
Binary Space Partitioning for Parallel and Distributed Closest-Pairs Query Processing

George Mavrommatis, Panagiotis Moutafis, and Michael Vassilakopoulos

Data Structuring & Engineering Lab
Dept. of Electrical & Computer Eng.

University of Thessaly
Volos, Greece

Email: {gmav, pmoutafis, mvasilako}@uth.gr

Abstract—The (k) Closest-Pair(s) Query, kCPQ, consists in
finding the (k) closest pair(s) of objects between two spatial
datasets. Up to date, only few solutions have appeared that
process the kCPQ in parallel and distributed frameworks.
Currently, Apache Spark is the state of the art of parallel and
distributed frameworks, having several advantages compared to
other popular ones, like Hadoop MapReduce. A major step
towards answering a query is proper partitioning, a task that
is of even greater importance in distributed environments. In
this work, we present algorithms for processing the kCPQ in
Apache Spark that split the datasets into strips across an axis.
Two variations of the Binary Space Partitioning (BSP) technique
are used to partition the data, based on two different criteria:
equal size and equal width of the child strips. These schemes are
compared to a third strategy (previously developed by us), namely
splitting into a predefined number of strips. We have performed
an extensive set of experiments to evaluate the efficiency and
scalability of the algorithm and the performance of the different
partitioning schemes by using large real-world datasets. Results
show that splitting into strips by means of BSP achieves better
performance. This is mainly due to the fact that selecting the
number of points within each strip as the preset criterion, instead
of the number of strips, provides more flexibility in fine tuning
the system.

Index Terms—Closest-Pairs Query; Spatial Query Processing;
Apache Spark; Binary Space Partitioning.

I. INTRODUCTION

The (k) Closest-Pair(s) Query (kCPQ) consists in finding
the (k) closest pair(s) of objects between two spatial datasets.
Up to date, only few solutions have appeared that process
the kCPQ in parallel and distributed frameworks. Currently,
Apache Spark is the leader of such frameworks, having several
advantages compared to other popular ones, like Hadoop
MapReduce. In [1], for the first time in the literature, we
presented an algorithm for answering the kCPQ in this frame-
work. In this paper, by extending the method of [1], we
present new algorithms for answering the kCPQ in Apache
Spark, along with an extended experimental comparison of
their performance.

Geographic information systems (GIS) [2] have been around
for several decades. They provide the means for storing, query-
ing, analyzing and sharing geographic information and have
proven valuable in many modern application domains (e.g.,

disaster management, mapping, urban planning, transportation
planning, environmental impact analysis, etc.).

Spatial databases [3] are specialized databases that support
storage and querying of multidimensional data (usually, points,
line-segments, regions, polygons, volumes). They are core
elements of GIS. Processing of spatial queries can become
very demanding if the volume of data on which such a query
is applied is large, or if the number of the combinations of
data objects that need to be examined for answering such a
query is large.

Some typical spatial queries are: the point query, range
query, spatial join, and nearest neighbor query [4]. Spatial Join
queries find all pairs of spatial objects from two spatial data
sets that satisfy a spatial predicate, like intersects, contains, is
enclosed by, etc. Nearest neighbor queries locate the spatial
object(s) that is (are) nearest to a query object. The kCPQ
discovers the (K) closest pair(s) of object(s) (usually ordered
by distance), between two spatial datasets. It combines join
and nearest neighbor queries: like a join query, all pairs
(combinations) of objects from the two datasets are candidates
for the result, and like a nearest neighbor query, the (K)
smallest distance(s) is (are) the basis for inclusion in the
result (and the final ordering) [5], [6]. The kCPQ can be
very demanding if the datasets involved are large, since all
the combinations of pairs of objects from the two datasets are
candidates for the result.

For example, we can use two spatial datasets that represent
the archaeological sites and popular beaches of Greece. A
kCPQ (K=10) can discover the 10 closest pairs of archaeolog-
ical sites and beaches (in increasing order of their distances).
The result of this query can be used for planning tourist trips in
Greece that combine travelers interest for history / civilization
and leisure / enjoyment.

Parallel and distributed computing using shared-nothing
clusters on large volumes of data has been very popular during
last years. Hadoop MapReduce [7] is an open-source software
framework for storing data and running applications on such
clusters. MapReduce is file-intensive and computing nodes
intercommunicate only through sorts and shuffles. Therefore,
MapReduce is suitable mostly for non-iterative batch process-
ing jobs.

275

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Apache Spark [8] is another, more recent, open-source
cluster-computing framework with an application program-
ming interface based on Resilient Distributed Datasets
(RDDs), read-only multisets of data items distributed over the
cluster of machines [9]. It was developed to overcome limita-
tions of the MapReduce paradigm. Through RDDs a form of
distributed shared memory is provided and the implementation
of iterative algorithms is facilitated.

Recently, the utilization of main memory in processing
kCPQs on big datasets in centralized systems has been ex-
plored [10], [11]. In [1], considering ideas and methods pre-
sented in [10], [11] we presented a Spark based algorithm for
computing kCPQs. Moreover, we presented an experimental
analysis of the performance of this algorithm, based on large
real-world datasets. In this paper, we extend [1] by developing
three alternative algorithms. The first algorithm is a simple
modification of the method of [1] that is based on single
sampling for partitioning data. The other two algorithms are
based on more elaborate partitioning techniques. Moreover,
through an extensive experimental evaluation, we compare the
performance of the three algorithms. Contrary to [1], where we
performed experiments using 4 data nodes only, in this paper,
we perform experiments using 4, as well as, 8 data nodes, to
study the scalability of the presented techniques.

The rest of the paper is organized as follows. In Section
II, we review related frameworks and work (extending the
material presented in [1]); in Section III, we present Spark
basics, we define the query that we study and present the
algorithm of [1]; in Section IV we present two different
data portioning schemes that lead to alternative algorithms for
kCPQ; in Section V, we present experimentation set-up and the
results of extensive experiments we performed for studying the
efficiency of the presented methods. Finally, in the last section,
we present our conclusions and our plans for future work.

II. RELATED WORK

In [12] Spark is used to compute top-k similarity join in
large multidimensional data. Data are being partitioned into
buckets so that points that are close to each other are grouped
into the same bucket, with high probability. Partitioning is
made by means of locality-sensitive hashing and hamming dis-
tance computation between every two elements. The method
uses Cartesian product, as provided by Spark, to create all
possible buckets couples and computes local top-k over each
node, then collects the results and combines them to the final
solution. Divide & Conquer strategy and pruning is performed
at local level.

In [13] Spark is used to perform several computational
geometry operations such as Geometry Union, Convex Hull,
Closest and Farthest pair, Spatial Range, Join and Aggregation
on both small, medium and large data sets. Computation of
Farthest Pair is performed by brute force and Closest Pair
is reported difficult and time costly to be solved the same
way, being efficient solely for small data sets. In order to
overcome the problem, computation is being performed in

two steps. The first step works per partition and computes
the closest point in each subset, plus the points that may still
be candidates (found by sorting the x-axis of the points per
partition). Local computation is performed by a Divide and
Conquer method that splits the local dataset recursively. The
second step creates one single partition containing the closest
points that were found in step one and all the candidates and
once again performs the same Divide and Conquer approach.
As authors report “there is a huge jump in execution time
for the “large” dataset suggesting algorithm’s effectiveness
probably decreases as size increase” and “the increase in
computational resources is offset by the communication cost
in the latter case”. The latter case refers to the “large” dataset
of the experiments, which is about 100MB.

Extensions of Hadoop MapReduce supporting large-scale
spatial data processing include Parallel-Secondo [14], Hadoop-
GIS [15] and SpatialHadoop [16]. In [17], a general plane-
sweep approach for processing kCPQs in SpatialHadoop and a
more sophisticated version that first computes an upper bound
of the distance of the K-th closest pair from sampled data
points have been presented.

Extensions of Apache Spark supporting large-scale spatial
data processing include the following:

• GeoSpark [18], an in-memory cluster computing frame-
work for processing large-scale spatial data. The project
is still under development. It uses Spark as its base layer
and adds two more layers, the Spatial RDD (SRDD)
Layer and Spatial Query Processing Layer, thus provid-
ing Spark with in-house spatial capabilities. The SRDD
layer consists of three newly defined RDDs, PointRDD,
RectangleRDD and PolygonRDD. SRDDs support geo-
metrical operations, like Overlap and Minimum Bounding
Rectangle. SRDDs are automatically partitioned by using
the uniform grid technique, where the global grid file is
splitted into a number of equal geographical size grid
cells. Elements that intersect with two or more grid
cells are being duplicated. GeoSpark provides spatial
indexes like Quad-Tree and R-Tree on a per partition
base. The Spatial Query Processing Layer includes spa-
tial range query, spatial join query, spatial KNN query.
GeoSpark relies heavily on the JTS topology suite and
therefore conforms to the specifications published by the
Open Geospatial Consortium. Experiments, reported by
the paper, show that GeoSpark outperforms its Hadoop-
based counterparts (e.g., SpatialHadoop). Mainly because
caches the datasets in memory, a functionality that is
natively built in the underlying Spark platform.

• SpatialSpark [19], that supports indexed spatial joins and
range queries. Same as with GeoSpark it utilizes the JTS
suite (written in Java). As reported by the authors, JTS
seems to be faster than GEOS, a C/C++ port of a subset
of JTS and selected functions. Authors report that in some
cases of data intensive applications SpatialSpark performs
worse on multiple computing nodes than on a single node,
thus showing low scalability. This fact is attributed to pos-

276

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sible bottlenecks due to communication overheads among
computing nodes a factor that is related to the number
of partitions, thus rising an interesting research question:
“optimizing the number of partitions which represents the
tradeoffs between the degrees of parallelisms (the higher
the better) and the communication overheads (the lower
the better)”.

• LocationSpark [20], an ambitious project, built as a
library on top of Spark. It requires no modifications to
Spark and provides spatial query APIs on top of the
standard operators. It provides Dynamic Spatial Query
Execution and operations (Range, kNN, Insert, Delete,
Update, Spatial-Join, kNN-Join, Spatio-Textual). The sys-
tem builds two indexes, a global (grid, quadtree and
a Spatial-Bloom Filter) and a local per-worker, user-
decided index (grid, rtree, etc). Global index is con-
structed by sampling the data. Spatial indexes are aiming
to tackle unbalanced data partitioning. Additionally, the
system contains a query scheduler, aiming to tackle
query skew. As reported in the paper, LocationSpark can
outperform GeoSpark by one order of magnitude.

• Spatial In-Memory Big data Analytics (SIMBA) [21] that
is perhaps the most mature framework. It extends the
Spark SQL engine to support spatial queries and analytics
through SQL and the DataFrame API. Simba partitions
data in a manner that they are of proper and balanced size
and gathers records that locate close to the same partition.
It builds a local index per partition and a global index by
aggregating information from local indexes. It supports
range and kNN queries, kNN and distance joins. As being
reported in the paper, Simba outperforms SpatialHadoop,
HadoopGIS, SpatialSpark and GeoSpark by a few or
more orders of magnitude. In the case of distance join
queries, Simba runs about 1.2-1.5 times faster than its
closest counterparts GeoSpark and SpatialSpark.

The kCPQ has been actively studied in centralized environ-
ments, when both [5], [6], [22]–[24], one [25], or none [10],
[11] of the two spatial datasets are indexed. Two improvements
of the classic plane-sweep algorithm and a new plane-sweep
algorithm, called Reverse Run Plane Sweep, were proposed
in [10] for processing kCPQs when the two datasets are not
indexed and reside in main-memory. In [11], it is assumed that
the (big) spatial datasets reside on secondary storage and are
progressively transferred in main memory, by dividing them
in strips, for processing utilizing the methods of [10].

In this paper, we utilize ideas presented in [10], [11] to
develop an algorithm for processing kCPQs in Spark, by
separating data in strips and utilizing a plane-sweep approach
within each strip.

III. KCPQ IN A PARALLEL AND DISTRIBUTED CONTEXT

Hadoop MapReduce processing is based on pairs of Map
and Reduce phases. It is an excellent solution for one-step
computations on massive datasets, but it not very efficient for
problems that require multi-step computations. The output of

each step is stored in the distributed file system, so that it can
be used as input for the next, or one of the following steps.
Replication and disk storage contribute to slowing down the
overall computation. Apache Spark (or more simply, Spark)
is an alternative to Hadoop MapReduce. Its not intended to
replace Hadoop MapReduce, but to extend it and allow the
development of solutions for different big data problems and
requirements.

Spark, the distributed in-memory computation framework
has reached a significant level of maturity, being already at
version 2.2.0, which has been recently released. Spark is
written in Scala, a relatively new functional programming
language but it supports multiple programming languages,
with special focus on Scala, Java, Python, and R. It allows a
user application to cache data in memory, in a flexible manner
that lets the application to decide what data should be cached
and at what point in the processing flow. This is a major
step forward from the classic Hadoop MapReduce procedure
that uses disk I/O extensively. Spark uses an advanced job
execution scheme based on creation of a directed acyclic
graph (DAG) of stages. In contrast to MapReduce that in
many cases constrains the programmer to split a complex
algorithm into jobs executed sequentially, Spark uses a lazy
evaluation scheme that allows previous knowledge of the
full processing path, thus making it easier to optimize the
execution. This functionality makes Spark ideal for iterative
algorithms implementation. The Spark API relies on two
important abstractions, namely SparkContext and Resilient
Distributed Datasets (RDDs). An application interacts with
Spark by means of these two abstractions. Data are being
represented as RDDs in the Spark context, and are distributed
among Workers of the cluster. Spark provides several methods
defined in the RDD class or other subclasses of RDD. These
methods operate on the RDD and finally on the underlying
data. They are classified in two categories: transformations
that create a new RDD and actions that return values to the
Driver program. Transformations are lazy, which means that
Spark does not perform any computation when they are called
in an application. Actual computation is triggered by action
methods. As already mentioned, this scheme provides Spark
with the power to optimize RDD operations. Although Spark
uses a shared-nothing architecture, it also supports the concept
of shared variables that are being materialized as broadcasts
and accumulators. By using broadcast variables, Spark sends
data to each node, thus enabling all Workers to share a piece
of information. Broadcast variables may be useful in cases
of problems in the field of combinatorial optimization. For
example, in NP-hard graph problems such as the maximum
clique number, knowing a good lower bound of the maximum
clique helps pruning the search space and speeding up the
computation. A similar notion holds for the kCPQ. If we know
a good upper bound for the k-th smaller distance and transmit
it to all Workers, this will lead to discarding a large volume
of computation among pairs of points that their distance is
greater than the upper bound.

277

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the following, we present the basics for kCPQ processing
in Spark. Let two datasets P and Q of spatial objects, a positive
natural number K and a distance function between pairs of
data objects formed from P and Q (members of the Cartesian
Product of P and Q). The kCPQ discovers k pairs of data
objects formed from P and Q that have the k smallest distances
between them among all pairs of data objects that can be
formed from P and Q.

Since distances between objects may not be unique, note
that if multiple pairs of objects have the same k-th distance
value between them, more than one sets of k different pairs
of objects can form the result of this query. The presented
algorithm can be easily tailored to report all such sets of pairs.

An important step, towards answering a query in a parallel
and distributed environment, is proper partitioning of the
datasets. Data partitioning improves the query performance in
two ways [26]:

1) partitioning the data into smaller units enables process-
ing of a query in parallel and

2) I/O can be significantly reduced by only scanning a few
partitions that contain relevant data to answer the query.

In the case of the kCPQ, (b) is not applicable; in order
to answer the query, we have to search pairs of points from
the whole dataset. Therefore, in the case of kCPQ, the most
severe obstacle, one has to face, in datasets partitioning, is
data skewness. In most real-world cases, data is not uniformly
distributed in a dataset. Using partitioning techniques such as
uniform grid [27] very often leads to partitions that contain
much more objects than others, a fact that in a parallel system
may prevent proper load balancing and therefore delay the
computation of the final result. There are many alternative
strategies that can be found in the literature aiming to deal with
the skewness problem. Most of them require the construction
of a spatial data structure, which allows the queries about
spatial relationships of objects to be answered. The simplest
spatial data structure is the uniform grid, but, as already
said, it very often leads to bad performance in the case
of non-uniformly distributed data. This observation has led
to more elaborate partition schemes, many of them being
generalizations of binary search trees.

A quad-tree [28] is a non-uniform subdivision of area
where a region is split into four quadrants by two axis-
aligned dividing lines. The decomposition proceeds until a
certain property is met, i.e., each quadrant contains less than
a predefined number of points.

An R-tree [29] is a hierarchical data structure derived from
the B-tree [30]. Data objects are represented by their enclosing
MBRs, which are grouped into larger nodes hierarchically until
the root node of the tree. Each leaf node contains the actual
objects, and can store a certain, predefined number of objects.

In most cases within the context parallel and distributed
frameworks, the creation of these hierarchical data structures
is based on reading a random sample from the input file and
using this sample to partition the whole space.

In order to efficiently compute the k closest pairs query in
the Spark context, there are three main tasks, our algorithm
has to deal with:

1) Find a good bound for the kCPQ and broadcast it to
Workers. This will lead to good pruning criteria, on both
Driver and Workers contexts.

2) Partition the data, by setting a proper indexing, and
check all pairs of partitions so that all eligible pairs of
points from P and Q will be considered, thus preventing
any loss of the optimal solution.

3) Use a fast algorithm to compute kCPQ in the Workers
context, collect the results and select the top k, having
the smallest distance.

The method for answering the kCPQ, as presented in [1]
consists of four steps that cover all the above mentioned tasks.

A. Lower Bound Computation

We initially compute an upper bound for the k-th closest
pair. We use the Spark-provided function sample to create two
RDDs containing samples from each one of the two datasets.
We use a sample ratio of f = 0.001 on each dataset.

In order to obtain a good upper bound, we partition the
sampled RDDs in a manner so that points with close x-axis
values fall into the same partition.

Partitioning each of the two sampled datasets into n strips of
unequal width is done by calculating the border (separation) x-
axis points, separately for each sampled dataset. Both samples
are collected to the Driver and their x-values are extracted and
stored in two sorted arrays sP and sQ. The predefined number
n and the sizes of the two arrays obtain the indices of each
array that contain the separation x-points PSep and QSep.
Value stepP is sP.size/n and value stepQ is sQ.size/n.
The two arrays PSep and QSep are merged into a sorted
array PQSep = PSep ++ QSep that contains the separation
x-axis points applicable on both sampled RDDs. This array is
passed to Spark and all points in both the sampled RDDs are
being assigned the proper keys.

A join is performed between the two keyed RDDs, creating
an RDD of type (Int, (Point, Point)) that is mapped to an
RDD[Double, (Point, Point)] where the Double presents the
distance (Euclidean in our case) of every pair of points in the
joined RDD. By using the takeOrdered function of Spark,
we select the k pairs with smaller distance. The k-th distance
is our upper bound. This means that in the following steps we
do not need to seek for pairs that have their distance greater
than this bound and consequently we do not need to examine
pairs that have their x-axis (y-axis can also be used) distance
greater than bound.

B. Datasets Partitioning

After the bound computation from samples, both datasets
are separately divided into a, user defined, number of n
strips. Partitioning each of the two datasets into strips of
unequal width is done by calculating the border (separation)

278

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

points from samples, separately for each dataset by the same
procedure shown in the previous step.

Sampling with a ratio m is used here. In [1] the sample size
was set to dataset.size/n where n is the number of desired
partitions. Each point from the sample is mapped to its x-
axis coordinate and all 1D points are collected to the Master
node as an Array A[m]. Sorting is performed on the array
and the number of predefined strips n determines the step =
m/n on the indices of the array that contain the separation
x-points. The actual x-values, depicted in Fig. 1, are X1 =
A[step], X2 = A[2 ∗ step], . . . , Xn = A[(n− 1) ∗ step].

Each subinterval contains approximately m/n points and
therefore the projection of this upon the whole dataset creates
strips with approx. equal size of points. The separation points,
shown in gray in Fig. 1, are being used on the whole dataset,
to split it into n strips. The partitioning is being done a
function xPartitionSpace, which assembles the envelopes of
the strips

Env[minX : X1,minY : maxY],

Env[X1, X2,minY : maxY], . . . ,

Env[Xn− 1 : maxX,minY : maxY]

The function returns an array of type (Int, Env), by
assigning consecutive integers to each partition presented as
Envelope. Actual partitioning is done by passing a function to
Spark with parameter the array of Envelopes and each Worker
scans the dataset and assigns the proper key to each point.

C. Classification of Strips

The third step of the algorithm presented in [1] uses bound,
the distance of the k-th closest pair, which was computed from
the sample as described in step 1, to classify all pairs of strips
from the two datasets into two categories, Eligible and non-
Eligible.

This is accomplished by first finding the relative position
between each pair of strips. The criterion used to derive the
relative position is based on the relation of the minimum and
maximum value of the x-coordinates of the strips. In Fig. 2
all possible cases are being depicted.

In the case of overlapping pairs, as it happens with W and B,
the expression (W.x1 < B.x2 && W.x2 > B.x1) evaluates
to true.

If it evaluates to false, then there are two cases, either strip
is on the left of W (strip A), and W.x1 > A.x2, or strip is on
the right of W (strip C) and W.x2 < C.x1.

Eligible and non-Eligible categories are defined as follows:

Fig. 1. Selection of splitting points in [1]

 Fig. 2. Relative position of strips

1) Eligible pairs consist of all pairs of strips containing
points that may contribute to the final query answer.
The eligible pairs may be:

a) Pairs that overlap. As seen in Fig. 3, strip P1 from
P overlaps with strips Q1 and Q2 from Q.

b) Pairs that do not overlap, but have their x-axis
distance smaller than bound. In Fig. 3 the x-distance
between P1 and Q3 is d1 < bound.

2) non-Eligible pairs consist of all pairs of strips that do
not overlap and have their x-axis distance greater than
bound. The contained points cannot contribute to the
final query answer. Such a pair is P1 and Q4, two strips
that have their x-distance d2 > bound, as shown in Fig.
3. The same holds for every consecutive Q-strip after
Q4.

In the case of non-overlapping but yet eligible pairs (case 1-
a, above), not all points from both strips need to be considered
in the forthcoming step, since pruning can be performed to
reduce both strips to these points that their x-axis distance
from each other is smaller than bound.

For example, in the case of pair P1, Q3, we use the filter
function of Spark to reduce Q3 to these points (Q3.x, Q3.y)
such that Q3.x−P1.max < bound and also reduce P1 to these
points (P1.x, P1.y) such that Q3.xmin− P1.x < bound.

Fig. 3. Eligible strips and filtering of non overlapping strips

279

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. kCPQ computation

Having located all the eligible pairs, we create two new
RDDs, with all possible pairs of strips containing points that
may contribute to the answer of the query. This is done by
duplicating, as needed, the points from strips of each dataset
that have to be accounted with points from strips from the
other dataset (a union) and assigning proper keys.

In the final step, a Plane-sweep algorithm is applied within
each eligible (and filtered) pair of strips from P and Q
for calculating k Closest Pairs and storing the result in a,
separately for each partition, maximum binary heap (max-
Heap). Previously, the bound (computed in step 1) has been
broadcasted to all workers to use it as stop condition for the
plane sweep algorithm. Taking the first (sorted on distance) k
tuples with the smaller distances, yields the final (and exact)
solution.

IV. BINARY SPACE PARTITIONING FOR THE KCPQ

As already described, the method of [1] uses a lightweight
partitioning scheme that splits the datasets into strips. In
the current work we are maintaining the fundamental con-
cept of partitioning into strips, but implement two additional
partitioning schemes, influenced by the Quad-tree and R-
tree principles. Since the partitioning derives from Quad-tree
and R-tree, we call them Q-split and R-split partitionings,
respectively.

A. Outline of the partitioning procedure

As in the original method, partitioning of datasets is per-
formed along an axis, which in our case is the x-axis. Both Q-
split and R-split partitions use a Binary Search Tree (BST) to
store the splitting points. A class BST extends Scala collection
mutable.Map and is used to implement the Binary Search Tree.
Each Node of the BST is defined as a Scala class of type class
Node(key, value, left: Node, right: Node).

Parameter key is of type Double and is the actual splitting
x-coordinate. Parameter value, in our case is of type (Int,
Double) where the Int in value is showing the level of de-
composition and the Double is the splitting x-point. Parameter
value can store any kind of information and we intend to use
it in further experimentation, for example, one can store sizes
of every child area and use it to make decisions regarding
the computation. The BST class is equipped with a function
compare that is used to compare the keys of the points to be
added.

Every new node is being added by a function + that
recursively scans the BST, locates its correct position and adds
it to the tree.

By sampling the dataset with ratio f , we map the points to
their x-coordinates and collect the results to the Driver pro-
gram, in an array DS. The “middle” point selection depends
on the criterion used to partition the array and afterwards the
dataset.

In the case of R-split, middle is selected as the point that
leaves equal number of points on the two sub-intervals, while
in the case of Q-split middle is the point that splits the interval
into two sub-intervals with the same x-axis width. This means
that in the first case middle is an actual x-point from the
dataset, while in the latter it may be not since it is computed
as the median of each interval.

Each dataset is partitioned separately, as happens in [1]. In
both partitioning schemes, we set two parameters PCapacity
and QCapacity, which represent the maximum number of
points that a node can store. In contrast to [1], no additional
sampling is performed, as partitioning is done by using the
samples taken for upper bound computation.

B. R-split

We perform Quicksort on array DS (the full sample) and
locate the first splitting point of the array, named middle.
In the case of R-split, initial value of middle is set as the
quotient DS.length/2. The value of capacity, idx (an integer
counting the level of decomposition), TR (an empty BST),
DS (the array with x-points from sample) and the splitting
point middle are passed to a function partitionEqualSize
that uses recursion to create and return the BST with the
splitting points. The pseudo code snippet in Fig. 4 outlines
the procedure.

C. Q-split

The initial value of middle is computed as the median of the
maximum and minimum x-values of each dataset. For exam-
ple, in the case of dataset P, middle is the quotient (P.maxX+
P.minX)/2. Function partitionEqualwidth is similar to
partitionEqualSize, with two differences. Line 12 is re-
placed with ml = (FPLeft.maxX+FPLeft.minX)/2 and
Line 16 is mr = (FPRight.maxX + FPRight.minX)/2

1: function PARTITIONEQUALSIZE(capacity, idx, TR, DS, middle): BST
2: function PS(capacity,idx, TR, DS, middle): Int
3: id = idx + 1
4: TR += middle -> (id, middle)
5: FPLeft = DS.filter(x => x < middle)
6: FPRight = DS.filter(x => x >= middle)
7: FPLeftSize = FPLeft.length
8: FPRightSize = FPRight.length
9: FL = FPLeftSize / f . f is the sampling ratio

10: FR = FPRightSize / f
11: if (FL > capacity) then
12: ml = FPLeft(FPLeftSize / 2)
13: id = ps(capacity,id, TR, FPLeft, ml)
14: end if
15: if (FR > capacity) then
16: mr = FPRight(FPRightSize / 2)
17: id = ps(capacity, id, TR, FPRight, mr)
18: end if
19: return id
20: end function
21: ps(capacity, idx, TR, DS, middle)
22: return TR
23: end function

Fig. 4. R-SPLIT outline.

280

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In both R-split and Q-split, the splitting points are retrieved
from the BST by using an inorder traversal, being utilized by
means of a properly designed iterator.

V. EXPERIMENTAL EVALUATION

To evaluate the performance of our methods, we used three
large real 2d datasets from OpenStreetMap [16]: WATER
resources consisting of 5,836,360 line segments, PARKS (or
green areas) consisting of 11,504,035 polygons and BUILD-
INGS of the world consisting of 114,736,611 polygons. To
create sets of points, we used the centers of the Minimum
Bounding Rectangles (MBRs) of the line-segments from WA-
TER and the centroids of polygons from PARK and BUILD-
INGS.

All experiments were conducted on a cluster of 9 nodes.
Each node has 4 vCPUs running at 2.1GHz, with a total
of 16GB of main memory per node, running Ubuntu Linux
16.04 operating system. Spark 2.1.1 running on Hadoop 2.7.2
Distributed File System (HDFS) was used as our parallel
computing system. The block size of HDFS was 128 MB.
Of the 9 computing nodes, one was running the NameNodes
for Hadoop and Master for Spark, while the remaining eight (8
nodes x 4 vCPUs = 32 vCPUs) were used as HDFS DataNodes
and Spark Worker nodes. Java openjdk ver. 1.8.0 and Scala
code runner ver. 2.11 were used.

In all experiments, the data sets P and Q are in the form of
text files formatted in columns with a separator (in our case a
tab), one point per line (x, y coordinates). We also make the
assumption that the two data files have already been stored in
the HDFS, at an earlier phase without being subject to any
kind of processing (e.g., sorting, indexing, and so forth). The
datasets are read by using the textF ile function of Spark.
Each dataset is presented as an RDD[Point], where Point
is of type Tuple2[Double, Double]. In all experiments the
number of closest pairs is set to k = 10.

A. Speedup of method in [1]

First we measure the total computing time for 4 and 8
computing nodes in the case of BUILDINGS x PARKS (Fig.
5) and PARKS x WATER (Fig. 6) of the method presented in
[1], varying the number of the preset partitions.

We measured total execution time (i.e., response time)
in seconds (sec) that expresses the overall CPU, I/O and
communication time needed for the execution of each query.

Let T4 be the execution time for four nodes and T8 be
the execution time for eight nodes. The speedup is defined
by T4/T8. We observe that execution time decreases more
rapidly in the cases of larger number of partitions. This is
expected since a larger number of partitions leads to more
Spark jobs being more efficiently managed when a larger
number of computing nodes is available. In the case of
BUILDINGS x PARKS, best speedup (1.7) is measured at 32
partitions. Best response time is measured with 16 partitions,
where the speedup is about 1.6. In the case of PARKS x

100.0

120.0

140.0

160.0

180.0

200.0

220.0

240.0

4 8

T
o

ta
l

e
x

e
cu

ti
o

n
 t

im
e

 (
se

c)

of Computing Nodes

BUILDINGS X PARKS - speedup

Partitions=8

Partitions=16

Partitions=32

Fig. 5. kCPQ(BUILDINGS x PARKS), Nodes =4, 8

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

4 8
T

im
e

 e
x

e
cu

ti
o

n
 t

im
e

 (
se

c)

of Computing Nodes

PARKS x WATER - speedup

Partitions=16

Partitions=32

Partitions=64

Fig. 6. kCPQ(BUILDINGS x PARKS), Nodes =4, 8

WATER, best speedup (1.84) is measured at 64 partitions. Best
response time comes when number of partitions is set to 32,
and the speedup is 1.3

B. Original method in [1] vs improved (single sampling)

The second experiment deals with the improvement we have
made to the algorithm in [1] and mentioned beforehand. By
refactoring the code, we have removed the second sampling
that is used by the original method in order to partition the
datasets. Instead, we use the sample already taken for the upper
bound computation. The results are being presented in Fig. 7
and Fig. 8.

It was observed that a sample ratio of f = 0.001 is adequate
to efficiently partition the datasets. In general, the system runs
faster, mostly in the case of larger datasets where a relatively
small fixed number of partitions are used. This is reasonable,
since in the original method the sample size is computed as
the quotient of dataset size and number of partitions; therefore
as partitions number decreases it results in an increase of
the sample size and therefore an increase in upper bound
computation time.

We use this strategy (a single sampling per dataset) in all
following experiments, and use only one very small sample,
with ratio 0.001 for computing both upper bound and parti-
tioning x-axis points.

281

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

100.0

120.0

140.0

160.0

180.0

200.0

220.0

8 16 32 64

T
o

ta
l

e
x

e
cu

ti
o

n
 t

im
e

 (
se

c)

of Partitions

BUILDINGS x PARKS

method in [1]

[1] improved

Fig. 7. BUILDINGS x PARKS. Method [1] vs method [1] improved

30.0

40.0

50.0

60.0

70.0

8 16 32 64

T
o

ta
l

e
x

e
cu

ti
o

n
 t

im
e

 (
se

c)

of Partitions

PARKS x WATER

method in [1]

[1] improved

Fig. 8. PARKS x WATER. Method [1] vs method [1] improved

C. R-split and Q-split performance

In the third experiment we test the performance of the
method in the case of both R-split and Q-split. We have run
several experiments with various combinations of capacity for
each dataset. Table I presents the results of the experiment
regarding R-split for BUILDINGS x PARKS and PARKS x
WATER datasets. As it can be observed, the new partitioning
scheme provides much more freedom in fine tuning the system,
since we now don’t need to preset the number of partitions, but
rather set capacities and have the system compute the number
of partitions that meet the settings.

In Fig. 9 and Fig. 10 we compare the results measured for
the improved version of [1], as described above, with the best
obtained by using the R-split, subject to the same number of
partitions between the two methods. It can be deduced that
an R-split achieves better running times compared to both the
original and the improved version of method presented in [1]
especially when dealing with larger datasets.

Table II presents the results of the experiment regarding
Q-split for BUILDINGS x PARKS and PARKS x WATER
datasets. In contrast to R-split, using Q-split leads to a, more or
less, worse performance in almost every case when compared
to both R-split and the improved method in [1]. Another
observation is that Q-split leads to a number of derived
partitions that varies more widely than in the case of R-split,
where the number of partitions is mostly constant.

TABLE I. R-SPLIT RESULTS FOR THE KCPQ

Capacity
(millions of points) Derived partitions # Eligible Time

BUILDINGS PARKS BUILDINGS PARKS pairs # (sec)
23 2.3 8 8 15 111.3

14.5 1.5 8 8 15 104
14.5 1.4 8 16 23 126
14 1.4 16 16 31 104.3
12 1.4 16 16 31 101.3
10 1.4 16 16 31 96
10 0.75 16 16 31 98
10 0.7 16 32 47 138
8 1.4 16 16 31 99
8 0.75 16 16 31 95.7
8 0.7 16 32 47 138.7
6 1.4 32 16 47 104.3
6 0.7 32 32 63-64 125
4 1.4 32 16 47 109
2 1.4 64 16 79 131.3
2 0.35 64 64 127-128 199.3

Capacity
(millions of points) Derived partitions # Eligible Time

BUILDINGS PARKS BUILDINGS PARKS pairs # (sec)
1.4 0.7 16 16 31 49.7
1.4 0.35 16 32 47 39
2.8 1.4 8 8 15 61
0.7 0.35 32 32 63 40.3
0.7 0.7 32 16 47 40.7

0.35 0.175 64 64 127-128 53

80.0

100.0

120.0

140.0

160.0

180.0

200.0

220.0

8 16 32 64

of Partitons

BUILDINGS x PARKS

R-split

[1] improved

Fig. 9. BUILDINGS x PARKS. R-split vs method [1] improved

30.0

40.0

50.0

60.0

70.0

8 16 32 64 16-32 32-16

T
o

ta
l

e
x

e
cu

ti
o

n
 t

im
e

 (
se

c)

of Partitions

PARKS x WATER

R-split

[1] improved

Fig. 10. PARKS x Water. R-split vs method [1] improved

282

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. Q-SPLIT RESULTS FOR THE KCPQ

Capacity
(millions of points) Derived partitions # Eligible Time

BUILDINGS PARKS BUILDINGS PARKS pairs # (sec)
23 2.3 8 8 17 141.7

14.5 1.5 15 11-14 25-28 122.3
14.5 1.4 14-15 12-15 25-29 121.3
14 1.4 15-16 14-15 29-30 118.3
12 1.4 16 15-16 30-31 120
10 1.4 18-19 14-15 32-33 116.7
10 0.75 18-19 22-24 41-42 132.3
10 0.7 19 24 42 135.7
8 1.4 22 15 36 118.3
8 0.75 22-23 22-24 44-45 127.3
8 0.7 22-23 24-25 45-47 136
6 1.4 28 14 41 116
6 0.7 28 23-27 50-54 127.7
4 1.4 46 14-15 59-60 130.7
2 1.4 84-86 14-15 98-99 205.3
2 0.35 86-87 47-48 134 230

Capacity
(millions of points) Derived partitions # Eligible Time

BUILDINGS PARKS BUILDINGS PARKS pairs # (sec)
1.4 0.7 14-15 15-16 28-30 35
1.4 0.35 14-15 26-27 40-41 39.3
2.8 1.4 8 8-9 16-15-15 59.7
0.7 0.35 24-25 27-28 50-52 41
0.7 0.7 24-25 16-17 39-41 33.3
0.35 0.175 48-49 55-56 102-104 49

D. R-split and Q-split performance

The fourth experiment is aiming to check the quality of
R-split and Q-split partitions. As it can be seen, R-split
partitioning results in strips with uniformly allocated number
of points (Fig. 11 and Fig. 12). Furthermore, the selection of
a small sample with ratio 0.001 is proved to be sufficient for
this purpose.

On the other hand, a Q-split partition results in strips with
unequal number of points (Fig. 13 and Fig. 14).

E. Dataset points replication

The fifth experiment is aiming to enlighten the differences
measured in execution times regarding different PCapacity

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

8,000,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#
 o

f
p

o
in

ts

#
 o

f
p

o
in

ts

Partition #

BUILDINGS (left axis)

PCapacity = 10M

PARKS (right axis)

QCapacity = 1.4M

Fig. 11. R-split: # of points per partition. Capacity = (10M, 1.4M)

0

200,000

400,000

600,000

800,000

1,000,000

0

5,000,000

10,000,000

15,000,000

20,000,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#
 o

f
p

o
in

ts

#
 o

f
p

o
in

ts

Partition #

BUILDINGS (left axis)

PCapacity = 14.5M

PARKS (right axis)

QCapacity = 1.4M

Fig. 12. R-split: # of points per partition. Capacity = (14.5M, 1.4M)

and QCapacity settings, for both R-split and Q-split parti-
tions.

As already mentioned, after locating all the eligible pairs
of strips, two RDDs are derived containing all possible pairs
of strips with points that may contribute to the answer of the
query. These RDDs are created as a union of properly keyed
points from strips of each dataset that have to be accounted
with points from strips from the other dataset.

In the (usual) case a strip from P has to be combined to
more than one strip from Q, then P is being duplicated (and
filtered in the case of non overlapping strips) as needed and
proper keys are being assigned. This means that the derived
RDDs upon which the actual computation is being performed
contain replicated points from both datasets.

In Fig. 15 and Fig. 16 we present the derived datasets in
two different cases of partitioning by using R-split and Q-split

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

1 2 3 4 5 6 7 8 9

#
 o

f
p

o
in

ts

#
 o

f
p

o
in

ts

of partitions

BUILDINGS (left axis)

PCapacity = 23M

PARKS (right axis)

QCapacity = 2,3M

Fig. 13. Q-split: # of points per partition. Capacity = (23M, 2.3M)

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

1 3 5 7 9 11 13 15 17 19 21 23 25 27

#
 o

f
p

o
in

ts

#
 o

f
p

o
in

ts

of partitions

BUILDINGS (left axis)

PCapacity = 6M

PARKS (right axis)

QCapacity = 1,4M

Fig. 14. Q-split: # of points per partition. Capacity = (6M, 1.4M)

283

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

respectively. In both figures, the first pair of columns presents
the sizes of the original datasets and the rest two pairs present
the sizes of the derived datasets (that are actually used for
kCPQ computation) for two pairs of capacity settings. Using
larger capacities leads to a smaller number of partitions (as
shown in Table I and Table II) but this leads to an increased
number of eligible points, a fact that influences the total
execution time (also shown in figures).

F. Testing with larger datasets

In order to test our method on even larger pairs of datasets,
we used CLUS LAKES1, a new big quasi-real dataset de-
rived from a real one. To create this dataset, for each point
of LAKES, p, 15 new points gathered around p (i.e., the
center of the cluster) are generated according to a Gaussian
distribution with mean = 0.0 and standard deviation = 0.2.
The dataset CLUS LAKES contains around 126M of points.
We computed the kCPQ on the pair P = BUILDINGS and Q
= CLUS LAKES for several combinations of PCapacity and
QCapacity and the total execution time (averaged) is shown
in Table III (R-split has been used for the partitioning of the
whole datasets).

VI. CONCLUSION AND FUTURE PLANS

In this paper, extending [1], we have presented a method for
the kCPQ computation in Spark. This method splits data into
strips and computes closest pairs by plane sweep within each

1Kindly provided by Antonio Corral and Francisco Garcı́a-Garcı́a, Univer-
sity of Almeria, Spain.

40

50

60

70

80

90

100

110

120

130

140

0

50

100

150

200

250

300

350

Dataset points Derived datasets

Capacities =(10M, 1.4M)

Derived datasets

Capacities =(14.5M, 1.4M)

T
o

ta
l

e
x

e
cu

ti
o

n
 t

im
e

 (
se

c)

T
o

ta
l

#
 o

f
p

o
in

ts
(Μ

)

BUILDINGS PARKS Total execution time

Fig. 15. R-split: Replicated points and execution time

40

60

80

100

120

140

160

0

50

100

150

200

250

Dataset points Derived datasets

Capacities =(23M, 2.3M)

Derived datasets

Capacities =(6M, 1.4M)

T
o

ta
l

e
x
e

cu
ti

o
n

 t
im

e
 (

se
c)

T
o

ta
l

#
 o

f
p

o
in

ts
 (

M
)

BUILDINGS PARKS Total execution time

Fig. 16. Q-split: Replicated points and execution time

TABLE III. R-SPLIT RESULTS FOR THE KCPQ(BUILDINGS X
CLUS LAKES)

R-split
Capacity (millions of points) Derived partitions # Eligible Time

BUILD- CLUS BUILD- CLUS pairs # (sec)
INGS LAKES INGS LAKES

2 2 64 64 127-129 433.7
6 6 32 32 63 316.0
6 8 32 16 47 287.7
8 6 16 32 48 548.7
8 8 16 16 31 385.0

strip. Since proper partitioning is of great essence, especially in
the context of parallel and distributed environments, we have
particularized this method by presenting and implementing
three different partitioning schemes that split the datasets into
strips.

By conducting experiments on large real datasets we have
explored the performance of our method and the performance
of the partitioning schemes. Splitting into strips by means of
Binary Space Partitioning techniques is proven to provide flex-
ibility in tuning the system, thus resulting to faster execution
time. R-split (divide datasets into parts with equal sizes) was
shown to work better than Q-split (divide datasets into parts
of equal width).

In a very recently published paper [31] we have presented
SliceNBound, an algorithm for the kCPQ and Distance Join
Query (DJQ), influenced by the ideas presented in the current
paper. Simba [21] does not support KCPQs, but does support
DJQs, so a comparison had been performed between the
methods [31] and [21] on DJQ. In the future, we plan to
compare the methods for kCPQ presented in current paper
with kCPQ implemented in Simba and other spatial oriented,
Spark based, platforms. We also plan to further elaborate
this method and investigate partitioning schemes for Spark to
reduce the need for examining combinations of data that reside
in different strips and also reduce the network communication
traffic. Furthermore, we plan to research for a faster and
stricter upper bound computation, since we have observed that
this bound strongly influences the total running time of the
query.

REFERENCES

[1] G. Mavrommatis, P. Moutafis, and M. Vassilakopoulos, “Closest-Pairs
Query Processing in Apache Spark,” in Proceedings of the 8th Inter-
national Conference on Cloud Computing, GRIDs and Virtualization
(CLOUD COMPUTING 2017), Athens, Greece, February 19-23, 2017,
pp. 26–31, ISBN: 978-1-61208-529-6, ISSN: 2308-4294.

[2] S. Shekhar and H. Xiong, Eds., Encyclopedia of GIS. Springer, 2008.
[3] P. Rigaux, M. Scholl, and A. Voisard, Spatial databases - with applica-

tions to GIS. Elsevier, 2002.
[4] A. Corral and M. Vassilakopoulos, “Query processing in spatial

databases,” in Encyclopedia of Database Technologies and Applications.
Idea Group, 2005, pp. 511–516.

[5] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos,
“Closest pair queries in spatial databases,” in Proceedings of the 2000
ACM SIGMOD International Conference on Management of Data,
Dallas, TX, USA, May 16-18, 2000, pp. 189–200.

[6] ——, “Algorithms for processing k-closest-pair queries in spatial
databases,” Data Knowl. Eng., vol. 49, no. 1, pp. 67–104, 2004.

284

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[8] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, Boston,
MA, USA, June 22-25, 2010, pp. 10–10.

[9] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, San Jose, CA, USA, April 25-27, 2012, pp. 2–2.

[10] G. Roumelis, M. Vassilakopoulos, A. Corral, and Y. Manolopoulos, “A
new plane-sweep algorithm for the k-closest-pairs query,” in SOFSEM
2014: Theory and Practice of Computer Science - Proceedings of the
40th International Conference on Current Trends in Theory and Practice
of Computer Science, Nový Smokovec, Slovakia, January 26-29, 2014,
pp. 478–490.

[11] G. Roumelis, A. Corral, M. Vassilakopoulos, and Y. Manolopoulos,
“New plane-sweep algorithms for distance-based join queries in spatial
databases,” GeoInformatica, vol. 20, no. 4, pp. 571–628, 2016.

[12] D. Chen, C. Shen, J. Feng, and J. Le, “An efficient parallel top-k simi-
larity join for massive multidimensional data using spark,” International
Journal of Database Theory and Application, vol. 8, no. 3, pp. 57–68,
2015.

[13] D. N. Rao and D. S. Rao, “Computational geometry leveraged by
apache spark,” Journal of Innovation in Electronics and Communication
Engineering, vol. 5, no. 2, pp. 15–31, 2015, ISSN: 2249-9946, Online
ISSN: 2455-3514.

[14] J. Lu and R. H. Güting, “Parallel secondo: Boosting database engines
with hadoop,” in Proceedings of the 18th IEEE International Confer-
ence on Parallel and Distributed Systems, ICPADS 2012, Singapore,
December 17-19, 2012, pp. 738–743.

[15] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. H. Saltz,
“Hadoop-gis: A high performance spatial data warehousing system over
mapreduce,” PVLDB, vol. 6, no. 11, pp. 1009–1020, 2013.

[16] A. Eldawy and M. F. Mokbel, “Spatialhadoop: A mapreduce framework
for spatial data,” in Proceedings of the 31st IEEE International Con-
ference on Data Engineering, ICDE 2015, Seoul, South Korea, April
13-17, 2015, pp. 1352–1363.

[17] F. Garcı́a-Garcı́a, A. Corral, L. Iribarne, M. Vassilakopoulos, and
Y. Manolopoulos, “Enhancing spatialhadoop with closest pair queries,”
in Advances in Databases and Information Systems - Proceedings of the
20th East European Conference, ADBIS 2016, Prague, Czech Republic,
August 28-31, 2016, pp. 212–225.

[18] J. Yu, J. Wu, and M. Sarwat, “Geospark: a cluster computing framework
for processing large-scale spatial data,” in Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in Geographic

Information Systems, Bellevue, WA, USA, November 3-6, 2015, pp. 70:1–
70:4.

[19] S. You, J. Zhang, and L. Gruenwald, “Large-scale spatial join query
processing in cloud,” in Proceedings of the 31st IEEE International
Conference on Data Engineering Workshops, ICDE Workshops 2015,
Seoul, South Korea, April 13-17, 2015, pp. 34–41.

[20] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani, and W. G. Aref, “Lo-
cationspark: A distributed in-memory data management system for big
spatial data,” PVLDB, vol. 9, no. 13, pp. 1565–1568, 2016.

[21] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient
in-memory spatial analytics,” in Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26-July 01, 2016, pp. 1071–1085.

[22] G. R. Hjaltason and H. Samet, “Incremental distance join algorithms for
spatial databases,” in Proceedings of the ACM SIGMOD International
Conference on Management of Data, Seattle, Washington, USA, June
2-4, 1998, pp. 237–248.

[23] H. Shin, B. Moon, and S. Lee, “Adaptive and incremental processing
for distance join queries,” IEEE Trans. Knowl. Data Eng., vol. 15, no. 6,
pp. 1561–1578, 2003.

[24] C. Yang and K. Lin, “An index structure for improving closest pairs and
related join queries in spatial databases,” in Proceedings of the Inter-
national Database Engineering & Applications Symposium, IDEAS’02,
Edmonton, Canada, July 17-19, 2002, pp. 140–149.

[25] G. Gutierrez and P. Sáez, “The k closest pairs in spatial databases - when
only one set is indexed,” GeoInformatica, vol. 17, no. 4, pp. 543–565,
2013.

[26] A. Aji, H. Vo, and F. Wang, “Effective spatial data partitioning for
scalable query processing,” CoRR, vol. abs/1509.00910, 2015.

[27] A. Eldawy, L. Alarabi, and M. F. Mokbel, “Spatial partitioning tech-
niques in spatial hadoop,” PVLDB, vol. 8, no. 12, pp. 1602–1605, 2015.

[28] H. Samet, C. A. Shatter, R. C. Nelson, Y. Huang, K. Fujimura, and
A. Rosenteld, “Recent developments in linear quadtree-based geographic
information systems,” Image Vision Comput., vol. 5, no. 3, pp. 187–197,
1987.

[29] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in SIGMOD’84, Proceedings of Annual Meeting, Boston, Massachusetts,
June 18-21, 1984, pp. 47–57.

[30] S. T. Leutenegger, J. M. Edgington, and M. A. López, “STR: A
simple and efficient algorithm for r-tree packing,” in Proceedings of the
Thirteenth International Conference on Data Engineering, Birmingham,
U.K., April 7-11, 1997, pp. 497–506.

[31] G. Mavrommatis, P. Moutafis, M. Vassilakopoulos, F. Garcı́a-Garcı́a, and
A. Corral, “Slicenbound: Solving closest pairs and distance join queries
in apache spark,” in Advances in Databases and Information Systems
- Proceedings of the 21st European Conference, ADBIS 2017, Nicosia,
Cyprus, September 24-27, 2017, pp. 199–213, ISBN: 978-3-319-66916-
8, ISSN: 0302-9743.

285

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

