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Abstract— The demand and capacity management (DCM) is an 

essential component of the automotive supply chain 

management. Resource requirements in the automotive supply 

chain result from future or already realized market demands. 

DCM synchronizes these requirements with capacities and 

restrictions of the supply chain and production system. Demand 

uncertainty and volatility are especially challenging for DCM. 

Product variety and supply chain complexity intensify this 

problem. Here, an efficient product data management may 

increase transparency and support the DCM processes 

effectively. This contribution analyses and evaluates the benefits 

of an integration of distributed product data into a hierarchical 

tree structure and its applications in DCM against the 

background of complexity reduction. Moreover, the underlying 

optimization algorithms are described. The results of this study 

prove that a hierarchical integrated information model provides 

a significantly improved basis for a scenario-based DCM 

planning process. Data from a German automotive 

manufacturer (OEM) has served as basis for this evaluation. 

Keywords- product structure; automotive production; demand 

and capacity management; optimization; complexity; BOM rules. 

I.  INTRODUCTION 

This contribution is an extended version of work published 

in [1]. The previous work has been extended, e.g., by 

evaluation of a full product spectrum of an OEM to provide 

greater insights into the effects of the integration of the 

distributed product data into a hierarchical tree structure. In 

addition, an elaborated overview of different types of product 

structures has been integrated.   

To compete in international markets automotive 

manufacturers, i.e., original equipment manufacturers 

(OEMs), tend to offer their customers a huge variety of 

models which can be individualized by several hundred 

options. These options comprise design elements (i.e., colors), 

functional components (i.e., climate control system) and 

nowadays assistance systems (i.e., navigation and driver 

assistance systems). Furthermore, OEMs constantly update 

their product range with increasing frequency [2].Though 

customers have to deal with the rapidly changing variety of 

models, they tend to expect that their vehicle orders can be re-

customized anytime, i.e., changed even shortly before actual 

production, and that the produced car is rapidly delivered on 

the formerly planned date [3][4]. 

In this context, logistics plays an important role. The core 

competence of a car manufacturer has shifted to product 

marketing, the coordination of suppliers, assembly of supplied 

parts, and the distribution of the end product [5]. Nowadays, 

suppliers do not only produce simple components, but also 

develop complex modules [6]. They also have to manage 

product complexity and variety and need to know in time if 

the OEM revised the production program for a specified 

model and market. Hence, the effective integrated 

management of the automotive production and supply chain 

is critical. The anticipation of the future market demand, the 

timely derivation of resource and component requirements as 
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well as the integrated and coordinated capacity planning are 

indispensable prerequisites [7]. Most critical, resource 

requirements resulting from anticipated or realized market 

demands need to be synchronized with resource capacities and 

restrictions of the production and supply chain by an effective 

demand and capacity management (DCM). DCM processes 

identify demand- and capacity-asynchronies and implement 

appropriate countermeasures in a timely manner. DCM acts as 

an essential interface between market, production and supply 

chain processes [8][9].  

Caused by the increasing number of variants and options 

the complexity of this process has continually increased over 

the past decades. A typical car consists of about 3000 to 6000 

material items. If different variants and their parts are 

considered, it results in about 15000 to 20000 items per car (as 

of 2010) [10]. The planning systems have been extended 

continuously to manage the resulting complexity. 

Nevertheless, the relevant DCM data is typically kept in a 

highly fragmented system landscape. Data fragments are 

handled by different systems and thus overall transparency is 

limited.  

For example, within DCM processes part demand is 

typically gradually derived from sales figures in a number of 

sequential processes taking into account a variety of systems 

[11][12][13]. These systems consider historical sales data 

(e.g., car rentals), retailers’ annual model requests, companies 

knowledge about the local customer preferences and on 

marketing capabilities to influence customer demand [12]. 

Since automated processes only allow the identification and 

reporting of formal inconsistencies, additionally a human 

planner has to review the process. But, due to the increasing 

variety, it is more and more difficult to review the product 

information manually. The success of the overall process is 

highly dependent on the planner’s experience. 

Even more so, variants are often quite similar and a 

significant amount of information is redundant. For example, 

typically several car series of one OEM are based on the same 

vehicle platform. Additionally, the common-part-strategy 

supports the installation of identical modules, e.g., navigation 

systems, in numerous car models of different series [14][15]. 

If a common part is changed or even not deliverable, this 

effects several series. These possibly wide-spread bottlenecks 

are difficult to identify and control in a fragmented system 

landscape.   

As it is easily understood, an integrated information base 

could reduce the complexity and increase transparency of the 

DCM processes immensely. The advantage of this integration 

is the faster and easier access to relevant data and its innermost 

dependencies, as well as the reduction of redundancies. 

Therefore, an innovative system’s concept ought to integrate 

all related data from sales to supply chain data into a consistent 

and integrated information structure. Only this information 

model may provide the essential basis for a continuous and 

effective DCM process.  

In general, several types of data structure types are offered 

by literature and practice, which may form the basis to realize 

such an information model. Especially, graph structures and 

here tree structures are an intuitively attractive approach 

because of their proximity to car design principles. In this 

context, this paper analyses and evaluates the benefits of a 

hierarchical tree-based data structure for the integration of 

DCM relevant distributed product data. The evaluation is 

performed against the background of complexity reduction 

and transparency increase. In comparison to [1] not only two 

car series, but a full product spectrum of a German OEM has 

been analyzed. 

In the next section, the state of the art of automotive DCM 

processes is given. Afterwards promising information 

structures are presented in section III and the tree structure is 

chosen for further analysis. In section Ⅳ, an introduction to 

tree based data optimization methods is given, whereas 

section Ⅴ analyses the complexity reductions gained by the 

application of an integrated and optimized information model 

for the DCM process. A conclusion including a summary and 

a perspective on future research and development is given in 

section Ⅵ. 

II. STATE OF THE ART IN AUTOMOTIVE DCM 

PROCESSES  

Before product data and information models may be 

discussed, an illustration of the state of the art in automotive 

planning processes and the embedded DCM process is 

necessary.  

Today, the typical DCM planning cascade is initiated by 

the sales department with forecasting and planning of 

medium-term future market demand [16]. In this step, model 

volumes (e.g., number of VW Golf Trendline 2.0 TDI.) and 

option quotas (e.g., ratio of models with LED light or a certain 

navigation system) for worldwide sales regions are being 

planned for a horizon of 12 to 24 months. A model is typically 

defined by a specific series, body type, engine and gear type. 

The underlying forecast is based on current information about 

the automotive market (market shares, economic forecasting), 

but also on current and historical orders [17][18][19]. 

Furthermore, sales quotas for options are influenced for 

example by the sales region, technical restrictions, strategic 

decisions or customer preferences. 

In a second step, the production planning integrates these 

figures with existing order volumes which may already be 

available for closer time periods. Next, the sales plan is 

translated into a production program for all sites [17].  

The planning complexity of both steps is tremendous due 

to the variety of products. For example, a typical mid-class 

series (e.g., VW Golf, BMW 1 Series, Audi A3) offers about 

30 to 50 different car models with up to 200 options. This 

results in several thousand volumes to be planned for one car 

models in all sales regions over a specific granular time period 

(e.g., month, week or day depending on planning granularity) 

and some 10 million related option quotas. To illustrate this 

complexity an easy example shall be given: Assuming three 

options are valid for a sound system in 40 different car models 

(e.g., standard radio system, comfort radio system and full 
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navigation system). In result, for this small planning fragment 

216,000 option quotas for assumed 12 months and 150 

worldwide sales regions need to be planned.  

The compatibility of options for a respective model is 

described by a highly complex set of technical rules, while the 

relationship between the fully-configured car order and the 

corresponding parts is described by the bill of material (BOM) 

(see Fig. 1). Technical rules define the technical feasibility of 

customer selectable options and further OEM-internal 

technical options. These rules equal restrictions and may 

prohibit or force options for specific models (e.g., no sunroof 

for convertibles), force specific combinations of options (e.g., 

LED head light only in combination with LED back lights) or 

prohibit combinations (e.g., a navigation system rules out all 

other radios). In addition, sales constraints (e.g. not all options 

are available for all models or regions) and customer 

preferences need to be included. So, even the planning of 

consistent volumes and option quotas is complex in itself and 

requires  the integration of human experience and intuition (cf. 

[20]). 

 
Figure 1. Bridging the gap between demand information and capacity 

information  
 

The resulting sales plan needs to be balanced with 

production and supply chain restrictions. Capacity constraints 

(e.g., the maximum number of leather seat coverings per 

month) are present on sales level, production level and supply 

chain level. To balance volumes and resource requirements 

with constraints and restrictions in order to identify possible 

bottlenecks, it is necessary to bridge the gap between demand 

information and capacity information [13][16][11]. 

If fully specified orders are available, the gap is easily 

bridged. Fully specified orders allow to derive part demands 

by BOM explosion; possible bottlenecks can be determined 

by comparison of capacity restrictions with capacity demands. 

Nevertheless, because of short order-to-delivery lead times in 

contrast to partly long supply chain lead times, DCM process 

have to work on forecasts and plans rather than orders to a 

great extent. And it is obviously impossible to predict the 

exact future vehicle orders, as customers can choose from 

billions of possible configurations for each car type [21][10]. 

Forecast uncertainty, demand volatility, rapid product 

changes, as well as changes in the supply chain complicate 

this task significantly. 

Even more so, a huge number of the resulting resource 

requirements for production or logistics depend not only on 

single model volumes and quotas for options, but on a 

particular combination of model, options and sales region (e.g. 

the BMW 3 series with 143hp, option = “sun roof” is 

anticipated to be sold 1000 times in the sales region Germany 

in February 2005). Therefore, some part volumes are harder 

to predict than others until the exact configuration of the 

vehicle, i.e., the order, is known. Nevertheless, as 

replenishment lead times in global supply networks can be 

long, a certain number of vehicle parts has to be ordered long 

before customer orders are known (cf. [16]). 

In summary, the DCM process is challenging. Because of 

market dynamics, complexity in car configurations and 

correlations among models, options, and parts, the planning 

itself is complex [12]. But even more so, it is also 

characterized by conflicting goals. Sales departments are 

forced to react to volatile markets, increased global 

competitions and changing customer requirements: flexibility 

and reactivity is requested. Production is interested in a stable 

production program, which guarantees both high capacity 

utilization and optimal operating results. Material planning 

wants to fix part requirements as early as possible to avoid 

bottlenecks proactively as well as to negotiate the flexibility 

of suppliers appropriately.  

This conflict can be named the dilemma of automotive 

DCM (cf. [22]). Typically, it is solved by planning cycles of 

four to six weeks, which are based on numerous workshops 

and committee meetings between sales, program- and material 

planning [17] [12] . The consequence of this long planning 

cycle is insufficient flexibility in reaction to market changes. 

To counteract this, the program is adjusted manually between 

program approvals and even after program freeze, i.e., within 

the so-called frozen period [17]. However, these adjustments 

cause a lack of program stability and poor transparency on 

future demand for parts on the supply side. The probability of 

bottlenecks increases and induces additional internal costs, as 

well as deterioration of the delivery service to the customer. 

To overcome these problems, there are two theoretical 

approaches for the integration of these sequential planning 

processes in an effective holistic DCM process.  
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The first approach focusses on the early inclusion of 

resource restrictions into the sales and program planning. This 

requires to trace back restrictions on all levels to the decision 

variables, i.e., to planned volumes and quotes. As discussed, 

model volumes and option quotas typically include several 

million variables. Furthermore, technical rules and BOM rules 

relate these planning variables amongst each other and to part 

demands and thus capacity restrictions.  

For example, a capacity restriction may limit the installable 

volume of a specific powerful battery. As a matter of fact, the 

installation of this battery may depend on several 

combinations of options, e.g., the battery is only selected if 

specific but several electronical options are chosen in 

combination. To derive the resulting limitations on model 

volumes and option quotas all BOM rules and technical rules 

that relate directly or indirectly to that battery have to be 

analyzed. In case of a mid-class model this may amount to a 

significant proportion of the overall number of rules which 

amount to about 15,000 technical and 600,000 BOM rules. 

Even more so, between option quotas and model volumes 

partially unmanageable correlations exist. These result not 

only from technical restrictions, but also from product 

strategy, customer preference, and marketing strategies. A 

customer preference for the combination of navigation 

systems and seat heating modules shall be given as an example 

for such correlations: these two options may be independent 

from the viewpoint of the customer, but historical data has 

shown that most customers who chose the navigation system 

also selected the seat heating; customers who do not select the 

navigation system rarely choose the seat heating. 

Consequently, when planning option quotas for navigation 

systems and seat heating, the high correlation of these two 

options and the resulting relation to the powerful battery as a 

part restriction needs to be integrated (based on [23]).  

In result, not all restrictions may be deterministically traced 

back to the decision variables. This is aggravated by ramp-up 

and run-out processes (continuous change in options, models, 

etc.), dynamic changes in capacity information, multiple use 

of parts, commonality strategies and other restrictions that 

may change daily. The complete derivation of restrictions on 

planning variables harbors an immense complexity and is not 

deterministically feasible. Even if such a complete 

deterministic derivation process would be possible, no planner 

would be able to comprehend or verify the results. Hence, the 

early inclusion of resource restrictions into the sales and 

program planning only allows to focus on selected, 

historically critical restrictions. But of course any limitation is 

problematic against the background of an effective and 

holistic DCM process.  

Consequently, the most promising perspective of an 

effective holistic DCM is seen in the second approach, the 

iterative scenario-based planning process, which is outlined in 

Fig. 2. Starting with a planning scenario, resources and part 

demands are derived by propagation of volumes and quotas 

by application of the full product structure. Typically, planned 

orders are applied here to transform planning scenarios into 

explodable orders. In a third step, capacity bottlenecks are 

identified and disclosed by backtracking to the point of origin 

in the planning scenario and revision of the plan.  

 

 

Figure 2. Integrated, scenario-based DCM process 

The basis for this DCM planning process is a consistent and 

holistic information model, which comprises all relevant 

information. This information may be divided into three data 

partitions: the planning scenarios, the resource information 

(restrictions) and the product structures. Whereas planning 

scenario and restrictions are structured in a simply way, an 

efficient product representation is critical to provide 

transparent holistic information and allow for an efficient 

backtracking mechanism.  

Typically, the relevant product information is complex and 

distributed over several systems, i.e., different data fragments 

as technical rules, volumes and option quotas, BOM are not 

integrated in a common information base.  

 But to efficiently support a scenario-based DCM planning 

process, all relevant information needs to be integrated in one 

common data structure. Though enhanced technologies and 

database infrastructures have been introduced in the last 

decades, an extensive data preprocessing and reduction is 

necessary to provide a compact yet comprehensive 

information basis for the later analytical data processing.  
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After the DCM process has been described, a general 

overview of different suitable product structures will be 

described in the next section.  

III. PRODUCT STRUCTURES IN THE FIELD OF 

AUTOMOTIVE INDUSTRY 

According to Schuh [24], a product structure is generally a 

structured composition of the product and its components. 

Typically, structure levels are introduced to represent 

assemblies, which bundle components in the product 

structure. Product structures support the multiple use of 

assemblies and parts. Another important objective is seen in 

the reduction of production data and the support of the 

information flow [24].  

 

Figure 3: Variant tree [based on [30][32]] 

From a technical perspective, product representations are  

product knowledge composed into its elementary components 

[25]. A component can be either a physical or a non-physical 

artifact (service and software components) [26]. The next 

larger unit are called modules. Klug [10] defines a module as 

an assembly of several components or assembly units. The 

module may comprise a variety of functions. The modules can 

generally be replaced (e.g., door, seat, cockpit, power pack, 

roof). They are used within a so-called modularization to 

subdivide a system. Aspects of the product life phase such as 

development, procurement, production, distribution, 

utilization and disposal may lead to modularization 

[27][28][29].  

Especially, tree structures as product representation have 

proven to be promising for various applications. Kesper [30] 

differs between feature trees and variant trees, whereby the 

widely propagated feature tree is often incorrectly also 

referred to as a variant tree. The trees differ in their 

representation and the integrated information. While feature 

trees illustrate the variety resulting from the combinatorial of 

characteristics and their properties, the variant tree represents 

the variety of semi-finished products arising during the 

assembly process [30][31]. Thus, the variant tree forms the 

basis for the reduction of variants by means of product 

structure optimization or assembly sequence optimization. 

The variant tree is often used to graphically represent 

component and product diversity, that arises in assembly 

processes [30][32]. Schuh [32] identifies variant trees as 

important means to design and evaluate product variants. The 

different components are symbolized by different boxes (see 

Fig. 3) [30]. According to Schuh and Schwenk [31], variant 

trees are constructed in defined steps. First, the product 

characteristics and their properties are captured. Then, the 

prohibitions of combination and other constraints on 

combinations of properties are defined. Thereupon, variants 

are generated. After integration of part information and 

allocation of part usage, the assembly sequence is determined. 

As the last step, the variant tree may be depicted graphically 

[30].  

The feature tree is an instrument for visualizing variants or 

spectra with a focus on their characteristics and properties. 

Usually, the feature tree is started with a “root”. The tree is 

then branched from left to right (see Fig. 4).  

Each vertical level represents precisely one feature. One 

branch of the tree corresponds exactly to one variant. The 

extent and shape of the feature tree depends on the order of 

features. A different order alters the total number of the feature 

expressions to be displayed [30]. This kind of tree is not only 

used to depict features, it also allows the visualization of the 

diversity resulting from the combinations of characteristics 

and properties.     

 

 
 

Figure 4: Feature tree [based on [30]] 
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Not just the product structure itself, also relationships 

between a product, its components and the relevant assembly 

tasks have to be considered within a product representation. 

These can be described in an extended product tree structure 

originally proposed by Zeng and Gu [33]. In an extended 

product tree, two types of nodes are distinguished. A 

component node represents a product or component while an 

assembly task node represents simplified assembly 

information included in the product structure. The connection 

between two component nodes is a parent-child relationship. 

A parent component (or assembly) consists of all its child 

components. A connection between components and an 

assembly task signals that the respective component is 

assembled by the appropriate assembly task. All nodes 

together form a recursive product structure tree [25]. Different 

end products can share the same modules as long as functional 

requirements and cost-effectiveness persist [34]. 

Also, a bill of material (BOM) is typically part of the 

product structure. Parts and components that constitute the 

product in the context of an assembly, subassembly, or  model 

are listed within a BOM [35]. In the automotive industry, 

BOMs are considered an integral part of the product 

representation. Information on components (e.g., compressor, 

cable, etc.) that are necessarily installed in a product to 

implement a function (e.g. climate control system) can be 

looked up in BOMs [20]. A similar, but more detailed 

specification of BOMs can be found in [36]: Brière-Côté 

describes a BOM as a list of subassemblies, components, 

parts, and raw materials which is applied to construct higher-

level assemblies. This list illustrates the type and quantities of 

each to build a finished product. 

Newer approaches to depict product structures are based 

on ontologies and semantic networks. An ontology defines a 

uniform vocabulary for researchers who need to exchange 

information in a particular field; an ontology allows inter alia 

reuse and analysis of knowledge [37]. In contrast, a semantic 

network is a graphical representation of knowledge. Semantic 

networks are realized with the aid of nodes and arcs [38]. An 

example presents Vegetti et al. [39]. Here, two hierarchies are 

applied to handle product variants from different angles. The 

abstraction hierarchy allows to represent product data on 

various granularity levels to efficiently deal with a high 

number of variants. The structural hierarchy organizes 

knowledge related to structural product information and to the 

BOM.   

From development perspective, “Design Structure 

Matrices” (DSMs) denote a compact representation of product 

element contexts [25]. DSMs allow a comprehensive 

presentation of information (elements of any type, i.e., 

components or process steps) and are therefore suitable for 

models with many variant features. The DSM is illustrated as 

a square matrix with the same number of rows as columns to 

map the relationships of parameters between components. In 

general, only one type of relationship (e.g., “…is linked to…”) 

per DSM can be defined. Furthermore, for larger systems with 

several hundred elements, it is difficult to keep an overview 

and ensure the manageability of the matrix representations 

[26].  

To conclude, a variety of types of product representations 

is available today. As mentioned before, especially graph 

structures and here tree structures are an intuitively attractive 

approach because of their proximity to car design principles. 

Nevertheless, ontologies and semantic networks offer a 

perspective for integration of additional information. To 

allow for a real-time analysis of the feasibility of a planning 

scenario, an integrated DCM requires the application of smart 

quantitative methods on a holistic information model to derive 

future resource requirements from market requirements. 

Innovative processes and methods for DCM (e.g., approaches 

of [13][40][41][20] have been evaluated in [42]. None of those 

approaches unites the criteria of part demand calculation from 

market predictions, realistic lead time assumptions between 

market demand and resource demand and process based 

description for at least a part of DCP (Demand and Capacity 

Planning).  

Based on these findings, a product representation has been 

developed which merges the concepts of variant trees and 

ontologies into a holistic information model concept. 

Furthermore, algorithms, which base on the generation of 

planned orders to derive part demands have been implemented 

for this product representation and have been validated in 

combination at several German OEMs. The respective tool 

suite is known under the name of OTD-DCM, where OTD 

refers to the basic instrument OTD-NET (order-to-delivery 

and network simulator, cf. [20]). The next section presents the 

underlying concepts and optimization methods that are 

applied in this approach to reduce the data complexity. 

IV. HIERARCHICHAL PRODUCT STRUCTURE AND 

OPTIMIZATION METHODS USED IN THE DCM 

  It is necessary to assure consistency and avoid redundancy 

in and between all data entities when integrating data into one 

information model. Inconsistencies occur for example when 

subsets of technical rules or BOM rules contradict each other 

so that orders cannot be specified fully. In the development 

cycle of a car, rules are added and revised within different IT 

systems, thus rules are partially redundant and sometimes 

even contradictory. Hence, it is necessary to process planning-

relevant information regarding structural requirements 

(syntax and semantics) and to verify their consistency.  

As a result, the implemented data processing in OTD-DCM 

has been based on the principle of generating a hierarchically-

linked structure of variant clusters (cf. [43]). Here, a variant 

cluster contains by definition a subset of allowed vehicle 

variants (typically car models), that have common properties 

(example: sales region = Germany, fuel type = diesel, gear 

type = automatic). Each variant cluster is characterized by its 

temporal validity, the technical rules and the lists of allowed 

and forced options which apply for all in the cluster included 

vehicle variants.  

Within the hierarchy-linked structure of clusters, each 

variant cluster inherits all characteristics of his parent cluster.  
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The first pre-optimization of the product structure 

comprises the generation of a hierarchical tree where tree 

levels are based on subsequently detailed variant cluster 

specifications.  The initial tree structure can be derived from 

automotive engineering principles: Tree levels, which de facto 

group models, may be based on model characteristics like car 

series, fuel type, sales region and many more (see Fig. 5). It 

should be mentioned that the level sequence influences 

directly the later optimization results and the optimal structure 

may differ for different applications or different OEM or car 

series. The sequence applied in this paper has been developed 

in close communication with all involved departments of the 

OEM providing the example presented. It is subject to 

confidentiality and shall not be detailed in this contribution.    

 

  

Figure 5. Extract of the generated tree structure 

Nevertheless, each tree level can have one or many nodes, 

depending on the level and type of models clustered (e.g., 90 

kW or 150 kW for the engine nodes). Options, technical and 

BOM rules but also volumes, quotas and restrictions are 

related to the tree nodes in a last step to obtain a holistic DCM 

information model. 

Among all integrated information, rules are identified as 

the most complex data fragment. Technical rules represent the 

technical feasibility by Boolean expressions, e.g., “if engine 

= 90 kW then transmission = 6-speed manual gearbox“. BOM 

rules follow the same Boolean schema but link options to part 

demands, e.g., “if engine = 90 kW and radio = “Radio Basic” 

then parts 5678973 and 5678974”. Further, a free definable 

period is typically specifying the validity of a specific 

technical or BOM rule. It should be noted that the temporal 

validity of all data fragments has to be handled within this tree 

structure [42]. Also, all algorithms working on the product 

tree have to process the temporal validity. 

In the following, the algorithm integrated in this approach 

will be presented. After initial tree generation all rules are 

listed on the lowest level; the nodes on this level relate to 

models one to one. As described in section Ⅱ, the possible 

number of BOM rules for a fully specified car amounts to over 

600,000 and the number of technical rules to 15,000 per series. 

The optimization of rules has been subdivided into three 

subsequent optimization steps. The call sequence of these 

steps is stated in the following algorithmic code: The 

procedure starts to identify all points in time within the 

planning interval where the validity of any rule may change 

(see Pseudocode 1). Next, the function for the reduction of the 

number of properties as well as the function for the reduction 

of the number and length of rules are proceed. 

 
// optimize allowed properties and rules 
FUNCTION optimizationSteps(variantcluster, originalData) 
 LIST timePoints =  get points in time of any changes  
      in originalData 
 FOR EACH timePoint IN timePoints 
  ARRAY of allowedProperties FROM originalData 
  LIST originalRules = get original rules from  
      originalData 
  // function to reduce the amount of properties 
  reduceProperties(allowedProperties) 
  // function for reduction of number and length 
  newRules = reduceNumberAndLength(originalRules) 
 END FOR 
 RETURN allowedProperties, newRules 
END FUNCTION 
// recursively move rules upwards 
CALL function pullRulesUP WITH masterVariantCluster  
      as argument 

 

Pseudocode 1: Overview call sequence 

The objective of the first optimization step is to identify all 

forced options, i.e., the options that have necessarily to be 

chosen for a specific variant cluster (e.g., every car for the 

German market has necessarily a specific exhaust system). 

Therefore, principally allowed options for one variant cluster 

are reduced by excluding non-feasible options.  

 
FUNCTION reduceProperties (allowedProperties) 
 BOOLEAN reduceAllowedProperties = TRUE 
 WHILE (reduceAllowedProperties) 
  LIST forcedProperties = calculate forced  
      properties of  
      possible allowed  
      properties 
  FOR EACH property IN allowedProperties 
   SET property IN forcedProperties        
   BOOLEAN valid = check temporary  
      Configuration against  
      all technical rules 
   IF (NOT valid) 
    REMOVE property FROM allowedProperties 
   ELSE 
    reduceAllowedProperties = FALSE 
   END IF 
  END FOR 
 END WHILE 
END FUNCTION 
 

Pseudocode 2: Reduce properties 

This is done by checking intelligently selected, partly 

specified theoretical configurations against all applicable 

technical rules (see Pseudocode 2). In a sub-step, fixed 

options are set, i.e., the ones that define the variant cluster. 

Afterwards all currently available options are temporarily 

added. If a contradiction occurs, the option will be deleted 

from the set of allowed options. When this process leads to 
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only one possible option from a set of alternative options, this 

option is set as forced.  

An inner inconsistency is identified if an identified forced 

property violates a technical rule. An outer inconsistency is 

identified if a positive demand quota for an option has been 

planned, but the option itself is technically not allowed. 

Another outer inconsistency is identified, if the sum of all 

planned quotas for all allowed options within a subset of 

alternative options in a specified time period does not equal 

100%.   

The second optimization step reduces the number and the 

length of rules by, e.g., application of the Identity Law of the 

Boolean algebra (cf. [44]). In a first sub-step, the so-called 

negative normal form is constructed, where negation 

operators are only occurring directly at variables and not at 

brackets. Factorization is achieved by counting the 

occurrences of each sub-term in a current term. Afterwards, 

the sub-term will be factored out (see Pseudocode 3).  

 
FUNCTION reduceNumberAndLength(originalRules) 
 LIST newRules 
 FOR EACH rule IN originalRules 
  BUILD negation normal form of rule 
  REMOVE tautologies 
  DO WHILE (successful optimizations) 
   REMOVE redundant structures and expressions 
     from the tree 
   FACTOR identical subterms out 
   REMOVE redundant expressions in child nodes 
   REMOVE constants 
  END DO  
  ADD newRule TO newRules    
 END FOR 
 RETURN newRules 
END FUNCTION 

 

Pseudocode 3: Reduce number and length 

It should be noted that these steps are valid only for one 

variant cluster and a specified, fixed time period. 

Consequently, these steps need to be executed for each variant 

cluster and all relevant time periods. In a next sub-step, the 

OTD-DCM implementation shortens rules by merging similar 

rules that belong to more than one resource, i.e., workstations, 

assembly lines and more [42][23]. Next, the algorithms aim to 

further reduce the actual length of all rules by Boolean 

simplification of terms. If the optimized length of the rule is 

shorter than the original one, it is replaced by the new 

representation. Example: The Boolean expression “¬ ( ¬A ∧ 

B ∧  ¬C)“ will be reduced to “¬B ∨  A ∨  C”. This 

simplification does not only reduce the amount of data, but 

allows the following step to identify identical rules. 

The third and last optimization step tries to identify 

commonalities for nodes in the hierarchical product structure. 

For example, the rules that are valid for each child node of one 

variant cluster are moved upwards to the parent node, i.e. 

variant cluster, and deleted from all children. The preliminary 

condition for this step is that all derived variant clusters share 

this rule over the same time period. Example: The forced 

option “Owner’s manual in German language” may be valid 

for all variant clusters within the sales region = Germany. 

Hence, it can be transferred upwards to the variant cluster 

"variants - German" [42]. The last pseudocode (Pseudocode 

4) represents this step including a method to limit intervals of 

the rules: If the interval of a rule contains the whole validity 

interval of the variant cluster, the interval of the rule will be 

adapted.  

FUNCTION recursivelyMoveRulesUpwards(variantcluster)  
 FOR EACH child OF variantcluster  
  recursivelyMoveRulesUpwards(child) 
 END FOR 
 //move identic rules upwards 
 GET valid interval for variantcluster 
 LIMIT interval of rules 
 LIST rulesToMoveUpwards 
 GET rulesOFChildren FROM all rules 
 FOR EACH rule IN rulesOfChildren 
 ADD rule TO rulesToMoveUpwards  
  FOR EACH child OF variantcluster 
   GET allRules for child 

  IF allRules CONTAINS rule 
   // rule can be pulled up  
  ELSE 
   REMOVE rule FROM rulesToMoveUpwards 
  END IF 

  END FOR  
 END FOR  
 FOR EACH child OF variantcluster 
  REMOVE rulesToMoveUpwards from rules  
  of the child 

 REMOVE rules with invalid interval 
 END FOR 
 GET valid interval of variantcluster 
 REMOVE rules with invalid interval  
 from rulesToMoveUpwards 
 ADD rulesToMoveUpwards TO rules of variantcluster 
END FUNCTION 

 

Pseudocode 4: Recursively move rules upwards 

Concluding, the described optimization process eliminates 

redundancies and identifies inconsistencies within the 

integrated information model. In the next section will be 

shown that this leads to a significant reduction of data 

complexity in relation to the data entities and thus 

dependencies. 

V. ANALYSIS OF COMPLEXITY REDUCTIONS 

The evaluation of the previously described optimization 
steps has been analyzed in a first step for real data of one 
middle class series [1] of a German OEM. In addition, to 
provide greater insights into the effects of the optimization 
steps, the full product spectrum of this OEM, which consists 
of currently 54 series has been analyzed in a second step. As 
BOM rules follow the same principles as technical rules, the 
illustration in this contribution is limited on BOM rules only.  

In the following, a tree node represents a variant cluster as 

described in the previous section. The parameter n(l) is 
defined as the number of tree nodes on a level (as mentioned 
before, e.g., fuel type). The respective sum of BOM rules 

before optimization is defined as rpre(l) and after optimization 

as rpost(l). The number of average rules per tree node within a 
level is defined as  

 apre(l)= rpre(l) / n(l) 
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and 

 apost(l)= rpost(l) / n(l) 

A null-entry rule characterizes a rule without condition, 
i.e., this rule is valid for the whole variant cluster. The total 
number of null-entry rules on a specific level l before 

optimization is defined as vpre(l) and on a specific level l after 

optimization as vpost(l). 
As described before, the first evaluation is based on one 

middle class series, which is mirrored in n(2)=1, i.e., the 
number of nodes on level 2 relate to this series. The built 
hierarchy structure consists of 12 levels and 819 nodes on all 
levels.  

Table I illustrates in the third column that the lowest level 
of the hierarchical tree structure contains all existing BOM 

rules rpre(l) before all optimization steps. Levels 1 to 11 do 
not contain any rules because these levels have been generated 
artificially in the first pre-optimization step in order to 
construct the primary tree structure. After optimization, a 
significant proportion of BOM rules has been hoisted to 

higher levels resulting in rpost(l).  
Furthermore, the overall number of rules is reduced from 

3,688,514 to 284,219, which amounts to a reduction of 92.3% 
in relation to the original number.  

The reduction as well as the average ratio of rules per node 

are comparable by columns apre(l) and apost(l). The weighted 
average considers the number of nodes of the whole tree per 
level, where the reduction in this case also results in 92.3%.  

TABLE I. INDICATORS WITHOUT OPTIMIZATION (PRE) AND WITH OPTIMIZATION (POST) 

level l 𝒏(l) rpre(l) rpost(l) apre(l) apost(l) vpre(l) vpost(l) 
1 1 0 1,568 0 1,568 0 1,208 

2 1 0 0 0 0 0 0 

3 2 0 918 0 459 0 126 

4 2 0 0 0 0 0 0 

5 9 0 8,525 0 948 0 1,867 

6 9 0 0 0 0 0 0 

7 14 0 2,918 0 208 0 572 

8 26 0 13,767 0 530 0 2,399 

9 31 0 4,745 0 153 0 1,691 

10 35 0 4,418 0 126 0 555 

11 54 0 6,154 0 114 0 1,856 

12 635 3,688,514 241,206 5,809 380 965,379 18,537 

 sum sum sum 
weighted 

average 

weighted 

average 
sum sum 

 819 3,688,514 284,219 4,504 347 965,379 28,811 

 
This analysis of one middle class series illustrates the 

immense complexity reduction by application of the OTD-
DCM hierarchical tree structure.  

When a specific variant cluster at lowest level is regarded 
(for example, for generation of fully specified planned orders) 
it is necessary to take into account all valid rules for this 
specific node, because rules at parent nodes are valid for all 
child nodes. Thus, the rules on the upper levels need to be 
propagated downwards to all child nodes when evaluating the 
total number (sum) of valid rules for one variant cluster.  

TABLE II. PROPAGATED RULES PER VARIANT CLUSTER            

AT LOWEST LEVEL (LEVEL 12) 

propagated rules - 

level 12 

pre-

optimization 

post-

optimization 

sum 3,688,514 2,672,905 

average ratio 5,806 4,215 

median 6,671 4,424 

minimum 0 2,408 

maximum 7,620 5,943 

 

 
Table II shows the number of propagated rules on the 

lowest level. As a positive side effect, the reduction of the 
overall number of rules for the car series in focus of this 
analysis amounts to 27.5%.  

Since only a small information model of one car series has 
been considered here, an analysis of a full product spectrum is 
of interest to provide greater insights into the effects of the 
optimization steps. The full product spectrum of the analyzed 
OEM consists of 54 car series. The results of the full spectrum 
analysis are presented in Table III and generally confirm the 
scale of the reduction. The overall number of rules could be 
reduced from 67,668,544 to 6,575,089. Concluding, this 
results in a reduction of 90.3%.  

Compared to the first results, it is interesting to note that 
there are no rules, which could be moved upwards to the first 
level. Nevertheless, it is of course not surprising that no rules 
exist, which are valid for every car in the spectrum of the 
OEM. This again reflects the significance of chosen hierarchy 
levels and their respective order.  
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TABLE III. INDICATORS WITHOUT OPTIMIZATION (PRE) AND WITH OPTIMIZATION (POST) FOR FULL SPECTRUM 

level l 𝒏(l) rpre(l) rpost(l) apre(l) apost(l) vpre(l) vpost(l) 
1 1 0 0 0 0 0 0 

2 54 0 92,017 0 1704 0 59,811 

3 98 0 63,145 0 644 0 26,328 

4 150 0 97,377 0 649 0 30,102 

5 360 0 309,627 0 860 0 105,810 

6 360 0 0 0 0 0 0 

7 510 0 145,359 0 285 0 37,739 

8 823 0 434,216 0 528 0 69,239 

9 1083 0 196,330 0 181 0 68,823 

10 1246 0 175,603 0 141 0 32,884 

11 1307 0 17,953 0 14 0 5,226 

12 11,810 67,668,544 5,043,462 5,730 427 15,022,405 677,528 

 sum sum sum 
weighted 

average 

weighted 

average 
sum sum 

 17,802 67,668,544 6,575,089 3,801 369 15,022,405 1,113,490 

To gain more insights into this effect a door hinge as a part 
(named here P24139) has been traced through the 
optimization steps. Upon start, the rules that refer to this part 
are linked to nodes on the lowest level (level 12) of the product 
tree. There are 2711 variant clusters referencing this part. 
After execution of all optimization steps, the number of rules 
is reduced to 40. An extract of the results is mapped in Fig. 6, 
which displays those nodes (named N306, N74313,…) that 
contain the corresponding part for the first five levels of the 
tree. On levels seven to nine four more door hinge rules exist 
which are not illustrated here. Referring to the rules that are 
hoisted upwards, the situation that both – parent and child – 
nodes refer to the same rule (cf. node 306 on level 2 and node 

212 on level 3 in Fig. 6) is valid, because time period for 
parent and child may differ. The specific rule on child level is 
so only valid for this specific variant cluster. This example 
demonstrates the effectiveness of the complexity reduction.    

Also, for the full product spectrum, a reduction in 
propagated rules on the lowest level may be noted as a positive 
side effect. Whereas the overall reduction amounts to 7.7%, 
this effect varies widely among the car series: for a high-class 
car series a reduction of 49% is realized, but for other car 
series the number of propagated rules have increased slightly 
caused by the interval split. This indicates a starting point for 
further optimizations on OEM side as well as algorithmically. 

   

 

Figure 6. Trace of door hinge as a part after execution of optimization steps 
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VI. CONCLUSION AND FUTURE WORK 

An integral component of the automotive supply chain 
management is DCM, where resource requirements resulting 
from future or already realized market demands are 
synchronized with capacities and restrictions of the supply 
chain and production system. Because it is impossible to 
predict the exact future vehicle orders, part demand is 
typically gradually derived from sales forecasts in a number 
of sequential processes involving a variety of systems as well 
as experienced human planners. A transparent, lean but 
holistic product representation plays a key role for the 
effective facilitation of this DCM process. 

This paper has given an overview of different types of 
product structures. Especially, the tree structure is an 
intuitively attractive approach because of its proximity to car 
design principles. Newer approaches based on ontologies and 
semantic networks complementary benefits. Thus, the 
integration of distributed DCM data into an extended 
hierarchical tree structure has been analyzed against the 
background of complexity reduction.  

This study did not only perform the analysis for one 

middle class series, but moreover for the full product 

spectrum of an OEM. For a better understanding of the 

results, the applied algorithms have been described in form 

of pseudo code.  It has been demonstrated that by choosing a 

hierarchical tree structure the total number of BOM rules 

could be reduced by a factor of 10 (reduction of nearly 90%) 

whereas the number of BOM rules related to a specific 

variant cluster (i.e., propagated rules) decreases as well. In 

contrary, this number can often be decreased massively in 

parallel by elimination of surplus information. As a door 

hinge has been traced to visualize the result of the 

optimization steps and to demonstrate how rules are reduced, 

merged and hoisted upwards within the tree structure. 

In summary, the hierarchical integrated information 

model provides more transparency as redundant and surplus 

information is dramatically reduced. Thus, it proves to be an 

enhanced basis for a scenario-based DCM planning process 

for the automotive industry, which relies on transparent and 

consistent data. A sound DCM process will increase program 

stability and transparency on future part demand. Bottlenecks 

and the resulting deterioration of delivery service levels will 

be decreased. Furthermore, if the mentioned applications use 

the information model, it will save computation time and 

memory space [42].  
Nevertheless, the complexity of the car as a product 

increases more and more. Trends like embedded systems and 
e-mobility are not yet considered in full within the product 
structures. New dependencies of technical and electronical 
components and the compatibility between hardware and 
software will change the car architecture and therefore 
influence logistics and thus the DCM process. Thus, this 
information needs to be integrated into the product 
representation in the near future.  

Even more so, when targeting an integrated product 
structure, further product characteristics from other 

departments like sales or productions may need to be taken 
into account. In consequence, it is believed that a more 
generalized graph structure instead of the applied tree 
structure may hold further benefits in terms of complexity 
reduction. Against this background, generic graph structures 
shall be analyzed by the authors in the near future.  
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