
Template Based Automatic Generation of DRC and
LVS Runsets

Elena V. Ravve
Software Engineering Department

Ort Braude College
Karmiel, Israel

Email: cselena@braude.ac.il

Abstract—In this paper, we make the first step toward automatic
design, implementation and verification of software products.
The problem strongly depends upon the specification of the
product. Our special case under consideration is writing of
Design Rule Checker and Layout Versus Schematic runsets for
verification of layouts of electronic devices. Design Rule Checker
is a program that guarantees that the chip may be manufactured
as a set of polygons of different chemical materials. Layout
Versus Schematic comparison determines one-to-one equivalency
between a circuit schematic and its layout. We propose a method
to compose design rule manuscript (specification of the runsets) in
the way that totally automatizes design, implementation and ver-
ification steps of the runsets development as well as significantly
improves their maintenance. We plan to extend our methodology
to other special cases of software products.

Keywords–Design Rule Manuscript; Design Rule Checker Run-
set; Layout versus Schematic Runset; Test Cases; Templates;
Automatic Generation.

I. INTRODUCTION

This paper presents an extended and improved version of
[1], where we introduced the general framework for automatic
generation of DRC and LVS runsets.

The main steps of software development are: specification,
design, implementation, verification and maintenance. As a
rule, specification is written as a free-style document allowing
different interpretations. As the same story about Sherlock
Holmes is differently interpreted in different movies according
to the fantasy of the producer, the same specification may
be differently implemented by different programmers, see
Fig. 1. The dream of fully automated software design and
implementation is hardly feasible. In theory, due the Kleene’s
Theorem, cf. [2]: if the specification is formulated as a regular
expression then its implementation is automatically given
by the corresponding finite automaton. More results about
characterization of complexity classes by the type of logic,
needed in order to express the languages in them, may be
found in [3]. However, the automated code generation is hardly
doable. In this paper, we try to make a step in the direction.

In this contribution, we propose a systematic approach to
automated code generation of DRC and LVS runsets. Design
Rule Checking (DRC) and Layout Versus Schematic (LVS)
runsets are programs, written manually like any program
in the corresponding (as a rule special purpose) language.
The runsets are aimed to check that the given chip may be
successfully manufactured in a foundry. In our research, we

Figure 1. Multiple interpretations of texts

Figure 2. Layout of an inverter

closely cooperated with R&D team of TowerJazz foundry 1.
The design of modern electronic devices is presented

inter alia by its layout. Typical layout consists of billions of
polygons for different chemical layers. For each such a layer,
there exist dozens of design rules (DRs), which define how
the polygons must be drowning. An example of layout of an
inverter and the corresponding DRs is shown in Fig. 2 2. Any
semiconductor manufacturing process/technology contains a

1TowerJazz, the global specialty foundry leader, specializes in manufactur-
ing analog integrated circuits for more than 300 customers worldwide in grow-
ing markets such as automotive, medical, industrial, consumer and aerospace
and defense, among others; see http://www.towerjazz.com/overview.html, last
visited 26.02.2017

2The picture is taken from http://www.vlsi-expert.com/2014/12/design-rule-
check.html; last visited 25.02.2017

143

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. May my design be manufactured?

Figure 4. Verification tools, sent from the manufacturer

set of physical DRs for geometrical configuration of available
layers, wiring, placement and so on.

DRs are series of quantitative limitations, provided by
semiconductor manufacturers, which enable the designer of an
electronic device to verify the possibility of its production. DRs
have become increasingly more complex with each subsequent
generation of semiconductor process. Every chip, which is
expected to be manufactured in the given technology, must
satisfy the limitations of the DRs, see Fig. 3. Design rule
checking runsets are provided by the manufacturer in order to
guarantee that the given chip does not give the DR violations,
see Fig. 4.

The document that contains all these rules: Design Rule
Manuscript (DRM) is the specification of the runsets. DRM
includes dozens of tables for each layer with free style de-
scription of the limitations. The fact leads to various problems,
starting from inconsistency in the understanding of the mean-
ing of the rules and going on to lots of bugs in coding of the
rules in DRC as well as poority of test cases in verification of
the DRC runsets. DRM is changing and enriching all the time.
Moreover, as a rule, one DRM has different derivatives for
special conditions of the manufacturing. The derivatives may
be changed independently upon the main DRM that makes the
maintenance of the runsets very intricate, see Fig. 5.

On the other hand, in fact, usually almost all the DRs may
be divided into a relatively small set of categories and sub-
categories, such as width, space/distance, enclosure, extension,
coverage, etc; see Fig. 6 3. Unfortunately, DRM is still not
a regular expression, which would guarantee its automatic

3The picture is taken from http://www.vlsi-expert.com/2014/12/design-rule-
check.html; last visited 25.02.2017

Figure 5. Derivatives of DRMs and runsets

Figure 6. The main categories of geometrical restrictions

144

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

implementation according to Kleene’s Theorem, but it is more
formally formulated than a typical specification of a software
product.

In this paper, we use these categories in order to derive a
set of patterns. These patterns are the basis of an environment
that allows the integrator, who writes the DRM, to use the
pre-defined patterns in order to compose the DRM rather than
to write it. DRC runset is then fully automatically generated,
based on the instantiations of the patterns in the DRM.

DRC runsets are provided in order to guarantee that the
given chip does not give the design rule violations. The
correctness and completeness of the DRC runsets are verified
using test cases, which contain shapes of different chemical
layers, representing various failing and passing conditions for
each rule of the technology. We aware that we would need
formal verification tools in order to prove that a runset is
correct and complete for all possible configurations. In this
paper, we are dealing rather with testing of runsets.

Creation, modification and maintenance of the complete
set of test cases is complicated and time consuming process
that should be automatized. Now, we enrich the derived set
of patterns, used for DRC runset generation, by the option
to create a set of test cases, which corresponds to the pass
condition or to failures of the DRs. When the option of failures
or passing is chosen, the particular type of the failure or of
the passing is defined as well as the form of the report. In
addition, particular subsets of the test cases, generated by the
given pattern, may be chosen by the user, etc.

The set of the varied parameters for the test cases gen-
erator may be extended upon request. When all parameters
are defined, the set of test cases would be again created
automatically.

The complete set of the parametrized patterns may be (but
not necessary) organized as a library. For any design rule
for a given technology, one chooses the relevant parametrized
pattern or set of patterns, provides the specific values of the
required parameters, and puts the obtained instances into the
set of test cases, which corresponds to the technology. The
instantiation and (or) modification process may be automated
as well. Using this method, the complete set of test cases for
the full set of DRs for the given technology may be created
and easily maintained and (or) modified.

Any semiconductor manufacturing process allows a finite
set of legal devices, supported and recognizable in the process.
Layout versus schematic (LVS) comparison runsets determine
one-to-one equivalency between an integrated circuit schematic
and an integrated circuit layout. The correctness and com-
pleteness of the LVS runsets are verified using test cases,
which contain shapes (with connectivity) representing failing
and passing conditions for each legal device of the technology.

In this paper, we briefly explain how our general approach
may be extended to the case of automatic generation of LVS
runsets and sets of test cases in order to verify them. The
proposed innovation is based on the fact that again the set of
legal devices for any process or technology may be divided
into final set of technology independent categories and sub-
categories such that transistors, capacitors, resistors, diodes and
so on.

The environment that partially implements the approach
is provided. We restricted ourselves to the case of automatic

generation of a DRM and a DRC runset, which define and
verify limitations, related to width of different layers, as well as
the automatic generation of the corresponding set of test cases.
The complete tool would produce automatically the DRM, the
DRC/LVS runsets and the testcases to test them in a uniform
way for all layers and legal devices.

It means that for DRC/LVS runsets, we propose a method
to compose DRM (specification of the runsets) in the way that
fully eliminates design, implementation and verification steps
of the runsets development as well as significantly improves
their maintenance. The benefits of the presented invention are:

• Total elimination of the design, implementation and
verification steps of the runsets development;

• Common methodological basis for different processes,
technologies and verification tools;

• Formal approach to DRM composition that allows
precise and consistent formulation of physical design
rules and description of legal devices for different
processes, technologies and verification tools;

• Human independent accumulation of knowledge and
its application;

• Significant reduction of human factor and manual
writing;

• Total elimination of manual coding and re-use of
patterns;

• Better quality and confidence level of the delivered
DRM, DRC/LVS runsets and test cases;

• Significant reduction of time and effort to implement
DRM, DRC/LVS runsets and test cases;

• Full coverage of all physical design rules and legal
devices and the corresponding test cases;

• Effective, consistent and safe way to change, update
and maintain DRM and the corresponding DRC/LVS
runsets as well as test cases for all verification tools;

• Detection and correction of mistakes and bug at ear-
liest stages of the flow;

• Effective, consistent and safe way of bug fixes;
• Comfortable GUI.

The paper is structured in the following way. In Section II,
we consider the previous results in the field under investigation.
Section III is central in our paper and describes our general
approach to solve the problem. In Section IV, we describe
in great detail a particular implementation of our general
approach for creation of a DRC runset for verification of width
related DRs. In Section V, we provide the implementation
details. Method of automatic generation of test cases for
verifying DRC/LVS runsets, using process independent pre-
defined generic set of parametrized patterns is described in
Section VI. Section VII summarizes the paper.

II. REVIEW OF PREVIOUS WORKS

Various attempts to improve the process of creation of
DRC and LVS runsets have long history. They start at least
from 90th, cf. [4], where a process flow representation was
proposed in order to create a single, unified wafer processing
representation, and to facilitate the integration of design and
manufacturing. Even before, in early 80th, hardware assisted

145

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DRC was considered in [5], [6], [7], but quickly returned
back to software based solutions, cf. [8]. There exist a lot of
patents, which attack the same problem. We provide here the
description of the most relevant patents taking almost verbatim.

In [9], a method for generating test patterns for testing
digital electronic circuits, is defined. It fully specifies some
primary inputs, while other primary inputs are specified in
accordance with selected series of codes. The test pattern
template is then repeatedly converted into a stimulus pattern,
using different integers in the selected series of codes, and
fault simulation is performed on a circuit under test using
each stimulus pattern. A stimulus pattern is then saved for
subsequent testing of the circuit under test whenever fault
simulation using that stimulus pattern shows that fault coverage
has increased.

Another close approach was proposed in [10], which con-
siders automatic generation of DRC runsets, using templates
per verification tools. The main idea of the invention is
that instead of a user creating runsets in a language of a
specific verification tool (also called ”native language”), the
user expresses the DRC rules in a high level programming
language (also called ”meta language”) that is independent of
the native language. The meta language includes, in addition
to normal constructs of the high level programming language,
a set of keywords that identify DRC rules from an abstract
viewpoint, unrelated to any native language.

In [11], an approach to deal with programming language,
such as C, C++, Perl or Tcl was proposed. In addition, DRC
templates of the type described herein capture the expertise of
the template author for use by numerous novice users who do
not need to learn the native language of a verification tool.

In our approach, we eliminate the need to use any (either
experienced or novice) user/programmer in order to write the
DRC/LVS runsets. In order to reach the target, we propose
to force the DRM composer (who is assumed to remain in
the game in any case) to instantiate the relevant pre-defined
generic patterns rather than to write the DRM as a free-
style document. When these patterns are instantiated and the
relevant information is extracted and stored in the suitable way,
we use the patterns for DRC runsets generation and similar
(new proposed) patterns for LVS runsets generation for any
particular verification tool.

In [12], use of patterns for improving design checking was
proposed but in another context. Moreover, one aspect of the
present invention includes a method for generating functional
testcases for multiple boolean algorithms from a single generic
testcase template. The method includes the preliminary step
of creating a generic testcase template containing user-entered
mask levels shapes and grouping the shapes within each
mask level of the template. Next, testcase generation code
comprising mask build language is developed to copy and
rename the mask levels from the template into the desired
input levels necessary to test a mask build operation. Finally,
testcase generation code is executed to generate a testcase. The
testcase generation code can be easily modified as necessary
to change the mask levels. Additionally, shape interactions
for new mask level builds can be added into the generic
testcase template, allowing the patterns to be reused to generate
additional testcases, see also [13].

A more general approach to use patterns was proposed

in [14]. During the design of semiconductor products which
incorporates a user specification and an application set, the
application set being a partially manufactured semiconductor
platform and its resources, a template engine is disclosed
which uses a simplified computer language having a character
whereby data used in commands identified by the character
need only be input once, either by a user or by files, and that
data, after it has been verified to be correct, is automatically
allocated to one or more templates used to generate shells for
the specification of a final semiconductor product. Data must
be correct and compatible with other data before it can be used
within the template engine and the generated shells; indeed
the template engine cooperates with a plurality of rules and
directives to verify the correctness of the data. The template
engine may generate one or more of the following shells: an
RTL shell, a documentation shell, a timing analysis shell, a
synthesis shell, a manufacturing test shell, and/or a floorplan
shell.

In [15], an automatic LVS rule file generation apparatus,
which includes a definition file generating unit and a rule file
generating unit, was proposed. The definition file generating
unit generates definition files used for a layout verification
based on first data and templates that are used for the layout
verification in a layout design of a semiconductor apparatus.
The rule file generating unit automatically generates a LVS rule
file based on the definition rule files. The templates includes
first parameters indicating three-dimensional structures of the
semiconductor apparatus. The definition files includes second
data with respect to the first parameters. However, unlike our
approach, a template for an automatic LVS rule file generation
is used for generating a LVS rule file that indicates a rule for
a layout verification of a layout design.

In [16], a method for comprehensively verifying design
rule checking runsets was proposed. It seems to be the
most relevant patent to our test cases generation approach.
The patent describes a system and method for automatically
creating testcases for design rule checking, which comprises
first creating a table with a design rule number, a description,
and the values from a design rule manual. Next, any design
specific options are derived that affect the flow of the design
rule checking, including back end of the line stack options.
Then, the design rule values and any design specific options are
extracted into testcases. Next, the testcases are organized such
that there is one library with a plurality of root cells, further
comprising one root cell for checking all rules pertaining to
the front end of the line, and another root cell for checking
design specific options including back end of the line stack
options. Finally, the DRC runset is run against the testcases to
determine if the DRC runset provides for design rule checking.
However, while the patent deals with the general flow of
testcase creation for a particular technology, we propose a
general method for instantiations of technology independent
generic patterns.

In [17], a system and method for automatically creating
testcases for design rule checking was proposed. The method
first creates a table with a design rule number, a description,
and the values from a design rule manual. The design rule
values and any design specific options are extracted into
testcases. Finally, the DRC runset is run against the testcases
to determine if the DRC runset provides for design rule
checking. Other methods for verifying design rule checking

146

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

were proposed in particular in [18] and [19].

One more techniques for verifying error detection of a
design rule checking runset was introduced in [19]. Another
method for verifying design rule checking software was pro-
posed in [18]. One more technique for verifying error detection
of a design rule checking runset was introduced in [19].
However, all the mentioned methods and approaches do not
reach our level of generality. Moreover, they do not use sets
of pre-defined patterns in the consistent way.

III. A SYSTEMATIC APPROACH TO AUTOMATIC
GENERATION OF DRC AND LVS RUNSETS AND THE

CORRESPONDING TEST CASES

A set of Design Rules (DRs) specifies certain geometric
and connectivity restrictions to ensure sufficient margins to
account for variability in semiconductor manufacturing pro-
cesses. DRC is a major step during physical verification signoff
on the design. Each process allows a finite list of legal devices,
which may be used and recognizable in the process. LVS
comparison runsets determine one-to-one equivalence between
an integrated circuit schematic and an integrated circuit layout.
DRM may contain hundreds of physical design rules and
definitions of dozens of legal devices.

Like each physical DR must be implemented in DRC
runsets, each legal device must be recognized by LVS runsets.
Wafer foundry must provide customers with DRC and LVS
runsets, implemented in all required verification tools and
languages. Creation, modification and maintenance of the
complete set of DRC and LVS runsets is a complicated and
time consuming process that should be automatized.

The proposed approach is based on the fact that the set
of physical design rules for any process or technology usually
may be divided into a final set of technology independent cat-
egories such that width, space, enclosure and so on. Moreover,
the set of legal devices for any process or technology may be
divided into a final set of technology independent categories
such that transistors, capacitors, resistors, diodes and so on.

In our methodology, we propose to create one set of
parametrized patterns for DRC purposes, such that one pattern
(or rather sub-set of patterns) corresponds to a DRC category.
In addition, we propose to create another set of parametrized
patterns for LVS purposes, such that one pattern (or rather
sub-set of patterns) corresponds to a LVS category. The
parameters of the patterns may contain in particular (but not
limited to): the involved layout layers, specific design values,
connectivity, additional constrains, etc. The set of parameters
may be enriched upon request. While the earlier proposed
methods involve the patterns in pretty late stages of the
runsets generation, we propose to force the DRM composer
(integrator) to fulfill the templates, defined by the patterns, (in
any relevant way, for example, using GUI) instead of free-
style writing of the document. It means that the templates are
involved in the first steps of the design rules’ definition but
not their implementation.

Our scenario of the composition of DRM is as follows:
For any design rule or legal device for a given technology,

• Integrator chooses the relevant parametrized pattern or
set of patterns;

• Integrator provides the specific values of the required
parameters or (preferably) chooses them from a choice
list.

• The obtained information is transformed and stored
as a data structure. The information will be used then
by different automatic tools for different purposes,
such that automatic generation of DRM itself as well
as automatic generation of DRC and LVS runsets in
particular verification tools and so on.

• All devices of the process are put in the list of legal
devices with their description in DRM.

In addition, any verification tool uses different commands,
key words and options for features. When free style is used for
DRM writing, different interpretations and further implemen-
tations of sentences are allowed that may lead to unexpected
results in runs of DRC/LVS runsets. Moreover, when different
formulations are used for definitions of derived layers as
well as special options, hardly detectable effects in DRC/LVS
runsets may be produced.

In order to overcome the obstacle, the following flow is
proposed.

• Specification: First, we start from precise definitions
of all derived layers or options, which are expected
to be used in physical design rules or descriptions of
legal devices. The step is made once. The definitions
lead to a final fixed set of key words and/or notations,
which are allowed in physical DRs or descriptions of
legal devices. The set might slightly vary for different
processes but it is expected to be pretty stable. In
extreme cases, the set may be extended after profound
analysis and justification.
◦ The set may contain, for example, entries

for definition of such notions as GATE,
HOT NWELL, NTAP , BUTTED
DIFFUSION and so on.

◦ In addition, the set may contain more informa-
tion, extracted from the technology file, such
that the names and purposes of layout layers,
value of grid and so on.

◦ The set may be divided into sub-sets, such
that only values from a particular sub-set are
allowed in certain fields of certain templates.

◦ Moreover, the set may contain key words to
choose between minimal, maximal, exact op-
tions for the values and so on.

• Exploitation: When the specification is fixed and
stored as the relevant data structure, the DRM com-
poser may pass to the stage of filling the fields in the
pre-defined set of templates for physical design rules
or descriptions of legal devices.
◦ Any field that is aimed to contain a value from

the (sub-)set of key words, either is checked
on-the-fly for its correctness or is presented as
a choice list.

◦ Only fields for the numerical values (for ex-
ample, the particular value of the width) will
not be so.

◦ Moreover, many other checking procedures
may be involved at this step. For example,

147

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

check precision on the given numeric values
against grid, etc.

◦ The precise information, obtained as the result
of the filling of the templates is stored as a
relevant data structure and will be automati-
cally exploit for particular patterns for further
generation of DRM as well as DRC and LVS
runsets, implemented in particular languages
or tools.

◦ Moreover, the information will be used also for
the automatic generation of the corresponding
test cases for the DRC and LVS runsets.

In our particular application case, we have managed to
enumerate and name for all possible specification all allowed
/ possible circumstances.

IV. FROM RULE DEFINITIONS TO DRM AND DRC: PROOF
OF CONCEPT

A. Cooperation with TowerJazz foundry
In order to demonstrate how our general approach may

work, we cooperated with the corresponding specialists of
TowerJazz foundry. We had a lot of meetings with the target
audience of our tool: the integrators. We wanted to understand
what are the main difficulties of the task.

After analyzing and summing these meetings, we realized
that the Achilles heel of the traditionally used practice is
exactly the entangled manner of the design rule writing.

Example 1 (Device and voltage specific rules): Assume
that we consider nMOS transistors and the gate layer with
3.3V voltage. In this case, we approve one particular value
of its minimum width. Unlikely, if we use pMOS transistors
for the same gate layer with 5V voltage then we approve an
absolutely different value of the minimum width.

Example 2 (Area depending rules): TowerJazz uses two
layers in order to define thick gate oxide 5V for mask
generation and device recognition. AREA2 defines area with
thick oxide either 3.3V. AREA6 marks thick oxide as 5V for
DRC, LVS and MDP purposes.

Now, we consider a more complicated example.
Example 3 (Wide metal rules): We consider only a M2-

wide rule; the corresponding rules for other wide metals
MI.W.2 for I=3,.,6 are formulated similarly. M2.W.2 -wide
rule is formulated as follows:

Minimal width of M2 line, connected to a wide M2
is approved to be of a certain value.

In order to better understand the above formulation, we
look at the rule’s layout in Fig. 7 and especially at the red
dotted area. Now, we descry that layer M2 is connected to a
so-called wide M2. On the other hand, the so-called narrow
metal, according to other DRs, is approved to be minimum
of another value!!! Otherwise, if it is smaller, our runset must
report the violation.

The metal is wide if it dimensions are equal or bigger then
35um. Unfortunately, the definition does not appear at all in
the original formulation in the rule and it is expected to be
known from the common knowledge of the integrators’ team.

In this case, these determinative details are hidden in the
original formulation of the rule and must be extracted from
other sources of knowledge if any.

Figure 7. M2.W.2 design rule

More generally, adding or even changing a rule without
considering the previously written rules or even the way, how
they were exactly formulated, may cause inconsistency in the
DRM as well as the derived runsets. Moreover, the traditionally
used approach is patching of a new sentence into the old design
rule wording. The patch describes the new feature, without
changing all the rule from scratch. In the long run, we get
hardly understandable and interpretable patched up statements.

In order to illustrate how the obstacle may be overcome us-
ing our approach, we decided to start with DRC runsets. More
precisely, teamwise with the TowerJazz’s experts, we decided
to concentrate our limited research resource on evaluation of
all width rules of a particular existing DRM of the foundry.

First, we collected all the width rules for all the corre-
sponding layers. Typically, every design rule consists of:

• the rule number;

• the rule parameter such as width, space, overlap, etc.;

• the layer name, followed by the description of the rule;

• the last thing is the minimal (fixed, recommended, etc)
allowed size.

In addition, a rule may be exclusive for specific voltages,
devices, combinations of layers or purposes and so on, see
Examples 1, 2 and 3.

Then, we transformed every rule to a set of short ex-
pressions. We proved that an integrator, who writes DRM,
may compose any width rule as detailed as she/he wants by
shuffling these expressions without having to add anything
manually.

The main problem in the maintenance of DRMs and the
corresponding runsets is that, as a rule, the well defined,
consistent and well supported source of the knowledge does
not exist at all and it is rather replaced by some common

148

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

local folklore, transferred verbally in the integrators’ commu-
nity. Our approach starts from precise definitions of all such
shortcuts, which are reviewed by the corresponding experts
and supported in a uniform way.

B. Evaluation of width related rules
With the help of the TowerJazz’s experts, we analyzed

every width rule and divided it into its components in one long
table. In this table, we took in account what is the purpose of
each one of the rules as well as what are the corresponding
constraints. Altogether, we concluded that we may map all the
additions to the width DRs into six main categories:

1) Rules for special layers like marking layers;
2) Rules for layer under other layers;
3) Device dependent rules;
4) Voltage dependent rules;
5) Area despondent rules, see Example 2;
6) Purpose dependent rules.

In order to translate all these short sentences into one rule,
we got help from Mentor Graphics experts with profound
knowledge how Calibre works.

For example, the simplest width related rule will be coded
as follows:
XP.W.1 {

@XP.W.1: XP width, min. 0.XX (XP.W.1)
internal XP< 0.8 region singular abut> 0 < 90

}
Now, let us code the rule of Example 3 for M2:

Minimal width of M2 line, connected to a wide M2
is approved to be of a certain value.

in Calibre. In our particular case, first of all, we must distin-
guish between wide and narrow pieces of metal. To do so, we
define the following M2NRW shortcut for narrow pieces of
metal, which actually is coded in Calibre as:

M2NRW = ((M2MS or (M2slits interact M2MS))
interact M2WIDE) not M2WIDE.

Now, we continue to code the rule according to the Calibre
syntax:

• The first thing, to be written in the runset file, is the
rule name, followed by {. In our specific example, it
should be:
M2.W.2 {
In this way, we know where this rule begins.

• Next, usually, we want to write comments for this rule
to make it easier maintained. We start the comment
with sign @. That leads us to the next line in the
runset:

@M2.W.2: Width of Narrow Metal, Connecting
to Wide Metal min. 0.YY (M2.W.2)

• Now we put the body of the rule for constraints, which
are interpreted as violations for this specific layer:

X2=not outside edge M2NRW M2WIDE
EX2=expand edge X2 by 0.01
area EX2 < 0.02

• Sign } finishes the composition of the rule, so that we
determine where it ends.

As the result of our coding, we receive the following
automatically generated portion of the runset:
M2.W.2 {

@M2.W.2: Width of Narrow Metal, Connecting to
Wide Metal min. 1 (M2.W.2).
X2=not outside edge M2NRW M2WIDE
EX2=expand edge X2 by 0.01
area EX2 < 0.02

}
The considered example represents a single rule of dozens

of rules, while each such a rule has dozens of layers. Eventu-
ally, each rule must be translated into DRC statements. In this
section, we have shown how the coding may be automatized,
for two particular rules.

V. IMPLEMENTATION DETAILS

In this section, we show in great detail, how our general
approach is implemented in a particular toy-tool. We start from
a complete snapshot of the GUI, see Fig. 8; then, we explain
each step.

A. Let us start
As usual, the user (integrator) is expected to provide her/his

password, when activating the tool, see Fig. 8 step 1 and Fig.
9.

B. What about the process?
Using the tool, the user may add a new process, remove

an existing process or use a stored process, see Fig. 8 step 2
and Fig. 9.

C. Which layer?
When the process is chosen, see Fig. 8 step 3 and Fig. 9,

the user gets the list of all available layers, see Fig. 10. The
techfile of the chosen process is used in order to access the
list of the available layers.

D. Composing a rule
When the layer is chosen, see Fig. 10, the user gets the

list of all available categories of the rule. By double-clicking
on the desired category, the user gets all the pre-defined sub-
categories, available in order to compose the new rule, see
Fig. 8 step 4 and Fig. 11. The sub-categories include in our
particular case (but not limited in the general case to):

• the list of all layers from the techfile as well as special
layers, like marking layers; see Fig. 12;

• the list of purposes and recommended options; see Fig.
13;

• the list of not relevant cases and available devices; see
Fig. 14;

• the list of voltages. see Fig. 15.

The user may choose any allowed combination of the
sub-categories for the new rule, see Fig. 8 step 5. If some
combination of the sub-categories is not allowed then the fact
is checked automatically by the tool and the user is updated
accordingly.

149

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Complete snapshot of the GUI

Now, the user should insert the value of the rule: width in
our particular case, as well as a free style comment, see Fig.
8 step 6 and Fig. 15. These are the only values, which are
inserted and not chosen from pre-defined options. Then, the
corresponding DR is put to its place in the DRM.

E. Generating the code of the rule

It remains to choose the corresponding tool: Calibre in our
example 4, see Fig. 8 step 7 and Fig. 16. The corresponding
code is generated automatically by the tool; see Fig. 16.

4Other languages or other tests may be used in the same way.

Figure 9. Initiation of the tool

F. Testing the generated code of the rule
In order to test the generated code, we composed a simplest

layout with the corresponding DRC violation, see Fig. 17.
The violation was found and reported by the automatically
generated runset (see Fig. 18).

VI. METHOD OF AUTOMATIC GENERATION OF TEST
CASES FOR VERIFYING DRC/LVS RUNSETS, USING

PROCESS INDEPENDENT PRE-DEFINED GENERIC SET OF
PARAMETRIZED TEMPLATES

In general, dozens of test cases per a design rule should be
provided in order to guarantee correctness and completeness
of all DRC runsets implemented in all tools and all languages.
Moreover, different test cases should be created for failing and
passing conditions per each design rule. In addition, all the
test cases must be maintained and modified according to any
relevant change in DR. As for now, both code of DRC runsets
and the corresponding test cases are manually created and
maintained. All the above justifies that automated methodology
and system should be proposed for these tasks.

We propose a new approach to the automated test cases
generation for DRC runsets again based on the fact that there
exists a finite fixed set of categories, which may be defined

150

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Choosing a layer of the process

at once. The categories cover all (or most) design rules for
any given process or technology. The set again contains such
categories as width rules, spacing rules, enclosure rules etc.
Then, we propose to re-use the parametrized patterns, defined
for DRM generator, for each category such that, the pattern
may be tuned to the particular testing purposes by assignment
of the corresponding parameters.

Figure 19 illustrates the concept. The example shows some
part of the technology parameters such as the layout layers and
purposes as they are defined in the technology file, different
values taken from DRM, as well as parameters, related to the
testing purpose such that the failing or passing case and its
particular version.

In addition, the corresponding report format may be defined
using, for example, error layers and so on. All the parameters
(or any part of them) may be assigned either manually or in
some automated way. The assignment procedure leads to cre-
ation of a particular instance of the template that corresponds
to the chosen pattern, testing purpose, etc.

Figure 20 illustrates one of the possible implementation
of such instantiation. The particular test case generator was
written in SKILL and it is included as an integrated part in
the proposed tool.

This approach may be extended to the case of automatically
created testcases for LVS checking as well. In fact, the list of
legal devices of the process as well as their detailed description

Figure 11. Menus of the DRC generator: choosing (sub)category

is available in DRM. DRM may contain dozens of legal devices
such that their final list for the process may be combined
from different sub-sets, according to additional options or
limitations. LVS runsets are implemented, using different tools
and program languages, each one with its own algorithms and
particular implementations of checking procedures for different
features.

Hundreds of test cases per a legal device should be
provided in order to guarantee correctness and completeness
of all LVS runsets, implemented in all tools and languages.
Moreover, different test cases should be created for failing
and passing conditions per each legal device and/or their
combination. In addition, all the test cases must be maintained
and modified according to any relevant change in DRM.

Our method comprises first of all creating of a data
structure (say, a table) with a device identifier, its description
(including involved layers and connectivity), and the corre-
sponding values from DRM. The data structure contains all
legal devices for the process. Any design specific options
or limitations, which affect the recognition process, may be
added.

Then, the device descriptions and design specific options
are implemented into a set of test cases. The implementation

151

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Menus of the DRC generator: choosing additional layers

Figure 13. Menus of the DRC generator: choosing purpose and severity

Figure 14. Menus of the DRC generator: choosing device and exception

Figure 15. Menus of the DRC generator: choosing voltage and the value of
the rule

152

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. Menu of the DRC generator: generating the code of the rule

Figure 17. Layout with a DRC violation

Figure 18. Layout with the reported DRC violation

Figure 19. Menu to generate test cases

is expected to be automatic for both failing and passing
conditions. Next, the testcases are organized in a data structure
(say, a library) that is suitable for the further run of LVS
checkers. Finally, the LVS runset is run against the testcases
to determine if the LVS runset is correct and complete. The
corresponding information about either faced violations or
successive result is stored for the further use and reported in
the pre-defined way. In addition, the completeness of the LVS
runset is verified (either automatically or manually) against the
full list of legal devices, in order to guarantee that no device
is lost. The LVS test case generator is still not included in the
implemented tool.

VII. CONCLUSION AND OUTLOOKS

In this paper, we made the first step toward automatic
design, implementation and verification of software. The prob-
lem strongly depends upon the specification language. For
specification languages, restricted to regular expressions, the
problem is solvable due to Kleene’s Theorem.

Our approach is based on categorizing properties of the
domain and the specifications to a general level and using
those as a basis to design a tool and its features to support
the domain workflow, and build a basis for automated analysis
of the specifications.

Our special case under consideration is writing of DRC and
LVS runsets for verification of layouts of electronic devices.

153

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 20. Automatically generated test cases

The verification rules are provided in DRM (specification of
the runsets).

We propose a method to compose DRM, which is still
not a regular expression, in the way that totally automatizes
design, implementation and verification steps of the runsets de-
velopment as well as significantly improves their maintenance.
The proposed general approach is based on a final set of pre-
defined patterns. The particular instantiations of the patterns in
the DRM generator are then used for automatic generation of
DRC and LVS runsets as well as the corresponding test cases.

The approach is based on the fact that usually almost
all design rules may be divided into relatively small set of
categories: width, space/distance, enclosure, extension, cover-
age, etc. Moreover, the set of legal devices for any process
or technology may be divided into final set of independent
categories: transistors, capacitors, resistors, diodes and so on.

The environment that partially implements the approach is
provided.

We restricted ourselves to the case of automatic generation
of a DRM and a DRC runset, which define and verifies
limitations, related to width of different layers, as well as the
automatic generation of the corresponding set of test cases.
The complete tool would produce automatically the DRM, the
DRC/LVS runsets and the testcases to test them in a uniform
way for all layers and all legal devices.

The approach may be extended to automatic generation of
other runsets, say, antenna runsets and the corresponding test
cases. In general, the approach may be applied in a uniform
way to all steps of the of masks’ generation and verification.

We plan to extend our methodology to other special
cases of software products such as, for example, automatic
verification and (partial) implementation of specifications of
smartphone applications, cf. [20]. We aware that there were
proposes many techniques in that area. We plan to compare
our approach and their own.

Acknowledgments
We would like to thank T. Estrugo (TowerJazz) for valuable

discussions, general support and his many suggestions. We
would like to thank U. Krispil (Mentor Graphics) for his
technical assistance. We also appreciate the effort of our
students M. Ankonina and N. Mazuz, who implemented the
tool.

Finally, we would like to thank the referees for their careful
reading and constructive suggestions.

REFERENCES
[1] E. Ravve, “Template based automatic generation of runsets,” in Proceed-

ings of ICCGI-2016, The Eleventh International Multi - Conference on
Computing in the Global Information Technology, November 13-17,
2016, pp. 52–57.

[2] S. Kleene, “Representation of events in nerve nets and finite automata,”
in Automata Studies, C. Shannon and J. McCarthy, Eds. Princeton:
Princeton University Press, 1956, pp. 3–42.

[3] N. Immerman, Descriptive complexity, ser. Graduate texts in computer
science. Springer, 1999.

[4] E. Ünver, Implementation of a Design Rule Checker for Silicon Wafer
Fabrication, ser. MTL memo. Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, 1994.

[5] L. Seiler, A Hardware Assisted Methodology for VLSI Design Rule
Checking, ser. MIT/LCS/TR-. Mass. Inst. of Technology, Laboratory
for Computer Science, 1985.

[6] T. Blank, M. Stefik, and W. vanCleemput, “A parallel bit map processor
architecture for DA algorithms,” in Proceedings of the 18th Design
Automation Conference, ser. DAC ’81. Piscataway, NJ, USA: IEEE
Press, 1981, pp. 837–845.

[7] R. M. Lougheed and D. L. McCubbrey, “The Cytocomputer: A practical
pipelined image processor,” in ISCA, J. Lenfant, B. R. Borgerson, D. E.
Atkins, K. B. Irani, D. Kinniment, and H. Aiso, Eds. ACM, 1980, pp.
271–277.

[8] D. Wittenmyer, Offline Design Rule Checking for VLSI Circuits.
University of Toledo., 1992.

[9] K. Bowden, “Method for generating test patterns,” Apr. 18 2000, uS
Patent 6,052,809.

[10] G. Richardson and D. Rigg, “Method and system for automatic gen-
eration of DRC rules with just in time definition of derived layers,”
Aug. 26 2003, US Patent 6,611,946.

[11] D. Shei and J. Cheng, “Configuration management and automated test
system ASIC design software,” Dec. 30 1997, US Patent 5,703,788.

[12] S. O’Brien, “Methods and systems for performing design checking
using a template,” Aug. 4 2009, US Patent 7,571,419.

[13] P. Selvam, “Method for generating integrated functional testcases for
multiple boolean algorithms from a single generic testcase template,”
Feb. 24 2009, US Patent 7,496,876.

[14] T. Youngman and J. Nordman, “Language and templates for use in the
design of semiconductor products,” Oct. 11 2011, US Patent 8,037,448.

[15] K. Okuaki, “Automatic LVS rule file generation apparatus, template for
automatic LVS rule file generation, and method for automatic lvs rule
file generation,” Oct. 6 2005, US Patent App. 11/093,100.

[16] D. Shei and J. Cheng, “Configuration management and automated test
system ASIC design software,” Dec. 30 1997, US Patent 5,703,788.

[17] J. Crouse, T. Lowe, L. Miao, J. Montstream, N. Vogl, and C. Wyckoff,
“Method for comprehensively verifying design rule checking runsets,”
May 4 2004, US Patent 6,732,338.

[18] W. DeCamp, L. Earl, J. Minahan, J. Montstream, D. Nickel, J. Oler,
and R. Williams, “Method for verifying design rule checking software,”
May 16 2000, US Patent 6,063,132.

[19] J. Lawrence, “Techniques for verifying error detection of a design rule
checking runset,” Jul. 23 2009, US Patent App. 12/017,524.

[20] K. Korenblat and E. Ravve, “Automatic verification and (partial) imple-
mentation of specifications of smartphone applications,” in preparation.

154

International Journal on Advances in Software, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

