SMART 2020 : The Ninth International Conference on Smart Cities, Systems, Devices and Technologies

Simulation and Benchmarking of IoT Device Usage Scenarios
Using Zephyr and Qemu

Bill Schirrmeister, Frank Geyer, Steffen Spéthe

Friedrich Schiller University Jena
Department of Computer Science, Software Engineering Group
Jena, Germany
Email: bill.schirrmeister@Quni-jena.de
frank.geyer@uni-jena.de
steffen.spaethe@uni-jena.de

Abstract—The development of a device command and control
infrastructure for Internet of Things devices with a focus on
low resource consumption is the primary goal of the research
project “unic’ast”. This paper proposes a simulation environment
that enables to carry out benchmarks of this infrastructure
according to a variety of application scenarios. The presented
simulation setup uses Qemu virtualized embedded devices with
an application based on Zephyr OS. The basic suitability of the
approach is demonstrated and potentials for further development
are identified.

Keywords—IoT Device Management; Lightweight M2M; Qemu;
Zephyr; Device Simulation.

I. INTRODUCTION

The number of connected devices in the Internet of Things
(IoT) is forecast to reach over 75 billion by 2025 [1]. As
the overall goal of the research project unic?ast [2] a device
command and control infrastructure (DCCI) for scenarios with
a large number of IoT devices is meant to be realized.

Following the well-known client-server-model, a server
infrastructure for managing and administrating IoT devices
which provides transparency with regard to their concrete
application scenarios is being developed. A good system per-
formance is considered to be essential for this project, since it
is required to manage and integrate a potentially large amount
of devices (a) with possibly constraint hardware resources (b).
To evaluate this system property, development of a simulation
system is one of the project goals. This should allow for the
measuring of values that are as realistic as possible and help to
identify bottlenecks in the processing inside the DCCI system.

Auvailable network simulation systems such as “ns-3” [3] or
”OMNeT++" [4] are not sufficient for unic2ast, since models of
the server and the processing logic would need to be created.
This would lead to a rather difficult realization and cannot
be achieved without knowledge about the runtime behavior of
the individual components. The term “individual components”
also includes the operating system, hardware (input / output to
RAM, hard disk, etc.), runtime environment (e.g., Java VM),
database management systems (MariaDB, Postgres, etc.), and
other web services. Likewise, unic?ast has to use specific
protocols (such as OMA Lightweight M2M (LwM2M)) in
order to be able to provide the desired system functionalities.

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-805-1

Existing network simulation systems do not offer out-of-the-
box implementation of such specific IoT device protocols.

Unic?ast relies on the use of a real DCCI instance that is
occupied by virtual IoT devices (i.e., simulated load) in order
to test the remote maintenance of multiple IoT devices via
the DCCI with a focus on performance and stability analysis.
The simulation is coordinated by a test coordinator, i.e., a
software solution for planning, controlling and evaluating the
simulation runs. Such a system structure is not uncommon
in practice. Standard load test systems for server applications
such as Apache JMeter [5] or Gatling [6] are built according
to the same principle.

Unic?ast follows an approach where virtual IoT devices are
used to test the real DCCI server implementation. In principle,
one could roughly calculate load limits or determine them by
using purely virtual simulations. However, it was opted for the
possibly more resource-intensive evaluation approach because
the server system must be able to handle a large number of
any IoT devices in productive operation. Therefore, it is not
possible to predict the need for communication in the form of
static information, as required by other simulation approaches.
In particular, bottlenecks in internal communication processes
inside the device command and control infrastructure are
unknown in advance of the load tests.

This paper is not intended to provide a comprehensive test
specification for the DCCI. Likewise, there is no complete
specification of the system’s properties to be tested and no
detailed definition of test procedures.

The aim of this paper is to present the infrastructural
approach for the parallel execution of several, configurable
client instances for a given application scenario with focus
on benchmarks of the overall system. On the basis of the
explanations here, it should be possible at further steps to
define concrete and more complex test sequences and to carry
out corresponding data collection with focus on performance-
benchmarks at runtime.

We have organized the rest of this paper in the follow-
ing four sections. The core requirements to the benchmark
infrastructure and available implementation approaches are
presented in Section II. Section III is about how the selected
infrastructure approach was implemented in detail. Aspects of

SMART 2020 : The Ninth International Conference on Smart Cities, Systems, Devices and Technologies

a practical usage are shown in Section I'V. At the conclusion of
the paper, in SectionV we summarize the results achieved and
briefly evaluate the chosen approach based on our formulated
requirements.

II. REQUIREMENTS AND IMPLEMENTATION APPROACHES

To prepare the selection of a suitable approach and envi-
ronment for simulation within unicZast, the following essential
requirements to the benchmark infrastructure were defined:

e simulated devices behave quite similar to original
devices

e ability to run multiple simulated device instances on
the same host

e LwM?2M connection to the system under test
e parameterization of the device instances
e retrieval of runtime information after startup

e automation of the device instance lifetime and the test
procedure

OMA Lightweight M2M (LwM2M) in this context is a
protocol of Open Mobile Alliance (OMA) for IoT device
management [7]. The LwM2M protocol defines an application
layer communication protocol between client and server and
focuses on low resource consumption. LwM2M is based on
Constrained Application Protocol (CoAP).

As described before, the benchmark infrastructure should
use simulated client devices. A valid approach would be to im-
plement the client’s functionality within a dedicated simulation
program. The program could be implemented in a comfortable
high-level language, and all available libraries could be used.
Furthermore, this program could use multithreading to simu-
late several individual devices simultaneously. This simulation
program could, therefore, be implemented with relatively little
effort. This approach would also lead to a rather simple test
setup.

On the other hand, an application program already exists
for the target hardware, which realizes the communication
between server and embedded system. This embedded program
itself is its best simulation in the context of a load test of
the overall system. However, the use of several hundred real
devices is inappropriate. Therefore, another approach to build a
test system setup is to emulate the embedded devices, including
their existing application logic. In this way, the additional
parallel development of a synthetic load driver based on an
additional development environment can be avoided.

III. APPROACH

A combination of shell scripts with "Zephyr OS” (Zephyr)
and ”Quick Emulator” (Qemu) was used to implement a
solution that takes the given requirements into consideration.
Zephyr OS is an open source real-time operating system for
IoT devices with a small memory size and fixed hardware
configuration [8]. Qemu is a free virtualization software for
complete hardware emulation [9].

Figure 1 shows the resulting system landscape. The system
to be tested is shown inside the System under test box as DCCI.
However, the actual structure of the system to test is considered
to be a black box and therefore was omitted. The landscape
to be tested can consist of complex server structures.

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-805-1

The virtual system part (box Simulated devices) usually
consists of several IoT devices that are implemented as Qemu
processes executed in parallel. Each Qemu process simulates
exactly one IoT device that is operated by a Zephyr OS based
embedded application. For communication purposes between
virtual devices and the system under test via LwM2M, an
extended version of the LwM2M client included in Zephyr
is used. The underlying Internet Protocol (IP) connection of
clients is realized by setting up a virtual bridge connecting
them with the hosts physical ethernet adapter.

Every virtual device is assigned one named pipe for input
and output which is set up in the hosts file system. Their
coupling with the respective Qemu process is realized by con-
figuring it as a serial port when calling the Qemu executable.
On the Zephyr OS side, this port is connected to the built-in
shell subsystem. This makes it possible to not only send shell
commands to each device, but also to record the shell output.

Functions for automating preparation, execution and post-
processing of benchmarks are implemented in Bash scripts.
A higher-level coordinator script defines the test structure
and sequence and therefore uses the functions modularized
in other scripts. The higher-level script thus represents the
implementation of a concrete test scenario. Other scenarios
can be realized by alternative implementations of this script.

In the following part the most important functions, based
on prior defined requirements, will be discussed in more detail.

* Simulation host

configures

System
under
test

Network
control
functions

o

Build
helper
function

Preparation

Qemu :
control | :: startup — Netyvork
functions [~ “shutdown bridge

Client

. pcor !

Simulated
devices

control C
functions .

4

Runtime

Y
Eval uses
functions~ """~~~ +| Event
log

Follow-up

Figure 1. Simulation-landscape at unic?ast

A. Parallel Execution on a Single Host

Parallel execution of multiple test clients on a single host
is done by launching several virtual machines at once.

The unic?ast project makes use of the gemu_x86 board
configuration shipped with Zephyr source code. Following the
Zephyr documentation, the application program that imple-
ments the LwM2M client is developed based on the Zephyr
kernel. It gets compiled into a single binary file alongside the

SMART 2020 : The Ninth International Conference on Smart Cities, Systems, Devices and Technologies

kernel to be then executed in a virtual machine. Execution is
thus isolated from the host and other virtual machine instances.
The compilation is done by calling cmake with the parameter

—-DBOARD=gemu_x86

followed by an additional call to make. After successful
compilation, the resulting binary file is then used when launch-
ing a Qemu process. This may be done by calling the respective
Qemu executable via

gemu-system—-1386 —-kernel [PATH-TO-IMAGE]

providing it with the built Zephyr based application image
via parameter kernel (additional parameters omitted due to
layout restrictions).

By calling Qemu multiple times successively, several Qemu
processes can be lunched in parallel, each executing a client in
its own virtual machine. To avoid the need to execute each call
to Qemu individually on the command line, this was automated
within a parameterizable loop as part of a Bash function.

A call to the specified function results in the following
behavior

e creation of a named pipe per client

e generation of a unique medium access control (MAC)
address per client

e startup of the specified number of Qemu processes,
utilizing the built Zephyr based application image as
described above, and assigning the named pipe to the
serial port and the MAC address to the ethernet adapter
respectively

e calling of cat on the output pipe for each client and
redirecting its output stream to a file

e storage of the meta data describing the clients and
other relevant data during runtime in corresponding
files

Similarly, a shutdown function takes care of the scheduled
shutdown of the started instances using the process ID noted
as part of the meta data for each Qemu process.

B. Connection to Target System

The client’s ability to connect to the target system using
the IP is a necessary prerequisite for the required LwM2M
connection, which is based upon CoAP and is achieved through
the following four steps:

e creating a network bridge on the host
e providing an ethernet adapter to the Zephyr image

e linking the Qemu machine’s ethernet adapters to the
bridge on startup

e allocating a suitable unique IP address to each client

The possibility of setting up a network bridge as a virtual
connection element on layer 2 of the Open Systems Inter-
connection (OSI) model is already built into modern Linux
operating systems. The necessary bridge can therefore be set
up in a terminal via
ip link add

[BRIDGE] type bridge

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-805-1

After assigning an IP address to the host to ensure its
reachability on the bridge, the host’s physical ethernet adapter
is also connected to the bridge via

ip link set [ADAPTER] master [BRIDGE]

The bridge thus forms a virtual extension of the physical
network on the MAC layer that is executed on the host.

To successfully connect the clients to the bridge, they
need an ethernet adapter too. According to Zephyr OS doc-
umentation for building gemu_x86, the source code re-
quired for the virtual ethernet adapter E1000 can be in-
cluded in the compiled image by specifying the overlay
file overlay-e1000.conf alongside the others with the
parameter ~-DCONF_FILE when cmake is called.

The Qemu machines are then connected to the bridge by
specifying

-nic bridge,br=[BRIDGE], mac=[MAC-ADDR]

during the call to the Qemu executable, where MAC—-ADDR
is the generated unique MAC address of a client.

In addition to the connection already described on the MAC
layer, the clients still need a unique Internet Protocol version
4 (IPv4) address in order to be able to establish CoAP based
connections to the target system. A static assignment as in
the LWM2M sample found in Zephyr’s sources is unfavorable
because the address would need to be configured at compile
time. If then arbitrary n instances of the client were desired
to be assigned an address, potentially expensive n compilation
runs would be necessary. The dynamic assignment of addresses
via Dynamic Host Configuration Protocol (DHCP) has also
proven to be impractical. With both a local DHCP server on the
host and an external server on the network, it was impractical
to reliably serve IPv4 addresses to a large number of volatile
clients (in the hundreds).

Our solution to this problem uses static address assignment
by means of a Zephyr shell command combined with address
generation using prips. The command line program prips
prints a line-by-line listing of all IPv4 addresses of a given
IPv4 subnet. This subnet has to be specified in Classless Inter-
Domain Routing (CIDR) notation when calling prips as
follows

prips "192.168.0.0/24"

Substracting at least the subnet’s first address (network)
and the last one (broadcast) is necessary afterwards, since they
must not be used for client assignment. Further addresses may
have to be omitted if they are already assigned to the client’s
host or other computers on the physical network, resulting in
the final list of usable addresses. The assignment to the clients
is then carried out by a dedicated Zephyr shell command,
which was implemented specifically for that purpose. It then
assigns the address inside its callback by calling the function

net_if_ ipv4_addr_add_by_index
which is provided by Zephyr’s network stack accordingly.

C. Parameterization and Value Retrieval at Runtime

A named pipe each for input and output streams in the
host’s file system are used for direct communication between

SMART 2020 : The Ninth International Conference on Smart Cities, Systems, Devices and Technologies

the host and the virtual machines during runtime. Splitting into
two file paths is necessary because buffer conflicts could occur
if only a single path is used for both input and output. The
separate pipes have the same base file name, but differ in their
extension, being assigned an . in or . out. The assignment of
such a “double pipe” to its dedicated virtual machine then is
made by specifying just the base file name as parameter value
for the serial port when calling the Qemu executable. The host
operating system automatically separates the input and output
character streams to the separate files accordingly.

The parameterization of a client at runtime is then carried
out by the transmission of specific shell commands to each
Qemu machine. This may be achieved by using echo like

$ echo "[COMMAND]" > [PATH]/[PIPE].in
redirecting it to the respective pipe’s input path. In return,

the pipe’s output path enables all shell outputs of a client to be

recorded, for example by creating a cat process of the form

$ cat [PATH]/[PIPE].out >> [PATH]/[FILE] &

Since the basic shell commands available in Zephyr OS
are insufficient for the purposes described here, application-
specific commands had to be implemented.

The shell interface of a Zephyr application follows a
hierarchical structure. Several subordinate command words
can be assigned to a higher-level command word to form a
specific command. Parameter values that have to be transmitted
alongside a command can be specified on the leaves of the
defined tree. The callback method, which is also to be specified
on the leaves, is called when the respective command is
received, providing it with the transferred parameter values and
thus allows the behavior of the command to be implemented
within the Zephyr application. Among other things, registering
a command on the Zephyr shell subsystem can be done through
special C macros [10].

The concrete commands for benchmarking implemented in
this concept allow the necessary configuration of parameters
that are required for the secure connection to the target system
(e.g., Datagram Transport Layer Security (DTLS) pre-shared
key). In addition to that, virtual temperature sensors may also
be created on each client, the values of which are randomly
varied at random time intervals in order to generate a realistic
load by means of subscriptions made by the server.

Input or output via named pipes with the above shell com-
mands can be issued manually on the host’s shell. However,
these processes were largely automated by script functions.

D. Client Identities and Resource Subscriptions

For securing the client’s COAP/LwWM2M connection to the
target system by means of the DTLS protocol within the
context of the uni’ast project, the pre-shared key approach
was to be used.

This key which has to be unique for each client must be
known to the server in advance alongside its unique identifier
string and the LwM2M endpoint name. In order to carry out
load tests of the target system with varying multitudes of these
clients information stored to the target’s database. Therefore,
it is necessary to provide functions that enable this data

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-805-1

e to be reported to the target system at the start of each
individual test run and

e to be deleted from the target system after their end,
respectively.

For the same reason and because of the number of clients
in a test run being potentially large, it is also required to auto-
matically generate the client’s identity and security information
parts, as mentioned above.

Randomly generating these values is undertaken in the im-
plementing Bash function by read access to /dev/urandom
of the Linux host. They are collected in a Comma Sepa-
rated Value (CSV) file and are thus available to the other
implemented Bash functions that need to have access to them,
for example the Bash functions explained in Subsection III-C
that are used for parameterizing the clients. Furthermore, the
functions responsible for reporting the clients information to
the target and deleting them later are implemented to use
a Representational State Transfer Application Programming
Interface (REST API) provided by the target specifically for
that purpose.

IV. PRACTICAL USAGE

To demonstrate the presented solution, a simple test sce-
nario defined for the real DCCI system implementation devel-
oped in unic®ast and the experiences made when preparing and
performing the benchmark are given below.

A. Example Test Scenario Definition

The objective of the chosen scenario was to allow for the
measurement of the target system’s response times as seen by
the clients, as well as the resource requirements of the target
system in the context of an increasing number of clients from
test run to test run. Based on the assumption that the regular
registration update sequences between each client device and
the DCCI server and the notification messages sent by the
clients due to server side subscriptions for changing values
are sufficient to cause a certain load on the target system, the
scenario was defined to provide that

e cach client simulates two temperature sensors (in-
stances of the Internet Protocol for Smart Objects
(IPSO) object 3303) with values adjusted at random
intervals and

e the server subscribes to changes of these values as
soon as the clients are connected.

Data on the target system’s performance should then be
gathered by measuring the registration event response latency
of the server on client side and the server’s computing and
working memory utilization on server side during a fixed time
interval the coordinator script has to wait during each run of
the test. The procedure in this scenario should consist of four
consecutive runs, starting with 100 clients during the first run,
increasing to 400 and 800 throughout the second and third
runs and ending up with 1,000 clients during the last run. The
waiting period before shutting down the clients at the end of
each run was set to 90 seconds.

SMART 2020 : The Ninth International Conference on Smart Cities, Systems, Devices and Technologies

B. Coordinator Implementation

The scenario described was implemented as a coordinator
script, according to the principle explained in Section III, and
uses the Bash functions implemented as part of the solution.
The practical process flow for test setups is shown in Figure

Preparation
phase

Startup

Shutdown

Follow-up
phase

Optional
result processing

Figure 2. process flow in unic?ast test setup

The Preparation phase includes tasks that are necessary for
the test execution, but are not to be repeated as part of the test
in each run. This applies, for example, to build the Zephyr-
based application image for the virtualized clients, creating
the network bridge on the host but also booting up the target
system and any other necessary steps to ensure that the target
system can be reached from the test host.

Similarly, the Follow-Up phase includes all activities that
are carried out independently of the individual test runs after
the completed test. This includes for example removing the
network bridge, possibly shutting down the target system, and
evaluating the log files generated on the target system and on
the clients by using R.

The three main phases, however, depend on the design of
the specific test scenario.

The Startup phase includes at least:
e generating the security information of the clients and
announce them to the target system

e starting the clients and assigning the respective IP
addresses

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-805-1

e configuring the clients with the respective security
information and the simulated temperature sensors

The following Runtime phase includes at least:

e connecting the clients to the server via LwM2M
registration

e setting up the subscriptions by the server

e waiting for the period of time specified before the start
of the test

e disconnecting all clients via LwM2M deregistration

The end of a test run with the Shutdown phase is indicated
by:

e terminating the Qemu processes

e deleting the client’s security information from the
server

e collecting the log files of all clients and the server

The implemented coordinator script realizes the main
phases that are repeated during each run inside a loop and
further collects the files containing the measurement data
gathered on client side and on server side. The data evaluation
based on that files after the test’s completion was conducted
by specifically implemented R scripts.

C. Results and Limitations

The subsequent evaluation of the collected data within the
unic?ast project enabled conclusions about the suitability of the
DCCI system regarding its specific requirements, but are not
subject of this paper. However, by benchmarking the real DCCI
system according to the scenario defined above, it was possible
to also draw conclusions about the suitability of the presented
benchmark solution itself, which are explained below.

The test’s preparation and execution revealed some prac-
tical limitations of the presented approach, particularly with
regard to the implementation in Bash and the usage of Qemu
virtualization.

Firstly, the virtual clients cause a relatively high overhead
in resource consumption. Regarding the amount of working
memory, prior experience with lower numbers of clients al-
ready showed that each virtual client must be started with at
least 16 MB RAM for the application to be stable, but in this
case approximately 25 MB of host RAM are actually used
per client, which speaks for a relatively high overhead due
to the virtualization using Qemu. In order to carry out tests
with the scenario described above with up to 1,000 clients, we
therefore decided to use a host machine configuration equipped
with 32 GB working memory, also taking into account some
reserves to be used by the host’s operating system and still
leaving about 5 to 6 GB of RAM free. Although the maximum
number of clients was limited by the scenario, we aimed to
further increase their number using the remaining free memory.
But regarding the CPU usage, our tests showed this to be a
limiting factor as well. Using a machine configuration with 8§
CPU cores we could not run more than about 1,020 clients. We
suspect that this is due to peaks in CPU usage during specific
moments in the client lifecycle, e.g., during Zephyr kernel
startup, configuration parameter provisioning, and temperature
sensor simulation. However, the chosen system configuration
proved to be sufficient for load tests with up to 1,000 vir-
tualized clients. Ultimately, despite these observations, the

10

SMART 2020 : The Ninth International Conference on Smart Cities, Systems, Devices and Technologies

essential positive aspect of this approach should not be un-
derestimated. The development of the test application brought
valuable insights into the Zephyr operating system and its
numerous interfaces. It can be considered close to the real
software development for embedded solutions. This can also be
particularly advantageous in the further course of the unic”ast
project.

Secondly, while Bash scripting proved to be a suitable
way to quickly adapt specific ideas into reality, it also clearly
showed limitations. When the amount of source code grows
over time during a software project, it is likely to run into
specific issues regardless of the programming language used.
Though simple modularization of Bash source is possible by
separating them over several files, it lacks more sophisticated
means to manage evolving dependencies. Furthermore, the
absence of multi-dimensional arrays and the passing of data
between different functions, both being essential elements
in software programming, turned out to be challenges when
using Bash. Ultimately, however, the solution could still be
implemented, which is also be due to the many helpful tools
of the Linux ecosystem, e.g., prips.

V. CONCLUSION

The test setup described in the section above was successful
overall and the listed requirements (see Section II) are demon-
strably met by the presented approach:

e Qemu virtualization is able to run Zephyr OS based
application.

e Qemu virtualization is used to run multiple Zephyr
devices in parallel on the same host.

e The LwM2M client in Zephyr serves as the basis for
the development of a client application that enables a
DTLS secured connection to the target system and can
generate additional load on the target system through
simulated LwM2M resources.

e By using named pipes on the host, a bidirectional con-
nection with the Zephyr OS based applications shell
subsystem is used for the runtime parameterization of
the clients and the interception of all outputs.

e The solutions presented are automated in the form of
Bash script functions and can therefore be used in
different test scenarios.

However, the test also revealed some limitations of the
approach in terms of implementation difficulties due to Bash
scripting and high resource consumption due to the overhead
introduced by the virtualization mechanism.

Considering a possible further development of the pre-
sented benchmark setup, we suppose a replacement of the Bash
based coordinator to be reasonable.

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-805-1

This would not only allow to use a advanced programming
language like Java and its potentially large ecosystem of
tools and frameworks. Moreover, it could let us implement
the solution as an adapter for integration with existing tools
specialized in load testing tool like JMeter. This allows us to
leverage their potentials while not loosing our ability to create
realistic test scenarios based on real-world embedded software
components. Over more scattering virtual client devices among
multiple host systems could be realized. That will decrease the
resource-based limits in the number of simulated devices.

Despite the high overhead in resource consumption, the use
of emulated embedded devices with real application software
has proven to be practical. The additional development of
synthetic devices in network simulators or other specialized
frameworks is not necessary. At the same time, the realized
device behavior is quite close to the real world without the
additional maintenance of a second code base. Furthermore,
our approach tests the actual DCCI implementation and not
a statistical simulation of it. Therefore, we expect test results
which correspond to the real application.

On an overall view, our approach fulfils our formulated
requirements and enables us to implement more complex load
tests with minimum effort and the greatest possible accuracy.

REFERENCES

[1] Statista Research Department. Internet of things - num-
ber of connected devices worldwide 2015-2025. [On-
line]. Available: https://www.statista.com/statistics/471264/iot-number-
of-connected-devices-worldwide/ [retrieved: Dec., 2019]

[2] unic’ast Projekt. [Online]. Available:
jena.de/Projekte/ [retrieved: Aug., 2020]

[3] nsnam. ns-3 — a discrete-event network simulator for internet systems.
[Online]. Available: https://www.nsnam.org/ [retrieved: Feb., 2020]

[4] OpenSim Ltd. OMNeT++ discrete event simulator. [Online]. Available:
https://omnetpp.org/ [retrieved: Jan., 2020]

[5] Apache Software Foundation. Apache JMeter. [Online]. Available:
http://jmeter.apache.org/ [retrieved: Dec., 2019]

http://swt.informatik.uni-

[6] Gatling Corp. Gatling Open-Source Load Testing - For DevOps and
CI/CD. [Online]. Available: https://gatling.io/ [retrieved: Jan., 2020]

[71 Open Mobile Alliance. Lightweight M2M (LWM2M) - OMA
SpecWorks. [Online]. Available: https://www.omaspecworks.org/what-
is-oma-specworks/iot/lightweight-m2m-lwm2m/ [retrieved: Aug., 2019]

[8] Zephyr Project. [Online]. Available: https://www.zephyrproject.org/
[retrieved: Nov., 2019]

[91 E Bellard. QEMU. [Online]. Available: https://www.qemu.org/
[retrieved: Jan., 2020]
[10] Zephyr Project. Shell. [Online]. Available:

https://docs.zephyrproject.org/2.1.0/reference/shell/index.html
[retrieved: Apr., 2020]

11

