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Abstract—The main objective of eRobotics is to cope with the
complexity in the development and lifecycle of current robotic and
mechatronic systems. A key technology for eRobotics applications
are Virtual Testbeds, a more holistic approach to 3D simulation
that considers the entire system under study within its opera-
tional environment modeled in so-called Semantic World Models.
Ideally, this complex data should be managed using database
technology instead of flat file formats. However, existing related
approaches fail to fulfill all the identified requirements. Thus,
we present a new database synchronization concept whose basic
idea is to use local in-memory simulation databases (SimDB) and
synchronize them to a central, external database (ExtDB). In this
paper, two new realizations of this concept are presented using
two different choices for ExtDB: The first is based on an object-
relational mapping approach, the second uses the graph database
Neo4j. Both approaches are described in detail, evaluated, and
finally compared to each other. In conclusion, both approaches
are very well-suited but the actual choice depends the concrete
application scenario.

Keywords–eRobotics; Semantic World Models; Data Manage-
ment; Object Relational Mapping; Graph Database.

I. INTRODUCTION

The work at hand combines the results from our two
previous publications [1] [2] and extends them by a more com-
prehensive motivation and a comparison of the two approaches.

Current robotic applications are characterized by complex
system structures and expensive hardware prototypes. The
eRobotics approach [3], a branch of eSystems Engineering
like eHealth or eGovernment, is used to cope with these
difficulties by combining the usage of electronic media, sim-
ulation technology and robotics concepts. It covers not only
the development, but the whole lifecycle of robotic systems.
The flexibility of eRobotics enables its usage in other fields
of application: The modeling and simulation of environmental
scenarios (forest, buildings or whole cities), industrial automa-
tion applications, and mechatronic systems like satellites in
general (Figure 1).

An important method in eRobotics is 3D simulation. Ac-
cording to [4], the term simulation itself can be defined as the
”preparation, execution and evaluation of targeted experiments
with a simulation model”, where a model is defined as a
”simplified reproduction of a planned or existing system”.
Accordingly, a model used in 3D simulations focuses on a
system’s spatial properties and behavior. The basis of any

Figure 1. Exemplary eRobotics applications: A wood harvester in its
operational environment, a distributed city simulation scenario and Virtual

Testbed of the International Space Station (ISS).
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eRobotics application is a Semantic World Model, a compre-
hensive 3D model of the system under study itself and its
operational environment. It focuses on the problem domain
using a domain specific data schema and allows for an inherent
interpretation of its meaning. In particular, such models go
beyond purely geometric descriptions that are often optimized
for rendering only.

Semantic World Models are the basis for so-called Virtual
Testbeds (VTBs), a more holistic approach to 3D simulation
that considers the entire system under development including
its operational environment. In contrast, a standard simulation
usually covers and examines only very specific aspects in
detail. A VTB, in turn, can be used for various approaches
such as simulation-based optimization, reasoning and control.

This can be summarized by the term Simulation-based X,
with

• X = Optimization: The VTB is used during the de-
velopment phase of the system. By running different
simulations with varying system structures and prop-
erties the best alternative can be chosen.

• X = Reasoning: The VTB is used by the system in live
operations, serving as a mental model of the system.
This model can be used for optimized decision-making
by simulating different action alternatives.

• X = Control: A control for a device or process is
developed within the VTB (using above mentioned
simulation-based optimization). By exchanging the
virtual sensors and actuators with their physical coun-
terpart, this control can then be used on the physical
device or process, without further implementation or
adaption.

An example is given in Figure 2.

Figure 2. Difference between a simulation (of a single laser scanner), a
Virtual Testbed (of a laser scanner equipped wood harvester and its

operational environment) and Simulation-based X (user interface of a
Simulation-based Control approach).

The inherent properties of Semantic World Models are
very similar to those of 3D data like Computer-aided Design
(CAD) data. Typically, they consist of a huge number of
parts with many different types that feature a hierarchical
structure with interdependencies. When developing eRobotics
applications, this complexity needs to be managed appropri-
ately. For that purpose, instead of widespread flat 3D file
formats, the usage of database technology is recommended.
Database technology provides many advantages for modern
eRobotics applications. Multi-user support with access rights
management, safe transactions and concurrency control can
allow large development teams or distributed components to
corporately work on complex systems. Semantic World Models
like environmental models (e.g., forests or cities) or the ISS
benefit from database management systems’ (DBMS) support

for managing huge amounts of data using techniques like
(spatial) indexing or distributed databases. Query languages,
data independence, and client-server architectures allow for the
decoupling of concerns between simulation and data manage-
ment. Schema support and metadata allow to centrally define
a ”common language” for (possibly heterogeneous) software
components in the development and the whole lifecycle of
eRobotics applications.

In particular, five main requirements for a data management
approach for eRobotics applications can be identified:

1) Following [5], object-oriented data modeling is opti-
mal to cope with the aforementioned complexity of
CAD data and thus of Semantic World Models. Thus,
it must be supported by the approach.

2) In eRobotics applications not only the data, but also
the processes are complex. They are made manage-
able by using distributed approaches like distributed
simulation, distributed data processing, distributed
modeling (collaboration), distributed data acquisition,
or distributed control architectures. Thus, a data man-
agement approach must also feature a distributed
architecture, in particular, to replicate data to different
clients, sites or projection screens.

3) For simulation and rendering, Semantic World Model
data must be available in memory in every simula-
tion cycle. Thus, the approach must use in-memory
technology to keep necessary data available for (live)
simulation.

4) Semantic World Models use domain specific data
schemata that focus on the problem domain and
allow for an inherent interpretation of their meaning.
Thus, an appropriate data management approach for
eRobotics applications must flexibly adapt to differ-
ent schemata to make it universally applicable in
many scenarios. Examples for such data schemata
are CityGML for cities, ForestGML for forest and
forestry models, Industrial Foundation Classes (IFC)
[6] for building information modeling (BIM) sce-
narios, Automation Modeling Language (Automa-
tionML) [7] in industrial automation applications, or
Systems Modeling Language (SysML) [8] for system
specifications.

5) Finally, Simulation-based X approaches need to be
supported. For X=Optimization and X=Reasoning,
simulation runs need to be recorded and analyzed.
Ideally, this can be realized using an integrated
versioning or temporal data management that is
independent of the specific application schema to
make it available to all eRobotics applications. For
X=Reasoning and X=Control, the identical model and
thus the identical data management approach must be
reusable in live operation.

The rest of this contribution is structured as follows. In the
next section, related work is identified representing the state
of the art in managing 3D data using database technology.
Section III introduces the basic idea of database synchroniza-
tion that builds the basis for the two approaches presented in
Section IV and Section V. In Section VI, both approaches are
compared before Section VII gives a conclusion.
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II. RELATED WORK

A variety of applications similarly work with 3D data
like Augmented Reality applications, collaborative Virtual
Environments, applications for city or building modeling and
planning, or Product Data Management (PDM) systems, which
are particularly used for managing CAD or other CAx (e.g.,
Computer-aided Engineering or Computer-aided Manufactur-
ing) data. Mostly, they use object-oriented data modeling [9]
[10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22]
[23]. Among such applications, different motivations for using
database technology can be identified:

• Persistence [9] [13] [14] [15] [18] [19] [20] [21] [22]
[23] [24]

• Query capabilities [13] [14] [15] [16] [17] [19] [20]
[21] [22] [23]

• Multiuser support [10] [13] [14] [15] [16] [18] [20]
[21] [22] [23] [25]

• Client-server model [10] [22] [23] [26]
• Large model data [10] [11] [12] [17] [18] [22] [23]

[27]
• Access control and rights management [17] [22] [23]

[24]
• Internet data provisioning [11] [12] [18] [19] [20] [21]

[22] [23] [27]
• Temporal data management / versioning [19] [22] [23]
• Integration of existing databases [28]
• Integration of different data formats [11] [12] [22] [23]

Thus, related applications have similar reasons for the
adoption of database technology. In all of them, different
approaches are used to integrate databases into the application.
Sometimes, databases are used to store additional information
(meta information, documents, films, positions, hierarchical
structure . . . ) on scene objects or parts [22] [23] [24] [27] [28]
[29] [30] [31] [32] [33] [34] [35] [36] [37]. However, for eR-
obotics applications, the whole Semantic World Model should
be managed using database technology to obtain the referred
benefits for all its objects and their properties. This ensures
that every aspect is queryable, distributable, and versionable
and that the complete application schema is reproduced in
the database to enforce it as a common language for all
subsystems.

Other systems use a database to store scene data itself, but
not all of them with an object-oriented data modeling, which is
ideally suited for Semantic World Models. Another important
aspect for eRobotics applications is the support for arbitrary
application schemata. Many systems use a generic (scene-
graph-like) geometric model, in most cases with attributes
[11] [17] [18] [19] [20] [26] [27]. In such scenarios, schema
flexibility can be achieved to a certain extent by providing
import (and export) to different file formats [11] [38] [39]
[40]. Some approaches support different or flexible schemata.
For example in [26], schema alteration is realized by adding
attributes to generic base objects. Other systems support a
selection of different static [11] or dynamic [10] [17] schemata.
However, most approaches focus on a specific field of appli-
cation, thus, requiring and supporting only a corresponding
fixed schema. This is very common and described in many
similar publications presenting applications with a 3D context,

for example many from the field of BIM [41] [42] [43] [44]
[45] [46] [47]. While PDM systems [22] [23] in principle
support arbitrary schemata they are not explicitly reflected
within the database schema due to their ”black box integration”
approach. Similar vaulting-based approaches with a 3D context
can be found in other publications [48] [49] [50] [51] [52].
However, to flexibly support various eRobotics applications,
arbitrary application schemata of Semantic World Models need
to be explicitly supported. Most scenarios provide a distributed
architecture in terms of multiuser support, a client-server
model, or access control and rights management. However,
only some build it on a Distributed-Database-like approach
[10] [18] [25] with client-side databases. The latter is favorable
for eRobotics applications, e.g., to provide schema flexibility
or a query interface on client-side, as well. Finally, some
approaches support temporal data management or versioning
[19] [22] [23] [38] [39] [40] [41] [43] [44] [48] [52] [53]
[54] [55]. In most cases, these approaches require special
schema structures and many are based on file vaulting. To
be flexibly used in eRobotics applications, however, it needs
to be available for arbitrary application schemata.

Thus, especially due to deviant motivations, there is no
single approach fulfilling all the requirements identified for
managing Semantic World Models in eRobotics applications.
This was the motivation for the development of our basic
concept of database synchronization presented in the next
section.

III. DATABASE SYNCHRONIZATION CONCEPT

Based on the requirements described above and as previ-
ously shown in [56] [57], we developed a new database syn-
chronization concept ideally suited for eRobotics applications.
Its basic idea is to combine and synchronize two types of
databases (Figure 3): Each 3D simulation system uses a local
database (dubbed SimDB) as its core data management com-
ponent. This database is an active, in-memory database whose
main purpose is to cache the shared Semantic World Model
and to build the basis for its runtime execution. All instances
of SimDB are synchronized to an external database (dubbed
ExtDB). It centrally manages the shared model, provides a
persistence layer, can be used for versioning and serves as a
communication hub for the distributed system.

ExtDB

Semantic 
World Model
Semantic 

World Model
Semantic 

World Model
3D Simulation
System

SimDB
Semantic 

World Model

3D Simulation
System

SimDB

3D Simulation
System

SimDB
Semantic 

World Model

Semantic 
World Model

...

...

Figure 3. Basic idea of the database synchronization approach for eRobotics
applications that synchronizes databases on four levels.
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The synchronization component between each pair of
ExtDB and SimDB performs a synchronization on four dif-
ferent levels:

1) On schema level, the schema is synchronized from
ExtDB to every SimDB to make the whole distributed
system ”speak the same language”.

2) On data level, instance data is replicated on demand
from ExtDB to SimDB and kept in sync to make the
shared Semantic World Model available to the 3D
simulation systems.

3) On a semantic level, where necessary, native data in
application specific schemata (e.g., SEDRIS [58]) is
selectively translated to allow for an interpretation by
the simulation system.

4) On a versioning level, a temporal database is used
for ExtDB to synchronize snapshots to SimDB and
to make the history of changes to the Semantic World
Model persistent.

The question which arises now is, which database tech-
nology is best used when implementing this concept. For
SimDB, we successfully utilize the simulation database VSD
(Versatile Simulation Database) of the 3D Simulation System
VEROSIM (Virtual Environments and Robotic Simulation
[59]). VEROSIM was originally developed as a virtual reality
and robot simulation system. Due to its flexible nature, it has
become the basis for the development of various eRobotics ap-
plications in the fields of industrial automation, space robotics
and environmental modeling. All its rendering and simulation
techniques are based on VSD, an object-oriented, in-memory
database. Similar to the common scene-graph, VSD builds
a graph-like structure by means of objects and references
in between. However, unlike scene-graphs, it does not only
support a fixed set of generic node types. VSD rather provides
means to freely configure a schema for its objects. By offering
views on its contents, time-critical components like rendering
and simulation can still quickly access their respective part
of interest without repetitively traversing the whole graph. A
VSD schema describes the structure as well as the behavior
of its objects. That is, the simulation logic is not externally
applied to the Semantic World Model but is in fact part of the
objects it comprises. For that reason, VSD can be called an
active database. Last but not least, VEROSIM and VSD are
based on C++ and provide a proprietary meta system.

In VSD, objects are called instances and are characterized
by properties. Such properties can either be value properties
(Val-Properties) with basic or complex data types or reference
properties. The latter model 1 : 1 (Ref-Properties) or 1 : n
(RefList-Properties) directed relationships between instances.
Furthermore, these relationships can be marked to contain
target instances using an autodelete flag allowing to model
UML (Unified Modeling Language) composite aggregations.

VSD comprises a meta information system providing ac-
cess to its schema and also to specify its schema. So-called
meta instances describe an instance’s class (name, inheritance,
etc.) and so-called meta properties its properties (name, type,
etc.). Figure 4 shows VSD’s data model.

For ExtDB, we currently use a generic, third-party object-
relational mapper (OR mapper) called SupportGIS-Java (SGJ)
[60] in combination with standard relational back-ends (mostly
PostgreSQL [61]). SGJ’s main purpose and field of application

Figure 4. VSD data model (top: metadata, bottom: instance data).

is managing geodata for GIS (Geographic Information Sys-
tem). Thus, an import principle is its adherence to international
standards like GML (Geography Markup Language [62]). SGJ
flexibly supports arbitrary object-oriented application schemata
by using a generic base schema within the back-end. This base
schema is used to flexibly store a description of the respective
application schema in terms of management table entries and
generic data tables. This flexibility motivated our usage of SGJ
in many different eRobotics applications.

However, a drawback of this current solution is the need
for an additional translation layer between SimDB, the syn-
chronization interface and ExtDB (Figure 5). To persist a new
VSD instance, it firstly has to be translated into an object of
the SGJ API (Application Programming Interface). This object
representation is then translated into a relational representation.
The same (in reverse order) applies to loading data into VSD.

ExtDB

Semantic 
World Model
Semantic 

World Model
Semantic 

World Model
3D Simulation
System

SimDB

Semantic 
World Model

O/R 
mapper

Figure 5. Drawback of the current SGJ-based solution: An additional
translation layer between SimDB and ExtDB.

Thus, we evaluated alternative choices for ExtDB in two
student projects. The first is an OR mapper solution directly
built into the synchronization component and, thus, omitting
the additional layer currently imposed by SGJ. In the proto-
type it is also combined with a PostgreSQL back-end. The
main motivation for using an OR mapper is the same: The
prevalence, matureness and well-defined theoretical basis of
relational database management systems (RDBMS) lead to an
extensive software availability but also to wide user acceptance
especially in business and industry. The OR mapper-based
approach is presented in the next section. The second approach
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uses graph database technology, namely the graph database
Neo4j [63] [64]. The study was mainly motivated by VSD’s
graph database like structure and the drawbacks of OR map-
per solutions subsumed by the well-known object-relational
impedance mismatch. This second approach is presented in
Section V.

IV. DIRECT OBJECT-RELATIONAL MAPPING APPROACH

The most widespread database paradigm is the relational
data model. If relational databases should be used as a
persistence layer for object-oriented 3D simulation systems,
a mapping has to be defined bridging the differences be-
tween both paradigms. These differences are summarized as
the object-relational impedance mismatch. The term object-
relational mapping (OR mapping) describes the process of
mapping the objects of an application (here, a 3D simulation
system) to table entries of a relational database and vice versa.
A manual mapping between the object-oriented concept and
the relational database model is complex and error-prone so
that object-relational mappers (OR mappers) are used. An
OR mapper is a tool that builds a translation layer between
application logic and relational database to perform a semi-
automatic object-relational mapping.

Figure 6. OR mapping for a 3D simulation system with an object-oriented
runtime database (data: [65]).

In this section, we present an OR mapper for 3D simulation
systems with an object-oriented runtime database and a meta
information system, see Figure 6. The work was conducted
as a student project and is based on our previous work as
introduced above. A prototypical implementation is based on
the 3D simulation system VEROSIM and PostgreSQL as an
RDBMS. However, the underlying approach itself provides
database independence allowing the usage of other RDBMSs.
A key aspect of the presented OR mapping is the schema
mapping that is built during a schema synchronization. The
introduced concept considers both forward and reverse map-
ping. Furthermore, the OR mapper supports change tracking
and resynchronization of changes. The OR mapper provides an
eager and a lazy loading strategy. The prototype is evaluated
using simulation models for industrial automation and space
robotics (Figure 16).

A. State of the Art
Some RDBMSs provide additional object-relational fea-

tures. For example, PostgreSQL supports some object-oriented
extensions like user defined types or inheritance. However,
these features are not provided uniformly by all RDBMSs
contradicting the desired database independence. Therefore,
the OR mapping is realized with standard relational concepts
only.

There are several references in literature dealing with the
differences between object-oriented concepts and the relational
data model. To solve the object-relational impedance mismatch
and successfully generate an OR mapper, it is important to
consider the properties of both paradigms and the consequent
problems. For example, one main idea of object-orientation
is inheritance [66]. However, the relational data model does
not feature any comparable concept. Thus, rules have to be
defined how inheritance can be mapped onto table structures.
Further differences between both paradigms that contribute to
the object-relational impedance mismatch are polymorphism,
data types, identity, data encapsulation, and relationships.

The following subsections summarize the state-of-the-art
of theoretical mapping strategies for inheritance, relationships
and polymorphism.

1) Inheritance: The approaches to map objects onto tables
differ in to how many tables one object is mapped. Most
authors name three standard mapping strategies for inheritance.
They are illustrated in Figure 8 regarding the exemplary
inheritance hierarchy from Figure 7.

Figure 7. Exemplary inheritance hierarchy (adapted from [67, p. 62f]).

The first strategy is named Single Table Inheritance [67]
and maps all classes of one inheritance hierarchy to one table,
see Figure 8(a). A discriminator field is used to denote the type
of each tuple [68]. An advantage is that all data is stored in one
table preventing joins and allowing simple updates [67, p. 63].
Unfortunately, this strategy leads to a total denormalization,
which is contrary to the concept of relational databases [68].

(a) Single Table
Inheritance.

(b) Concrete Ta-
ble Inheritance.

(c) Class Table
Inheritance.

Figure 8. Standard mapping strategies for inheritance (adapted from [67, p.
62f]).

The Concrete Table Inheritance [67] strategy maps each
concrete class to one table, see Figure 8(b). This mapping
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requires only few joins to retrieve all data for one object.
A disadvantage is that schema changes in base classes are
laborious and error-prone [67, p. 62f].

The third standard mapping strategy for inheritance is
named Class Table Inheritance [67] and uses one table for
each class of the hierarchy, see Figure 8(c). It is the easiest
approach to map objects onto tables [67, p. 62] and uses a
normalized schema [68]. However, due to the use of foreign
keys, this approach realizes an is-a relationship as a has-a
relationship [68]. Thus, multiple joins are necessary if all data
of one object is required. This aspect can have an effect on
performance [67, p. 62f] [69, p. 7].

Another possibility to map objects onto tables not men-
tioned in every reference on OR mapping is the generic
approach [70]. It differs from the strategies mentioned above as
it has no predefined structure. Figure 9 shows an exemplary
set-up, which can be extended as required. The approach is
particularly suitable for small amounts of data because it maps
one object to multiple tables. It is advantageous if a highly
flexible structure is required. Due to the generic table structure,
elements can easily be added or rearranged [70].

Figure 9. Map classes to generic table structure (adapted from [70, Chapter
2.4]).

In conclusion, there is no single perfect approach to map
objects onto tables yielding an optimal result in all situations.
Instead, a decision has to be made from case to case depending
on the most important properties. For this purpose, the three
standard mapping strategies for inheritance can also be com-
bined, however, to the disadvantage of more complexity [67,
p. 63].

2) Relationships: In contrast to relationships between two
objects, which can be unidirectional, relationships between
tables in a relational database are always bidirectional. In
unidirectional relationships, associated objects do not know
if and when they are referenced by another object [69]. Due
to the mandatory mapping of unidirectional onto bidirectional
relationships, information hiding cannot be preserved regard-
less of the relationship’s cardinality, i.e., 1:1 (one-to-one), 1:n
(one-to-many) or n:m (many-to-many) relationships.

1:1 relationships can simply be mapped onto tables using
a foreign key. To map 1:n relationships, structures have to
be reversed [70] [67, p. 58f]. In case of n:m relationships,
additional tables are mandatory: A so-called association table
is used to link the participating tables [70] [67, p. 60]. It is
also possible to map an n:m relationship using multiple foreign
keys in both tables if constant values for n and m are known
[70].

Several references describe the aforementioned mapping
strategies for relationships. Besides, [71] describes an approach
using an additional table regardless of the cardinality. Thus,
objects can be mapped onto tables regardless of their relation-
ships. Following [71], one disadvantage of the aforementioned
approaches is the violation of the object-oriented principle of
information hiding and abstraction. Furthermore, tables are
cluttered by foreign key columns, which reduce maintainability
and performance. The authors prove (by a performance test)
that their own approach shows no performance degradation
[71, p. 1446f].

3) Polymorphism: Polymorphism is an essential concept in
object-orientation. However, relational databases do not have
any feature to reference entries of different tables by one
foreign key column. The target table and column have to be
explicitly defined for each foreign key constraint. It is not
possible to define a foreign key that references more than
one table [72, p. 89]. Thus, a mapping is required to map
polymorphic associations onto a relational database. Following
[72], [73], there are three mapping approaches for polymorphic
associations.

The first approach is named Exclusive Arcs and uses
a separate foreign key column for each table that can be
referenced by the polymorphic association, see Figure 10. This
approach requires NULL values for foreign key columns. For
each tuple, at most one of the foreign key columns may be
unequal to NULL. Due to foreign key constraints, referential
integrity can be ensured. However, the administrative effort for
the aforementioned NULL rule is high. An advantage of this
approach is that queries can easily be formulated.

Figure 10. Mapping of polymorphic associations using Exclusive Arcs.

Another approach is named Reverse the Relationship and
is shown in Figure 11. It uses an intermediate table with
two foreign key columns like the aforementioned approach
for n:m relationships. Such an intermediate table has to be
defined for each possible type (table) that can be referenced by
the polymorphic association [72] [73]. The application has to
ensure that only one entry of all subordinate tables is assigned
to the entry of the superordinate table [72, p. 96ff].

Figure 11. Mapping of polymorphic associations using Reverse the
Relationship.

The third approach uses a super table (or “base table”)
and is named Base Parent Table. It is based on the basic idea
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of polymorphism where subtypes can be referenced using a
common, often abstract supertype. In most cases, these super-
types themselves are not mapped to the relational database.
The strategy uses a table to represent a supertype for all its
subtypes’ tables as shown in Figure 12.

Figure 12. Mapping of polymorphic associations using Base Parent Table.

Such a base table only consists of one column containing
a primary key value. The assigned subordinate entry has the
same primary key value as the entry of the base table. Thus,
an unambiguous assignment is possible. This approach has the
big advantage that base tables do not have to be considered in
queries. They are only used to ensure referential integrity [72,
p. 100ff].

4) Existing OR Mappers: For a long time, differences
between both the object-oriented and relational paradigm were
bridged by simple protocols like Java Database Connectivity
(JDBC) and Open Database Connectivity (ODBC), which
provide a general interface to different relational databases.
These interfaces have the disadvantage that the programmer
itself is responsible for data exchange between objects and
tables. Due to the mixing of SQL statements and object-
oriented commands, this usually leads to complex program
code that is not easily maintained [68].

OR mappers are used to realize a simpler and smarter
mapping between objects and table entries on the one side
and a clear separation between the object-oriented and rela-
tional layer on the other side. Thus, the application can be
developed independently of the mapping and the database. As
a consequence, different development teams can be deployed
[68].

There are several tools for OR mapping with different
features and documentation. Examples are Hibernate (Java),
NHibernate (.NET), ADO.NET Entity Framework (.NET),
LINQ to SQL (.NET), Doctrine (PHP), ODB (C++), LiteSQL
(C++), and QxOrm (C++). Not every existing mapper features
all three standard mapping strategies for inheritance. Another
main difference is how the mapping approach can be specified.
In particular, OR mappers like Hibernate [74] and NHibernate
[75] recommend an XML-based mapping while mappers like
ODB [76] and QxORM [77] recommend the opposite.

The applicability of an OR mapper depends on the utilized
application. In the presented scenario, this is the 3D simulation
system VEROSIM. Thus, an OR mapping is required that
maps data of a runtime database like VSD onto a relational
database. None of the existing OR mappers support a direct
mapping of a runtime database’s meta information system.
They only map object-oriented classes and objects of a specific
programming language. Similarly, the SGJ-based approach
used in our previous work maps a relational database to a
generic object interface that is subsequently mapped to VSD.
Thus, if one of these mappers is used, a second mapping is

required to map between the meta information system and the
object-oriented layer of the OR mapper (see Figure 5).

Based on meta instances, any VSD instance can be clas-
sified during runtime. This is a key advantage for the OR
mapping with regard to the generation and maintenance of
all mappings. Thus, the decision was made to develop a new
OR mapper. This allows the OR mapping to be tailored to the
requirements of runtime simulation databases like VSD.

B. Approach
A basic decision criterion for OR mapping is the def-

inition of the database schema. Given an existing object-
oriented schema, forward mapping is used to derive a relational
database schema. In contrast, if the initial situation is a given
relational database schema, reverse mapping is used to derive
an object-oriented schema. As already mentioned, database
independence is a key aspect of OR mapping. In reverse map-
ping, this aspect is omitted as a specific database schema of a
particular RDBMS is used as the basis for the mapping [68].
The focus of the presented OR mapper is forward mapping to
map existing model data of the 3D simulation system onto an
arbitrary relational database. Nevertheless, reverse mapping is
supported in the concept as well to use the 3D simulation
system for other existing databases (see the upper path in
Figure 13).

The designed forward mapping of the presented OR map-
per is briefly described in the following paragraph and the
overall structure of the OR mapper is shown in Figure 13.

First of all, the database schema has to be generated to be
able to store object-oriented simulation data in the relational
database. Subsequently, a schema synchronization defines a
schema mapping between the object-oriented and the relational
schema. More details on this are given in [57]. The schema
mapping defines, which meta instance is mapped to which
table. Based on this mapping, initial simulation model data
can be stored. Generate Schema Based on Meta Information
and Export Model Data in Database are performed only once
and can be seen as the initialization of the OR mapping.
Subsequently, model data can be loaded from the relational
database and updated within the simulation database. A change
tracking mechanism keeps track of changes within the simu-
lation database and allows for their resynchronization to the
relational database.

Figure 13. Sequence diagram of the presented OR mapping approach.

In most cases, structural aspects are associated with OR
mapping. Behavioral and architectural aspects are often con-
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sidered secondarily although they are not less important [67,
p. 58]. All three aspects should be regarded when developing
an OR mapper.

Architectural aspects define the communication between
business logic and database. The basic principle is not to mix
up the business logic with SQL statements, but rather to use
separate classes for database access. These can be classified in
four strategies: Row Data Gateway, Table Data Gateway, Ac-
tive Record and Data Mapper. To completely isolate business
logic, [67] recommends a Data Mapper. Although this is the
most complex strategy, it is used for the developed OR mapper
to realize an independent layer between the 3D simulation
system and the selected relational database. As a result, both
systems can independently be extended. Furthermore, Data
Mapper is especially well suited for complex structures [67,
p. 49f].

Behavioral aspects define how data can be loaded from or
saved to the relational database. With only a few instances
to manage, it is easy to keep track of loaded, modified or
removed instances and to synchronize these changes with the
database. The more instances must be managed, the more
complex this process gets. In addition, if various users or
processes can access the database, it is even more complex.
Here, it has to be ensured that a loaded instance contains
valid and consistent data. Following [67], the pattern Unit of
Work is indispensable to solve this behavioral and concurrency
problem, see Figure 14. A Unit of Work can be seen as a
control for OR mapping. It registers all loaded, removed or
newly created instances as well as changes. A central concept
of the Unit of Work is that it aggregates all changes and
synchronizes them in their entirety rather than letting the
application call separate stored procedures. Alternatives to a
central Unit of Work are to immediately synchronize changes
or to set dirty flags for each changed object [67, p. 54f].

Figure 14. Combination of the patterns Unit of Work and Identity Mapping
(adapted from [67]).

Given its many advantages, a Unit of Work is used in
the presented OR mapper. To avoid repetitive loading of the
same instances, the Unit of Work is combined with the pattern
Identity Mapping as shown in Figure 14. An Identity Mapping
records each instance loaded into the simulation database and
maps it to the related tuple in the relational database. Before
loading an instance from its tuple, the Unit of Work checks if
there already is an Identity Mapping for this instance, which
is especially important for lazy loading [67, p. 55f]. Compared
to literature [67] we extended the dirty mechanism. Instead of
only registering whole instances as dirty, modified properties
are registered as well. This allows to synchronize changes more
efficiently.

The fundamentals of structural aspects are described in
Section IV-A. To minimize the overall number of joins, the
Concrete Table Inheritance strategy was chosen for mapping

inheritance. Furthermore, two strategies are selected to map
relationships. 1:1 relationships are mapped to simple foreign
key columns whereas 1:n relationships are mapped to asso-
ciation tables. However, this is only possible for monomor-
phic associations. For the polymorphic case, the strategies
described in Subsection IV-A3 have to be evaluated. Due to the
high administrative effort, Exclusive Arcs is inapplicable. The
other two strategies are compared regarding the formulation
of queries. Base Parent Table allows for simpler queries.
However, the theoretical mapping of this strategy (Figure 12)
does not fit in combination with the aforementioned selected
mappings for inheritance and monomorphic associations. In
practice, a subordinated instance can be referenced by both a
monomorphic and a polymorphic association of superordinated
instances. As a consequence, the foreign key constraint could
be violated. So the theoretical mapping of Base Parent Table is
adapted to fit in combination with the aforementioned selected
mappings for inheritance and monomorphic associations as
shown in Figure 15. As an advantage, both the base table and
the additional foreign key column do not need to be considered
in queries. They are only used to ensure referential integrity.

Figure 15. Adapted Base Parent Table mapping of polymorphic associations.

Another important part of an OR mapper is data type
mapping. Data types of the object-oriented data model can
differ from those of the relational data model. Thus, a data
type mapping has to be defined. The developed OR mapper
comprises an interface to use a dynamic data type mapping,
which can be adapted for each database and its related data
types. This is one main aspect of the supported database
independence. Furthermore, the utilized Qt framework [78]
(QSqlDatabase) allows for a vendor-independent database
communication. Altogether, the developed OR mapper can
easily support different RDBMSs.

After schema synchronization, model data can be loaded
from the relational database populating the simulation database
with corresponding instances. A so-called eager loading strat-
egy is used to immediately load and generate all model
instances. The Unit of Work generates an identity mapping for
each loaded instance. This provides an unambiguous mapping
between each loaded instance and the corresponding tuple in
the relational database. Furthermore, a so-called lazy loading
strategy is specified for selectively loading model data from
the database. It is based on the ghost strategy presented in [67,
p. 227ff]. Here, typically necessary information, like primary
key and table name, is determined for all tuples from all
tables regardless whether the instance is loaded or not. Ghost
instances are generated containing only this partially loaded
data [67, p. 227ff]. The presented OR mapper uses a Ghost
Identity Mapping (Figure 14). The advantage of this modified
approach is that only “complete” instances are present in the
3D simulation system’s runtime database.
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C. Evaluation

As mentioned before, schema generation and synchroniza-
tion work independently of the selected simulation model.
All required structures are defined during schema generation.
In the evaluated configuration of the 3D simulation system
VEROSIM, 910 tables, 1, 222 foreign key columns, and 2, 456
association tables are generated to map all meta instances and
1:1 as well as 1:n relationships. The schema generation takes
about 200 seconds on a local PostgreSQL 9.4 installation.
The required schema mapping is built up during schema
synchronization and takes about 2.7 seconds.

Due to its flexibility, the OR mapper can be used for
any simulation model. The prototype is evaluated using two
exemplary models from two different fields of application:
industrial automation and space robotics. Given the current
functional range of the presented prototype, further tests do
not appear to provide any additional insights.

Figure 16(a) shows the first model from the field of indus-
trial robotics. The robot model contains only a few objects so
that only 173 primary keys have to be generated to map all
objects to table entries. It takes about 0.43 seconds to store the
whole robot into the relational database and about 4.7 seconds
to load it.

(a) Industrial robot simulation
model.

(b) Modular satellite simulation
model (data: [65]).

Figure 16. Evaluated simulation models.

The second model (Figure 16(b)) is a modular satellite.
In comparison, it contains much more objects so that 19, 463
primary keys are generated to map all objects to table entries.
In this case, it takes about 22 seconds to store all objects of
the satellite and about 7.1 seconds to load all of them from
the relational database.

An overview of the performance values compared to the
proprietary VEROSIM MOD file format is given in Table I.
The results are about factor two slower for loading data, which
is acceptable for a first prototype. However, the overhead
for writing data is especially larger for the more complex
satellite model. This can mainly be explained by the structures
described in Subsection IV-B that have to be build up in the
relational database. This process is far more complex than
linearly writing out model data to the (highly optimized) MOD
file format. Yet again, the optimization of the prototype might
improve these results.

As mentioned in Subsection IV-A4, a comparable interface
to existing ORM solutions would be less efficient as well
as more complex and time-consuming to realize due to the

TABLE I. LOADING AND SAVING TIMES OF THE ORM-BASED PROTOTYPE
COMPARED TO PROPRIETARY VEROSIM MOD FILE FORMAT.

ORM File
Robot Satellite Robot Satellite

Loading 4.7s 7.1s 2.5s 3.5s
Saving 0.4s 22s 0.5s 1.0s

necessary second mapping. Thus, we refrain from performing
such comparisons.

V. GRAPH DATABASE APPROACH

Currently, relational databases are dominating the mar-
ket. Due to different problems with scalability and effective
processing of big data with relational databases the field of
NoSQL (”Not only SQL”) databases has emerged [79]. In this
context, the approach of graph databases (GDBs) has become
popular. GDBs save their data in the nodes and edges of a
mathematical graph, in particular, to manage highly linked
information. As such, they are ideally suited for 3D simulation
models. As mentioned above, like in CAD, such 3D data
usually comprises a huge number of parts of many different
types (mostly, each with only few instances), structured hier-
archically with interdependencies. This recommends a graph-
like data structure. For the same reason, the scene graph is a
common approach to manage 3D data at runtime.

Figure 17. Robot model (from Figure 24) loaded from Neo4j into the
in-memory simulation database VSD.

In this section, we present an approach for a synchroniza-
tion interface between a GDB and a 3D simulation database,
i.e., the runtime database of a 3D simulation system. The
applied data mapping strategy is bidirectional and in part
incremental. The approach was developed in the context of
a student project and is based on our previous work. Its
feasibility is shown with a prototypical implementation using
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the GDB Neo4j and the 3D simulation system VEROSIM and
its VSD database (Figure 17).

A. State of the Art

In this section, the necessary basics for our work are
presented.

1) Graph Database Basics: The idea of a GDB relies on
the mathematical graph theory. Information is saved in the
nodes (or vertices) and edges (or relationships) of a graph as
shown in Figure 18. A graph is a tuple G = (V,E), where V
describes the set of nodes and E the set of edges, i.e., vi ∈ V
and ei,j = (vi, vj) ∈ E [80]. To specify records, properties
of nodes and (depending on the GDB) even relationships can
be described by key-value pairs [63]. An important aspect
of GDBs is the fact that all relationships are directly stored
with the nodes so that there is no need to infer them as in
relational databases using foreign keys and joins. Hence, read
operations on highly connected data can be performed very
fast. During a read access, the graph is traversed along paths
so that the individual data records (nodes and edges) can be
read in situ and do not have to be searched globally. Therefore,
the execution time depends only on the traversal’s depth [79].

Figure 18. Graph database of a robot model.

GDBs also provide standard database features like security,
recovery from hard- or software failures, concurrency control
for parallel access, or methods for data integrity and reliability.

In contrast to flat files, using a (graph) database, data can be
modified with a query language. Such languages are a powerful
tool to manipulate the database content so that the data is not
only stored persistently and securely but can also be handled
simply.

2) Neo4j: Neo4j is a GDB implemented in Java. It can
be run in server or embedded mode. Figure 19 shows its data
model. Central elements are nodes and relationships containing
the stored records. These records are described by an arbitrary
number of properties (key-value pairs). Neo4j offers the con-
cept of labels and types to divide the graph in logical substruc-
tures. A node is extendible with several labels characterizing
the node’s classification. Similarly, a relationship is identified
by a type (exactly one). Besides the classification of the data,
this also improves reading performance as just a part of the
graph must be traversed to find the desired record [63] [64].
Apart from that, Neo4j is schemaless, i.e., it does not require
any metadata definition before inserting actual user data.

Figure 19. Neo4j data model.

All Neo4j accesses are processed in ACID (Atomicity,
Consistency, Isolation, Durability) compliant transactions guar-
anteeing the reliability, consistency and durability of the
database content [79]. Accesses are either performed with
Neo4j’s own query language called Cypher or using its Java
API.

3) Other Graph Databases: Besides Neo4j, there are many
other GDBs in the market. They differ in their conceptual
structure and application area.

DEX is a GDB based on the labeled and directed attributed
multigraph model. All nodes and edges are classified (labeled),
edges are directed, nodes can be extended with properties
(attributes), and edges can be connected with more than two
nodes (multigraph) [81]. The graph is represented by bitmaps
and other secondary structures. DEX has been designed for
high performance and scalable graph scenarios. The good
performance is achieved by the bitmap-based structure and the
indexing of all attributes, which are efficiently processed by
the C++ kernel [82].

Trinity [83] [84] is a memory-based graph store with
many database features like concurrency or ACID-conform
transactions. The graph storage is distributed among multiple
well connected machines in a globally addressable memory
address space yielding big data support. A unified declarative
language provides data manipulation and message passing
between the different machines. The great advantage of Trinity
is the fast access to large data records. It is based on a
multigraph model, which can exceed one billion nodes. Since
there is no strict database schema, Trinity can flexibly be
adapted to many data sets.

HypergraphDB stores its data in a directed multigraph,
whose implementation is based on BerkeleyDB. All graph
elements are called atoms. Every atom is characterized by its
atom arity indicating the number of linked atoms. The arity
determines an atom’s type: An arity larger than zero yields an
edge atom, or else, a node atom. Each atom has a typed value
containing the user data [85].

InfoGrid is a framework specialized in the development of
REpresentational State Transfer (REST)-full web applications.
One part of this framework is a proprietary GDB used for
data management. The graph’s nodes are called MeshObjects,
which are classified by one or more so-called EntityTypes,
properties, and their linked relationships. MeshObjects not
only contain the user data but also manage events relevant
to the node [86].
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Infinite Graph is a GDB based on an object-oriented
concept. All nodes and edges are derived from two basic
Java classes. Thus, the database schema is represented by
user-defined classes. Besides data management, Infinite Graph
provides a visualization tool [87]. Since the database can be
distributed on multiple machines working in parallel, Infinite
Graph can achieve a high data throughput. To manage concur-
rency, a lock server handles the different lock requests [82].

AllegroGraph [88] provides a REST protocol architecture.
With this interface, the user has full control of the database
including indexing, query and session management. All trans-
actions satisfy ACID conditions.

Despite this wide range of GDBs, for the following reasons,
we decide to use Neo4j in our approach:

• In many tests it proves to process data fast and
efficiently,

• it can handle more than one billion nodes – even
enough for extremely large 3D simulation models –
which could be useful in coming stages of extension,

• Neo4j is a full native GDB so that traversal and other
graph operations can be performed efficiently,

• Neo4j provides a comprehensive and powerful query
language (e.g., for efficient partial loading strategies
in future versions of the presented prototype),

• directed edges allow to model object interdependen-
cies more accurately, however, without disadvantages
in traversal performance,

• properties on relationships allow for a more flexible
modeling (e.g., to distinguish between shared and
composite aggregation relationships),

• finally, Neo4j is currently the most prevalent GDB in
the market indicating it to be especially well explored
and developed. Hence, it provides the best prospects
of success.

Note that while we choose Neo4j for the reasons given above,
the presented concepts are mostly independent of the choice
of the particular GDB.

B. Concept
In this section, we describe the fundamental concept and

the required features of our synchronization component’s pro-
totype. Its implementation using Neo4j and VSD is described
in Subsection V-C.

1) Structure Mapping: An essential question when syn-
chronizing two databases is: How do we map the different data
structures? Depending on the database paradigm, entities with
attributes and relationships (connecting two or more entities)
are represented differently. For example, a relational database
uses relations, attributes and foreign keys while a GDB uses
nodes, relationships and properties.

1) Schema Mapping: Before synchronizing user data,
a generic schema mapping is performed mapping the
metadata of one database to the other as described in
[57]. This is performed once on system startup. For
example, when performed between a relational and
an object-oriented database, each table of the former
might be mapped to a corresponding class of the latter
(columns and class attributes accordingly).

2) Schemaless Approach: When a schemaless database
is involved, a different approach has to be applied.
Here, metadata from a non-schemaless database must
be mapped onto the user data of the schemaless one.
For example, class names from an object-oriented
database are mapped onto node labels of a schemaless
GDB.

For the schemaless Neo4j, in our prototype, we chose the
second approach.

2) Object Mapper: Another key aspect of the concept is
the object mapper. It maps objects from one database to an
equivalent counterpart in the other database. For example,
an object from an object-oriented database is mapped to a
corresponding node in the GDB. The mapping is based on the
counterparts’ identities and includes a transfer of all property
(or attribute) values in between. Based on these mappings,
individual object or property changes can be tracked and
resynchronized. Summarized the mapping is bidirectional and
in part incremental.

3) Transactions: Any changes (insert, update, delete) to
the data are tracked and stored in transactions, which can be
processed independently. By executing these transactions, data
is (re)synchronized on object level. During the accumulation
(and before the execution) of such transactions, the operations
stored within can be filtered for redundancies. For example, a
transaction for creating a new object followed by a transaction
for deleting the very same object can both be discarded.

C. Prototype
This section gives an insight into the prototypical im-

plementation of the interface between VSD and Neo4j. The
prototype should have the ability to save simulation data from
VSD in Neo4j and to load it back into VSD. Initially, when
storing a simulation model in Neo4j, VSD’s contents are
archived once. Subsequently, changes in VSD are tracked and
updated to Neo4j individually. That is, when a VSD instance
has been changed just the changes are transferred as mentioned
above. In the current version of the interface, only changes
within VSD are tracked for resynchronization. Thus, Neo4j
serves as database back end, which can store simulation models
persistently.

The prototype is realized in a C++ based VEROSIM plugin,
which uses Neo4j’s Java API in embedded mode in order to
communicate with Neo4j.

1) Data Mapping: In the context of this work, synchro-
nization represents data transfer from one database to another.
However, the structure of one database’s data elements often
differs from those of another. Thus, it becomes necessary to
map these different structures on each other. Figure 20 shows
our intuitive approach.

Single VSD instances are mapped to single Neo4j nodes
and references (Ref/List-Properties) from one instance to an-
other are represented by relationships between the correspond-
ing nodes. The relationship is orientated to the referenced
node’s direction. Furthermore, we transfer the Val-Properties
of a VSD instance to Neo4j node properties.

As mentioned above, a basic difference between VSD and
Neo4j is that the former comprises metadata describing (and
prescribing) a schema while the latter is schemaless. VSD
metadata contains important information for the simulation and
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Figure 20. Data mapping of the synchronization component (top: VSD data
model, bottom: Neo4j data model).

is indispensable for a correct data mapping. Thus, it is essential
to transfer this informations as well. We store VSD metadata
on Neo4j’s object level:

1) A VSD instance’s class name is mapped to its Neo4j
node’s label,

2) a VSD Ref/List-Property’s name is mapped to its
Neo4j relationship’s type, and

3) a VSD Val-Property’s name is mapped to its Neo4j
property’s key.

Val-Property values are handled depending on their data
type. If the type corresponds to one of Neo4j’s supported
basic types (e.g., integer, float, string, boolean, etc.) the value
will be transfered directly. More complex data structures
(e.g., mathematical vectors, etc.) are serialized to a binary
representation and transfered as such.

To store additional meta information about VSD Ref/List-
Properties, we take advantage of Neo4j’s feature to add
properties to relationships. Currently, every relationship gets a
boolean property with the key autodelete as introduced above.
Additionally, a RefList-Property entry’s order is stored as an
index in a relationship property.

2) Synchronization Component: Figure 21 depicts the
structure of the synchronization component (based on [89]).
Its core is the (object) mapper managing mappings between
pairs of VSD instances and Neo4j nodes. Each mapping is
stored in form of a so-called ObjectState (OS) holding all
relevant information. The OS contains both objects’ ids, all
collected (but not executed) transactions and the state of the
relation between the two. This state indicates whether the pair
is synchronous, i.e., equal, or whether one of them has been
changed and differs from its counterpart. An exemplary list of
object states of the mapper is given in Figure 22.

Each change to a VSD instance is encapsulated in a
transaction stored in the appropriate OS. Subsequently, they
can be executed. Depending on the change’s type, a create,
update, or delete transaction is generated. Furthermore, a
separate load transaction is used to load Neo4j contents into
VSD. Each transaction comprises all type specific information

Figure 21. Synchronization component.

Figure 22. Exemplary list of object states of the mapper.

necessary for its execution. For example, a create transaction
contains the names and values of all Val-Properties, the class
name, and information on Ref/List-Properties like target ids,
reference names and autodelete values.

The last part of the synchronization component is the
Neo4jAPI, which interacts with Neo4j’s Java API.

VSD to Neo4j: VSD is an active database. One aspect
of this activity is that changes to its instances are notified
to registered components like the synchronization component
presented in this work. Notifications include all relevant in-
formation about the modification like the instance’s id or the
changed property. The synchronization component encapsu-
lates this information in an appropriate transaction. Using the
instance id, the mapper is able to identify the corresponding OS
and retrieve the mapping’s state. A change tracking mechanism
is used to filter redundant transactions as mentioned above
(more details are given in Section V-C3).

When the user or some automatic mechanism (e.g., a
timer) triggers a resynchronization, all collected transactions
are executed modifying Neo4j’s contents accordingly.

Neo4j to VSD: When loading a Neo4j database’s con-
tents to VSD, the Neo4jAPI traverses the graph and generates
a load transaction for each visited node. All data is read
from Neo4j before entries are stored in the mapper. Load
transactions contain the respective node’s id, all its property
keys and values and the ids of adjacent nodes of outgoing
relationships and their respective properties (autodelete and
index for RefList-Properties). Subsequently, the synchroniza-
tion component executes all load transactions. For each, a new
VSD instance with appropriate properties is created and its id
is stored in an OS with the corresponding node’s id.

3) Change Tracking: As mentioned above, when collecting
transactions, newly created ones may cancel out older ones. A
change tracking mechanism performs the necessary filtering of
such redundant transactions.

Change tracking is based on the current state of the con-
sidered OS. Depending on the incoming transaction’s type, the
state changes and the list of collected transactions is updated.
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Figure 23. State machine of the change tracking mechanism.

Change tracking is modeled as a state machine as depicted
in Figure 23. Here, the input (triggering state transitions) is
represented by the incoming transaction type and the output
(emitted during state transitions) describes the transaction
list’s modification. The initial state of any OS for a newly
created VSD instance is the MISSING state as there is no
corresponding Neo4j node. This intermediate state is left as
soon as the corresponding create transaction is generated and
the state changes to PENDING CREATE. If this VSD instance
is deleted before the transaction of type create has been
executed, both transactions (create and delete) are removed
and the whole OS is deleted. Else, upon a resynchronization
trigger, a corresponding Neo4j node is generated, the state
changes to SYNCED, and all executed transactions are removed
from the list. The SYNCED state means that a Neo4j node and
its VSD instance counterpart are in sync. It is reached every
time a resynchronization was performed and is left when the
VSD instance is modified (PENDING UPDATE) or deleted
(PENDING DELETE).

In PENDING UPDATE state, the changed property of an
additional update transaction is compared to existing update
transactions to avoid multiple updates of the same property. If
two transactions modify the same property only one of them
needs to be stored. This is represented by the intermediate
PENDING UPDATE UPDATE state.

D. Evaluation
Finally, the interface’s effectiveness and performance have

been evaluated using the same two simulation models of an
industrial robot and a satellite as used in the OR mapping
approach. As above, given the current functional range of the
presented prototype, further tests do not appear to provide more
insights. Initially, both models are stored in a Neo4j database
and, subsequently, loaded back into an (empty) VSD. The
robot model yields 170 Neo4j nodes and 209 relationships.
The more complex satellite about 20,000 nodes and 25,000
relationships. The highly connected nature of the 3D simu-
lation data is apparent making a GDB ideally suited for its
storage.

Figures 24 and 17 give an impression of the interface’s
effectiveness. Figure 24 shows an excerpt of the robot model
data within Neo4j. Figure 17 shows the same data loaded into
the VSD in-memory simulation database. The data mapping
operates generically, i.e., independent from the actual data,
making the whole synchronization component very flexible.
The interface can synchronize arbitrary VSD contents to a
Neo4j database.

Figure 24. 3D simulation model data (excerpt) of an industrial robot stored
within Neo4j.

TABLE II. LOADING AND SAVING TIMES OF THE NEO4J-BASED
PROTOTYPE.

Neo4j File
Robot Satellite Robot Satellite

Loading 0.14 3.99 0.1 2.8
Saving 2.63 10.53 1.8 9.9

In Subsection V-C, we present the interface’s functionality
to selectively resynchronize changes to VSD instances. This
feature has been tested by changing some VSD properties
(e.g., name or position of a component). In the Neo4j browser,
we verified that these modifications were transferred correctly.
Inversely, changes to node properties from the Neo4j browser
show up in VEROSIM when the model is reloaded. This also
shows the advantage of selectively modifying data within a
database in contrast to a file-based approach.

Another important aspect of the evaluation is the interface’s
performance. Here, the initial storage of a simulation model
into Neo4j and the loading of a whole simulation model from
Neo4j were examined and compared to saving and loading
models to and from the native VEROSIM file format. Results
are given in Table II. The access operations to the GDB are
only somewhat slower than the native file operations. For
a prototypical implementation from a student project, these
results are very promising. First of all, compared to the highly
optimized code for reading and writing the native file format,
the current prototype is only optimized to a certain degree.
Furthermore, the more high-level database access operations
will always remain a little more complex than simple, sequen-
tial file reading or writing. Yet, the additional benefit from a
full-fledged database (providing security, multi-user support,
etc.) more than compensates for this small drawback.

Altogether, this shows that a GDB like Neo4j is well suited
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for highly connected 3D simulation model data and can be
handled fast.

VI. COMPARISON

First of all, compared to our previous solution using the
generic OR mapper SGJ, the presented two prototypes avoid
the usage of an additional layer between the synchronization
component and ExtDB, i.e., PostgreSQL and Neo4j. Instead,
they realize a direct database access. Besides fewer transfor-
mations (presumably, leading to better performance) this also
allows for a more flexible adaptation to the needs of eRobotics
applications and Semantic World Models.

From a performance point of view – as far as this is
comparable for two prototypes both developed in the context
of student projects – the results for the Neo4j-based prototype
are better than those of the ORM-based approach. In fact, this
was our expected result as the graph paradigm obviously fits
better to the structure of Semantic World Models. The complex
mapping rules needed to properly represent inheritance, rela-
tionships and polymorphism to overcome the object-relational
impedance mismatch take their toll, especially when writing
data. However, further optimization of these first prototypes
might change these differences.

Regarding the implementation of schemata, in both cases,
special structures within the relational or graph database are
necessary that have to be interpreted by the respective syn-
chronization component. Other applications accessing these
databases must have knowledge about this ”encoding” – es-
pecially when writing data. The schemaless Neo4j obviously
has drawbacks as opposed to the ORM-based approach. In
the latter, many object-oriented schema structures from VSD
can be mapped to their relational counterparts (e.g., attributes).
This allows to secure more structural requirements on the side
of ExtDB rather than the synchronization interface.

Another important aspect is the dissemination of the two
systems. While the graph database paradigm might be more
suited for storing Semantic World Model data, RDBMSs are
far more pervasive. Thus, it is easier to find stable DBMSs, tool
or query language (SQL vs. Cypher) support, or even special-
ized developers and administrators. Finally, customer accep-
tance is also a key decision criterion. Many users of eRobotics
applications in business and industry already use a DBMS
in their enterprise. Mostly, these are well-established rela-
tional solutions like Oracle, Microsoft SQL Server, MySQL
or PostgreSQL – and mostly they want to keep using these
solutions for different reasons (existing infrastructure, existing
maintenance contracts, existing personnel etc.).

Finally, by being based on the general database synchro-
nization concept presented in Section III, both approaches
fulfill most of the five requirement for data management for
eRobotics applications:

1) both map VSD’s object-oriented data to either Post-
greSQL or Neo4j,

2) both realize a distributed architecture by synchroniz-
ing the local VSD to a central PostgreSQL or Neo4j,

3) both integrate the in-memory database VSD as a
cache for the shared Semantic World Model in Post-
greSQL or Neo4j,

4) both flexibly adapt to different schemata by mapping
them appropriately to PostgreSQL or Neo4j struc-
tures,

TABLE III. COMPARISON CHART OF THE TWO PRESENTED APPROACHES.

ORM Neo4j
Additional transformations no no
Impedance mismatch yes no
Native schema support yes no
Encoding of OO schema complex straightforward
Dissemination of DBMS high low
Fulfillment of 5 main requirements all all
Prototype performance limited good

5) and both DBMS allow for a usage in simulation as
well as live operation scenarios. However, regarding
temporal data management, in both cases, further
research needs to be conducted for a realization using
PostgreSQL or Neo4j.

Table III gives an overview.
Thus, while both approaches are applicable for eRobotics

applications, each has its advantages and drawbacks.

VII. CONCLUSION AND FUTURE WORK

In this paper, we give an introduction to eRobotics applica-
tions and define their requirements for data management. We
present the various benefits from using database technology
to manage the underlying Semantic World Models instead of
using flat file formats. Furthermore, we show how existing
approaches for database integration into applications with a
3D context do not provide a sufficiently comprehensive and
flexible solution to fulfill all these requirements. This motivated
the development of our new database synchronization concept
for eRobotics applications. Its basic idea is to use local in-
memory simulation databases (SimDB) and to synchronize
them to a central, external back-end database (ExtDB). This
concept has previously been realized using a generic OR
mapper with the drawback of an additional translation layer.
Thus, in this paper and based on this concept, two new direct
approaches are presented omitting this additional layer. The
first is an integrated OR mapping approach, directly mapping
the schema and data from SimDB to a central relational
ExtDB without an intermediate representation. The second
uses a graph database for ExtDB, benefiting from the graph-
like structure of Semantic World Models. For both cases, the
state of the art (theory and existing solutions) is analyzed,
based on which the approaches are developed. The respective
evaluations and the final comparison show the basic suitability
and practical feasibility of both prototypes for the management
of eRobotics applications’ Semantic World Models. While the
graph database approach is advantageous in terms of perfor-
mance the OR mapping approach is more suited to integrate
into existing corporate infrastructures. Thus, the decision for
a database paradigm for ExtDB depends on the concrete
application scenario.

In future, both prototypes might receive more development
and optimization. For the direct OR mapper, data type mapping
can be extended by more specialized data types and further
RDBMSs can be combined with the prototype. Furthermore,
the currently generated structures within the relational database
do not contain explicit information on the inheritance rela-
tionships as they are not needed by the simulation system
itself (they can be retrieved from its meta information system).
However, to allow third party applications to interpret the data,
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inheritance structures would be of interest. Another aspect
to investigate is the mapping of queries and operations. For
the former, an object-based query language meeting VSD’s
demands, e.g., XQuery or (a variation of) Java Persistence
Query Language (JPQL) or Hibernate Query Language (HQL),
needs to be mapped to proper SQL queries. Further perfor-
mance optimizations and, with an extended functional range
of the mapper, evaluations beyond the results from the student
project could be performed, as well. Finally, we could examine
further applications, e.g., from other fields like forestry. For the
Neo4j-based approach, also further performance optimizations
and evaluations beyond the results from the student project
could be performed. For instance, better traversal algorithms
might improve loading speed. Another idea is to use Neo4j’s
batch inserter in contrast to the transactional structure to reduce
resynchronization time. Furthermore, Neo4j might be used as
a central database in a distributed simulation scenario with
several VEROSIMs and VSDs. Here, an equivalent notifi-
cation mechanism is needed for Neo4j to be able to track
modifications in the central database. Finally, apart from the
two presented approaches, further database paradigms like in-
memory databases (e.g., SAP HANA, H2 or Redis) could be
examined as candidates for ExtDB.
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[40] J. Doboš and A. Steed, “Revision Control Framework for 3D Assets,”
in Eurographics 2012 - Posters, Cagliari, Sardinia, Italy, 2012, p. 3.

[41] J. Beetz, L. van Berlo, R. de Laat, and P. van den Helm, “bimserver.org
- An Open Source IFC Model Server,” in Proceedings of the CIB W78
2010: 27th International Conference, no. Weise 2006, Cairo, Egypt,
2010, pp. 16–18.

[42] H.-s. Kang and G. Lee, “Development of an object-relational IFC
server,” in ICCEM/ICCPM, 2009.

[43] S. Malaikrisanachalee and H. Vathananukij, “Integration of java-based
BIM with spatial database,” International Journal of Civil Engineering,
vol. 9, no. 1, 2011, pp. 17–22.

[44] V. Tarandi, “The BIM Collaboration Hub: A model server based on
IFC and PLCS for Virtual Enterprise Collaboration,” in Proceedings of
the CIB W78-W102 2011: International Conference, Sophia Antipolis,
France, 2011, pp. 26–28.

[45] M. Nour, “Using Bounding Volumes for BIM based electronic code
checking for Buildings in Egypt,” American Journal of Engineering
Research (AJER), vol. 5, no. 4, 2016, pp. 91–98.

[46] B. Domı́nguez-Martı́n, “Methods to process low-level CAD plans
and creative Building Information Models (BIM),” Doctoral Thesis,
University of Jaén, 2014.

[47] S. Hoerster and K. Menzel, “BIM based classification of building
performance data for advanced analysis,” in Proceedings of International
Conference CISBAT 2015 Future Buildings and Districts Sustainability
from Nano to Urban Scale, 2015, pp. 993–998.

[48] H. Eisenmann, J. Fuchs, D. De Wilde, and V. Basso, “ESA Virtual
Spacecraft Design,” in 5th International Workshop on Systems and
Concurrent Engineering for Space Applications, 2012.

[49] M. Mahdjoub, D. Monticolo, S. Gomes, and J. Sagot, “A collaborative
design for usability approach supported by virtual reality and a multi-
agent system embedded in a PLM environment,” Computer-Aided
Design, vol. 42, no. 5, 2010, pp. 402–413.

[50] M. Roberts, N. Ducheneaut, and T. F. Smith, “The ”3d Wiki”: Blending
virtual worlds and Web architecture for remote collaboration,” in 2010

IEEE International Conference on Multimedia and Expo, ICME 2010,
2010, pp. 1166–1171.

[51] M. Fang, X. Yan, Y. Wenhui, and C. Sen, “The Storage and Management
of Distributed Massive 3D Models based on G/S Mode,” in Lecture
Notes in Information Technology, vol. 10, 2012.

[52] D. Iliescu, I. Ciocan, and I. Mateias, “Assisted management of product
data: A PDM application proposal,” in Proceedings of the 18th Interna-
tional Conference on System Theory, Control and Computing, Sinaia,
Romania, 2014.

[53] C. Shahabi, F. Banaei-Kashani, A. Khoshgozaran, L. Nocera, and
S. X. S. Xing, “GeoDec: A Framework to Visualize and Query
Geospatial Data for Decision-Making,” IEEE Multimedia, vol. 17, no. 3,
2010, pp. 14–23.

[54] M. Lobur, O. Matviykiv, A. Kernytskyy, and R. Dobosz, “Presentation
of the heat simulation model with use of relational data model,”
2011 11th International Conference The Experience of Designing and
Application of CAD Systems in Microelectronics CADSM, 2011, pp.
228–229.

[55] A. Stadler, C. Nagel, G. König, and T. H. Kolbe, “Making interoper-
ability persistent : A 3D geo database based on CityGML,” 3D Geo-
Information Sciences, 2009, pp. 175–192.

[56] M. Hoppen and J. Rossmann, “A novel distributed database syn-
chronization approach with an application to 3d simulation,” IARIA
International Journal on Advances in Software, vol. 7, no. 3 and 4,
December 2014, pp. 601–616.

[57] M. Hoppen, M. Schluse, J. Rossmann, and B. Weitzig, “Database-
Driven Distributed 3D Simulation,” in Proceedings of the 2012 Winter
Simulation Conference, 2012, pp. 1–12.

[58] SEDRIS Associates & Partners, “SEDRIS,” 2013, URL:
http://www.sedris.org [retrieved: 2017.05.17].

[59] J. Rossmann, M. Schluse, C. Schlette, and R. Waspe, “A New Approach
to 3D Simulation Technology as Enabling Technology for eRobotics,”
in 1st International Simulation Tools Conference & EXPO 2013,
SIMEX’2013, J. F. M. Van Impe and F. Logist, Eds., Brussels, Belgium,
2013, pp. 39–46.

[60] CPA Geo-Information, “CPA SupportGIS Java (SGJ),” URL:
http://www.supportgis.de [retrieved: 2017.05.17].

[61] The PostgreSQL Global Development Group, “PostgreSQL: About,”
2015, URL: http://www.postgresql.org/about/ [retrieved: 2017.05.17].

[62] Open Geospatial Consortium (OGC), “Geography Markup Language
(GML),” URL: http://www.opengeospatial.org/standards/gml [retrieved:
2017.05.17].

[63] M. Hunger, Neo4j 2.0 A graph database for everyone (orig.: Neo4j 2.0
Eine Graphdatenbank für alle), 1st ed. entwickler.press, 2014.

[64] Neo4j Team, “The Neo4j Manual v2.2.5,” 2015, URL:
http://neo4j.com/docs/stable/ [retrieved: 2017.05.17].

[65] J. Weise et al., “An Intelligent Building Blocks Concept for On-
Orbit-Satellite Servcing,” in Proceedings of International Symposium on
Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS),
2012, pp. 1–8.

[66] D. J. Armstrong, “The Quarks of Object-Oriented Development,” Com-
munications of the ACM, vol. 49, no. 2, 2006, pp. 123–128.

[67] M. Fowler, Patterns of Enterprise Application Architecture, 1st ed.
Addison Wesley, 2002.

[68] A. Schatten, “O/R Mappers and Alternatives (orig.: O/R Mapper und
Alternativen),” 2008, URL: http://www.heise.de/developer/artikel/O-R-
Mapper-und-Alternativen-227060.html [retrieved: 2017.05.17].

[69] T. Neward, “The Vietnam of Computer Science,” 2006, URL:
http://www.odbms.org/2006/01/the-vietnam-of-computer-science/
[retrieved: 2017.05.17].

[70] S. W. Ambler, “Mapping Objects to Relational
Databases: O/R Mapping In Detail,” 2013, URL:
http://www.agiledata.org/essays/mappingObjects.html [retrieved:
2017.05.17].

[71] F. Lodhi and M. A. Ghazali, “Design of a Simple and Effective Object-
to-Relational Mapping Technique,” in Proceedings of the 2007 ACM
symposium on Applied computing. ACM, 2007, pp. 1445–1449.

[72] B. Karwin, SQL Antipatterns: Avoiding the Pitfalls of Database Pro-
gramming, 1st ed. Railegh, N.C.: Pragmatic Bookshelf, 2010.

94

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[73] ——, “Practical Object Oriented Models in Sql,” 2009, URL:
http://de.slideshare.net/billkarwin/practical-object-oriented-models-in-
sql [retrieved: 2017.05.17].

[74] Hibernate, HIBERNATE–Relational Persistence for Idiomatic
Java, 2015, URL: http://docs.jboss.org/hibernate/orm/5.0/manual/en-
US/html/index.html [retrieved: 2017.05.17].

[75] NHibernate Community, NHibernate–Relational Persistence for Id-
iomatic .NET, 2015, URL: http://nhibernate.info/doc/nhibernate-
reference/index.html [retrieved: 2017.05.17].

[76] Code Synthesis Tools CC, ODB: C++ Object-Relational Mapping
(ORM), 2015, URL: http://www.codesynthesis.com/products/odb/ [re-
trieved: 2017.05.17].

[77] L. Marty, QxOrm (the engine) + QxEntityEditor (the graphic editor)
= the best solution to manage your data in C++/Qt !, 2015, URL:
http://www.qxorm.com/qxorm en/home.html [retrieved: 2017.05.17].

[78] The Qt Company, “Qt Documentation,” 2016, URL: http://doc.qt.io/qt-
5/index.html [retrieved: 2017.05.17].

[79] I. Robinson, J. Webber, and E. Eifrem, Graph Databases-New Oppor-
tunities For Connected Data, 2nd ed. O’Reilly, 2015.

[80] R. Diestel, Graph Theory, 2nd ed. Springer, 2000.
[81] N. Martinez-Bazan, S. Gomez-Villamor, and F. Escale-Claveras, “Dex:

A high-performance graph database management system,” in Data Engi-
neering Workshops (ICDEW), 2011 IEEE 27th International Conference
on, April 2011, pp. 124–127.

[82] R. Kumar Kaliyar, “Graph databases: A survey,” in Computing, Com-
munication Automation (ICCCA), 2015 International Conference on,
May 2015, pp. 785–790.

[83] Microsoft, “Graph engine 1.0 preview released,” 2016, URL:
http://research.microsoft.com/en-us/projects/trinity/ [retrieved:
2017.05.17].

[84] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine
on a memory cloud,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. ACM, 2013, pp.
505–516.

[85] B. Iordanov, “HyperGraphDB: A Generalized Graph Database,” in Web-
Age information management. Springer, 2010, pp. 25–36.

[86] InfoGrid Team, “Infogrid: The web graph database,” 2016, URL:
http://infogrid.org/trac/ [retrieved: 2017.05.17].

[87] J. Peilee, “A survey on graph databases,” 2011, URL:
https://jasperpeilee.wordpress.com/2011/11/25/a-survey-on-graph-
databases/ [retrieved: 2017.05.17].

[88] “Allegrograph,” 2016, URL: http://franz.com/agraph/allegrograph/ [re-
trieved: 2017.05.17].

[89] M. Hoppen and J. Rossmann, “A Database Synchronization Approach
for 3D Simulation Systems,” in DBKDA 2014, The 6th International
Conference on Advances in Databases, Knowledge, and Data Applica-
tions, A. Schmidt, K. Nitta, and J. S. Iztok Savnik, Eds., Chamonix,
France, 2014, pp. 84–91.

95

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


