t-1)

Fig. 11: Hardware architecture LSTM-RNN as proposed by
Ferreira et al. [59].

the LSTM-RNN that do not contribute to the prediction
accuracy. Moreover, the linear quantization strategy was used
to generate weights represented by 12bit integers instead of
32 bit floating point values. Then, the compressed LSTM-
RNN is implemented in hardware. A general diagram of
the architecture is shown in Figure 12. Unlike the work
presented in [30], where all weight parameters can be stored
in on-chip memory due to a 6-bit quantization, the 12-bit
quantization of this work made it necessary to store this data
in external memory. Two 4GB DDR3 DRAMs where used
for this purpose. Similar to [18], input and output buffers
where used in a ping pong manner such that the communi-
cation and the computation are overlapped. Furthermore, this
approach differentiates from the ones previously described by
implementing modules, called channels, each of which can
process a voice vector independently. Each channel consists of
several Process Elements (PE), which carry out the inference
process of the LSTM-RNN. Besides the usual challenges
that implementing a LSTM-RNN on hardware implies, the
pruning method used in the compression process introduces
the problem of dealing with sparse matrices. To deal with
this issue, a PE called Activation Vector Queue (ActQueue)
is used to balance the workload among the rest of the PEs.
The ActQueue PE consists of several FIFOs, which store
elements from the input voice vector, and delivers the input
elements to the PEs across all the channels, such that fast
PEs are not blocked by slower ones. Furthermore, similarly to
the approaches already described, linear approximations where
used to implement the activation functions, and the matrix
multiplication operations where carried out in parallel within
a PE. The system was evaluated with a XILINX XCKU060
FPGA running at a frequency of 200MHz and compared
against a software approach. The experimental results showed
a throughput of 282GOP/s

Li et al. [61] addressed the problematic of developing a
proper model to approximate or evaluate the probabilities of
finding out the next word in a sentence. They affirm that RNN
is one of the best suited approaches to deal with this topic, on
behalf of statistical methods such as n-gram finding or decision
trees. They mentioned that, although RNN are more complex,
need higher computation capabilities and long training times,

319

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Software

MEMMEMCPUCPU
External
Memory

PCIE
Controller

PCIE
Controller

MEM
Controller

MEM
Controller

FPGA

Data Bus

Input
Buffer
Input
Buffer

Output
Buffer
Output
Buffer

ES
E

C
o

n
tr

o
lle

r
ES

E
C

o
n

tr
o

lle
r

ESE Accelerator

PEPE

PEPE
PEPE

PE

PE
PE

Channel 0

PE

PE
PE

Channel 0

PEPE

PEPE
PEPE

PE

PE
PE

Channel 1

PE

PE
PE

Channel 1

PEPE

PEPE
PEPE

PE

PE
PE

Channel n

PE

PE
PE

Channel n

Fig. 12: Hardware accelerator for speech recognition system,
with multiple channels for multiple voice vectors [60].

the results are more reliable since they can consider previous
states and thus create a dependency model.

These computational shortcomings can be handled with
the use of hardware approaches and hence they develop a
model for FPGA acceleration. They delegate the starting and
initialization of the weights and the acceleration system to the
CPU of the host system. For the memory, they use an external
memory, with 16 Dual Inline Memory (DIM) Modules and
1024 banks. These characteristics are profitable since the bank
conflicts turn to be low. They also implement an Application
Engine Hub (AEH) to manage the instructions from the host.

The PE are associated in major sets the computational
Engines (CE). These CEs are separated into two classes with
the only difference in the activation function. The first class
is for the hidden layers, all PE in the hidden layers belong
to this first class. The second class is dedicated to the output
layer, and here the PEs are grouped in one of the many CE.
The authors affirm that these characteristics are suited for
expanding the number of PEs, depending on the requirements.

Previous approaches require the utilization of an on board-
Block RAM, which the authors of [61] try to avoid in their
approach. Therefore, they came up with the idea to utilize a
hardware supported multithreading architecture, generating a
thread for a defined matrix operation. The PEs are in charge of
processing dedicated operations of a major task, that is, each
task is separated in threads that are processed by the PEs.

As mentioned before, the CE is the manager of the memory

accesses and can fetch information as needed or in a burst
mode, in addition, this model has the advantage of data reuse
by storing results either on a weight register or in a bias
register. This is useful for the stage where the PEs are ready
to start with the activation function processing.

Using these hardware configuration, Li et al. [61] affirm
they obtain an improvement on the parallelism between layers
presented on a previous paper and also the computation
efficiency, in this matter, a fixed-point data conversion is used,
under the premise that NN handle and correct the imprecisions
of a truncation by themselves.

The authors also compared the performance with a multi-
core CPU and a GPU. The CPU had 12 cores at a frequency of
2.3GHz, while the GPU 512 cores at 772MHz. The frequency
for the FPGA was 150MHz. As expected, the GPU turned out
to be the one with the lesser execution time, while the CPU
the one that required more time. The energy analysis showed
another perspective, where the FPGA was the one consuming
less energy and the GPU turned second with a consumption
level as high as almost 7 times the FPGA.

Renteria-Cedano et al. [62] investigate on an special type
of NN: the Nonlinear Auto-Regressive Exogenous networks
(NARX), which they state that they have been shown to
converge much faster than other implementations of RNN.
They implement the NARX network over an FPGA using only
one hidden level, thus having a total of three layers, with the
goal of linearizing microwave power amplifiers.

The authors present the hardware implementation where the
PEs are able to carry out the operations necessary: multiply,
add, accumulate and activation function. The flow starts when
the information is provided to the PE, this process is according
to its internal parameters, the multiplication afterwards is done
in parallel. Finally, after the addition of the bias, the selected
activation function, the hyperbolic tangent on a Taylor series
implementation, takes place for those PE in the hidden layer.
It is also important to mention that the authors used floating
point for every operation and the general management of the
NN is done according to Mealy type finite state Machine.

Another variation of a RNN is the Hopfield Network.
Atencia et al. [63] recognize the benefits of implementing
this type of network on FPGAs, since, as they mention,
concurrency is an own characteristic of these networks and
at the same time, they have a reduced number of neurons,
which suits the capabilities of the state of the art for FPGAs
at the time they developed their research. In this approach, a
neuron consist of a RAM linked directly to a MAC, from this
point the data is feed forwarded to a substractor, a multiplier,
an accumulator and finally to the activation function before it
is outputted and processed by a multiplexer. The weights for
each neuron are calculated in an external software and stored
in the neurons memory, these weights are then supplied as
operands to a MAC together with a status value provided
from the multiplexer. The next step is a bias substraction,
its multiplication by the discretized value of the ordinary
differential equation characteristic of Hopfield networks and
the addition to a previous state value, finally the activation

320

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I: COMPARISON OF IMPLEMENTATION AP-
PROACHES

Approach Device Power Performance Type
[W]

Sankaradas et al.[37] Virtex-5 11 3.37 GMAC/s CNN
Jin et al.[39] Zynq-7000 4 40 GOP/s CNN
Zhou et al.[40] Virtex-7 n/a 3.75 GMAC/s CNN
Zhang et al.[41] Virtex-7 18.61 61.62 GFLOPS CNN
Li et al.[46] Virtex-7 30.2 565.94 GOP/s CNN
Guo et al.[44] Zynq 7020 3.5 n/a CNN
Guan et al.[18] VC707 20 7.26 GFLOP/s RNN
Chang et al.[58] Zynq 7020 2 0.264 GOP/s RNN
Ferreira et al.[59] Zynq 7020 2 4.538 GOP/s RNN
Han et al.[60] Kintex 41 282 GOP/s RNN

UltraScale 41 282 GOP/s RNN
Li et al.[61] Virtex-6 25 9. 6GOP/s RNN

function is enforced with a LUT representing the tanh()
function.

All the approaches described in this section aimed to maxi-
mize the performance of RNNs by parallelizing key operations
of the inference phase of the network. Although the matrix
operations carried out by RNNs are highly parallelizable with
custom hardware architectures, there are still issues, which
are still not solved entirely. The main issues we found were
the representation of the RNN’s parameters and the memory
bottleneck, which are interrelated. For instance, [30] avoided
the use of external memory by using 6 bit integers to represent
the LSTM-RNN’s parameters. While in that case the loss of
accuracy brought by this quantization was deemed acceptable,
this is highly dependent on the application and input data.
Furthermore, whenever external memory was used, a special
scheme had to be developed, such as ping-pong buffers, in
order to minimize the bottleneck.

VI. CONCLUSION

As outlined in the previous sections, there are many possi-
bilities to accelerate CNNs or RNNs with the help of hardware
modules. Each of these hardware implementations have a
significant speedup in comparison to a CPU implementation.
From our perspective, there are several reasons making a fair
comparison of all hardware architectures not possible. One
of the reasons for that is, that the size of the networks mostly
depends on the application as well as the real-time constraints.
The analysis in Section IV and Section V focuses on benefits
or deficits regarding the acceleration performance derived from
architectural similarities and differences rather than compar-
ing numbers. Table I summarizes the measurable dimensions
of the CNN and RNN implementations on different FPGA
architectures.

However, in our opinion, presenting only a comparison of
quality metrics such as performance or throughput would not
show a complete view of the advantages and drawbacks of
each approach. For instance, the performance of almost all
described hardware accelerators can be improved with simple
approaches, like increasing the number of processing elements
and bandwidth. Thus, an important influence factor of the
FPGA prototypical architectures is the underlying platform.

However, the FPGA technology and HLS support is improv-
ing rapidly. While the FPGA prototypical architectures and
ASIC designs aim to low energy consumption on embedded
devices reusing static processing blocks, future work should
exploit the hardware reconfiguration capabilities of FPGAs in
order to further increase flexibility needed regarding different
layer types and sizes. It is also worth to mention that the
combination of RNNs and CNNs, called RCNNs [64] (not
to be confused with R-CNNs, which is Region based CNNs
for object localization), is a promising approach improving
the accuracy of object and scene detection. For example, the
platform proposed in 2017 by Shin et al. [65] combines a
CNN and a RNN in a single configurable processor to harness
the advantages from both networks: the image recognition
capabilities from the CNNs and the ability to recognize
sequential dependencies between the data from the RNNs.
This combination, however, brings new challenges, since their
hardware requirements can be very different. For instance,
the convolutional layers of CNNs require a large number of
operations over a relatively small number of weights, while
LSTM cells require a smaller number of operations over a
much larger number of parameters.

Finally, in the industrial environment, is of relevance
to mention that Google’s Cloud Tensor Processing Unit
(TPU)[66] is a viable alternative for accelerating NN imple-
mentations to those presented in this article. These TPUs are
ASICs designed especially for machine learning applications,
and according to Google, have been used successfully on
different projects, e.g., Alpha Go or Street View.

ACKNOWLEDGMENT

This work was done under support of CONACyT (Grant
359472).

REFERENCES

[1] J. Hoffmann, O. Navarro, F. Kästner, B. Janssen, and M. Hübner, “A
survey on cnn and rnn implementations,” in PESARO 2017, The Seventh
International Conference on Performance, Safety and Robustness in
Complex Systems and Applications, 2017.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[4] W. Zhao, S. Du, and W. J. Emery, “Object-based convolutional neural
network for high-resolution imagery classification,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. PP, no. 99, pp. 1–11, 2017.

[5] H. J. Jeong, M. J. Lee, and Y. G. Ha, “Integrated learning system
for object recognition from images based on convolutional neural
network,” in 2016 International Conference on Computational Science
and Computational Intelligence (CSCI), Dec 2016, pp. 824–828.

[6] T. He and J. Droppo, “Exploiting lstm structure in deep neural networks
for speech recognition,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), March 2016, pp.
5445–5449.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 675–678.

321

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] Theano Development Team, “Theano: A Python framework for
fast computation of mathematical expressions,” arXiv e-prints, vol.
abs/1605.02688, May 2016.

[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org.

[10] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” arXiv
preprint arXiv:1410.0759, 2014.

[11] S. Barrachina, M. Castillo, F. D. Igual, R. Mayo, and E. S. Quintana-Orti,
“Evaluation and tuning of the level 3 cublas for graphics processors,”
in 2008 IEEE International Symposium on Parallel and Distributed
Processing, April 2008, pp. 1–8.

[12] Y. Sugomori, Java Deep Learning Essentials. Packt Publishing Ltd.,
2016.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” Web site:
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf [Last accessed: 24 September 2017],
pp. 1097–1105, 2012.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with convolutions,” Web site: http://dblp.uni-
trier.de/rec/bib/journals/corr/SzegedyLJSRAEVR14[Last accessed:
21 September 2017], 2014.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for im-
age recognition,” http://arxiv.org/abs/1512.03385 [Last accessed:7 June
2017], 2015.

[17] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE Transactions on Neural
Networks, vol. 5, no. 2, pp. 157–166, Mar 1994.

[18] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “Fpga-based accelerator for
long short-term memory recurrent neural networks,” in 2017 22nd Asia
and South Pacific Design Automation Conference (ASP-DAC), Jan 2017,
pp. 629–634.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov 1997.

[20] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR, vol.
abs/1412.3555, 2014.

[21] J. Schmidhuber, “Deep learning in neural networks: An overview,”
CoRR, vol. abs/1404.7828, 2014.

[22] Z. C. Lipton, “A critical review of recurrent neural networks for sequence
learning,” Web site: http://arxiv.org/abs/1506.00019 [Last accessed: 12
September 2017], 2015.

[23] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the National Academy
of Sciences, vol. 79, no. 8, pp. 2554–2558, 1982, accessed: 09 Jun 2017.
[Online]. Available: http://www.pnas.org/content/79/8/2554.abstract

[24] L. C. Jain and L. R. Medsker, Recurrent Neural Networks: Design and
Applications. CRC Press, Inc., 2001.

[25] Y. Bengio, R. D. Mori, G. Flammia, and R. Kompe, “Global optimization
of a neural network-hidden markov model hybrid,” IEEE Transactions
on Neural Networks, vol. 3, no. 2, pp. 252–259, Mar 1992.

[26] R. Pascanu, T. Mikolov, and Y. Bengio, “On the
difficulty of training Recurrent Neural Networks,”
http://adsabs.harvard.edu/abs/2012arXiv1211.5063P [Last accessed:
21 September 2017], Nov. 2012.

[27] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE Transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, Nov 1997.

[28] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” Web site:

http://arxiv.org/abs/1406.1078 [Last accessed: 13 September 2017],
2014.

[29] A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Are coarse-grained
overlays ready for general purpose application acceleration on fpgas?”
in 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure
Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd
Intl Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), Aug
2016, pp. 586–593.

[30] M. Lee, K. Hwang, J. Park, S. Choi, S. Shin, and W. Sung, “Fpga-based
low-power speech recognition with recurrent neural networks,” in 2016
IEEE International Workshop on Signal Processing Systems (SiPS), Oct
2016, pp. 230–235.

[31] M. Al Kadi, B. Janssen, and M. Huebner, “Fgpu: An simt-architecture
for fpgas,” Web site: http://doi.acm.org/10.1145/2847263.2847273 [Last
accessed: 20 September 2017], New York, NY, USA, pp. 254–263, 2016.

[32] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr,
“Accelerating recurrent neural networks in analytics servers: Comparison
of fpga, cpu, gpu, and asic,” in 2016 26th International Conference on
Field Programmable Logic and Applications (FPL), Aug 2016, pp. 1–4.

[33] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong
Gee Hock, Y. T. Liew, K. Srivatsan, D. Moss, S. Subhaschandra, and
G. Boudoukh, “Can fpgas beat gpus in accelerating next-generation deep
neural networks?” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’17. New
York, NY, USA: ACM, 2017, pp. 5–14.

[34] (2017, Sep.) Opencl 1.2 specification. version: 1.2. document revision:
19. Web site: http://www.khronos.org/registry/OpenCL/specs/opencl-
1.2.pdf [Last accessed: 16 September 2017].

[35] (2017, Sep.) Stratix 10 gx/sx device overview.
version: S10-overview 2016.10.31. Web site:
https://www.altera.com/en US/pdfs/literature/hb/stratix-10/s10-
overview.pdf [Last accessed: 15 September 2017].

[36] (2017, Sep.) Ultrascale architecture and product data
sheet: Overview. v2.11. Web site: http://arxiv.org/abs/1506.00019
[Last accessed: 12 September 2017]. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/data sheets/ds890-
ultrascale-overview.pdf

[37] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. P. Graf, “A massively parallel coprocessor for
convolutional neural networks,” in 2009 20th IEEE International Con-
ference on Application-specific Systems, Architectures and Processors,
July 2009, pp. 53–60.

[38] R. Doshi, K. W. Hung, L. Liang, and K. H. Chiu, “Deep learning
neural networks optimization using hardware cost penalty,” in 2016
IEEE International Symposium on Circuits and Systems (ISCAS), May
2016, pp. 1954–1957.

[39] J. Jin, V. Gokhale, A. Dundar, B. Krishnamurthy, B. Martini, and E. Cu-
lurciello, “An efficient implementation of deep convolutional neural
networks on a mobile coprocessor,” in 2014 IEEE 57th International
Midwest Symposium on Circuits and Systems (MWSCAS), Aug 2014,
pp. 133–136.

[40] Y. Zhou and J. Jiang, “An fpga-based accelerator implementation for
deep convolutional neural networks,” in 2015 4th International Confer-
ence on Computer Science and Network Technology (ICCSNT), vol. 01,
Dec 2015, pp. 829–832.

[41] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’15. New York, NY,
USA: ACM, 2015, pp. 161–170.

[42] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, Apr. 2009.

[43] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A high perfor-
mance fpga-based accelerator for large-scale convolutional neural net-
works,” in 2016 26th International Conference on Field Programmable
Logic and Applications (FPL), Aug 2016, pp. 1–9.

[44] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang,
and H. Yang, “Angel-eye: A complete design flow for mapping cnn
onto embedded fpga,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. PP, no. 99, pp. 1–1, 2017.

[45] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, Y. Wang, and H. Yang, “Going deeper with embedded fpga

322

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

platform for convolutional neural network,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’16. New York, NY, USA: ACM, 2016, pp. 26–35.

[46] N. Li, S. Takaki, Y. Tomiokay, and H. Kitazawa, “A multistage dataflow
implementation of a deep convolutional neural network based on fpga
for high-speed object recognition,” in 2016 IEEE Southwest Symposium
on Image Analysis and Interpretation (SSIAI), March 2016, pp. 165–168.

[47] A. Dundar, J. Jin, B. Martini, and E. Culurciello, “Embedded streaming
deep neural networks accelerator with applications,” IEEE Transactions
on Neural Networks and Learning Systems, vol. PP, no. 99, pp. 1–12,
2016.

[48] Z. Yuan, Y. Liu, J. Yue, J. Li, and H. Yang, “Coral: Coarse-grained
reconfigurable architecture for convolutional neural networks,” in 2017
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), July 2017, pp. 1–6.

[49] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–
138, 2017.

[50] K. Korekado, T. Morie, O. Nomura, H. Ando, T. Nakano, M. Matsugu,
and A. Iwata, “A convolutional neural network vlsi for image recognition
using merged/mixed analog-digital architecture,” in Knowledge-Based
Intelligent Information and Engineering Systems. Springer, 2003, pp.
169–176.

[51] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An architecture
for ultra-low power binary-weight cnn acceleration,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2017.

[52] G. Desoli, N. Chawla, T. Boesch, S. p. Singh, E. Guidetti, F. D.
Ambroggi, T. Majo, P. Zambotti, M. Ayodhyawasi, H. Singh, and
N. Aggarwal, “14.1 a 2.9tops/w deep convolutional neural network
soc in fd-soi 28nm for intelligent embedded systems,” in 2017 IEEE
International Solid-State Circuits Conference (ISSCC), Feb 2017, pp.
238–239.

[53] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “14.5 en-
vision: A 0.26-to-10tops/w subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm
fdsoi,” in 2017 IEEE International Solid-State Circuits Conference
(ISSCC), Feb 2017, pp. 246–247.

[54] A. Solazzo, E. D. Sozzo, I. D. Rose, M. D. Silvestri, G. C. Durelli, and
M. D. Santambrogio, “Hardware design automation of convolutional
neural networks,” in 2016 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), July 2016, pp. 224–229.

[55] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, and S. Areibi,
“Caffeinated fpgas: Fpga framework for convolutional neural networks,”
in 2016 International Conference on Field-Programmable Technology
(FPT), Dec 2016, pp. 265–268.

[56] Z. Wang, F. Qiao, Z. Liu, Y. Shan, X. Zhou, L. Luo, and H. Yang,
“Optimizing convolutional neural network on fpga under heterogeneous
computing framework with opencl,” in 2016 IEEE Region 10 Conference
(TENCON), Nov 2016, pp. 3433–3438.

[57] H. Amin, K. M. Curtis, and B. R. Hayes-Gill, “Piecewise linear
approximation applied to nonlinear function of a neural network,” IEE
Proceedings - Circuits, Devices and Systems, vol. 144, no. 6, pp. 313–
317, Dec 1997.

[58] E. C. Andre Xian Ming Chang, Berin Martini, “Recurrent neu-
ral networks hardware implementation on fpga,” in arXiv preprint
arXiv:1511.05552, 2015.

[59] J. C. Ferreira and J. Fonseca, “An fpga implementation of a long short-
term memory neural network,” in 2016 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), Nov 2016, pp.
1–8.

[60] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang et al., “Ese: Efficient speech recognition engine with sparse
lstm on fpga.” in FPGA, 2017, pp. 75–84.

[61] S. Li, C. Wu, H. Li, B. Li, Y. Wang, and Q. Qiu, “Fpga acceleration
of recurrent neural network based language model,” in 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom
Computing Machines, May 2015, pp. 111–118.

[62] J. A. Renteria-Cedano, L. M. Aguilar-Lobo, J. R. Loo-Yau, and
S. Ortega-Cisneros, “Implementation of a narx neural network in a fpga
for modeling the inverse characteristics of power amplifiers,” in 2014
IEEE 57th International Midwest Symposium on Circuits and Systems
(MWSCAS), Aug 2014, pp. 209–212.

[63] M. Atencia, H. Boumeridja, G. Joya, F. Garca-Lagos, and F. Sandoval,
“Fpga implementation of a systems identification module based upon
hopfield networks,” Neurocomputing, vol. 70, no. 16, pp. 2828 – 2835,
2007, neural Network Applications in Electrical Engineering Selected
papers from the 3rd International Work-Conference on Artificial Neural
Networks (IWANN 2005).

[64] M. Liang and X. Hu, “Recurrent convolutional neural network for object
recognition,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 3367–3375.

[65] D. Shin, J. Lee, J. Lee, and H. J. Yoo, “14.2 dnpu: An 8.1tops/w recon-
figurable cnn-rnn processor for general-purpose deep neural networks,”
in 2017 IEEE International Solid-State Circuits Conference (ISSCC),
Feb 2017, pp. 240–241.

[66] Google, “Google tpu alpha,” Web site: https://cloud.google.com/tpu/
[Last accessed: 4 September 2017], Sept 2017.

323

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

