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Abstract— The smart grids’ heavy reliance on cyber 

resources introduces frequent security concerns. The extensive 

attack surface revealed by the Advanced Metering 

Infrastructure (AMI) along with the distribution of sensitive 

data including; customer information, billing, and control 

information will provide attackers with a major economic 

reason to attempt the attacks. To ensure the security protocols 

between the various parties in smart grid are secure, 

automated security verification tools are sought. This paper 

presents one method of security verification for 

communications protocols between smart meters, a central 

gateway, and supervisory nodes using the CryptoVerif tool. 

There are two types of networks supported by these protocols, 

namely direct and indirect communication between smart 

meters and the central gateway. Each of these protocols has 

three sub-protocols: Enrollment and activation, Smart meter 

to central gateway security process, and key update and 

exchange process. The analysis of these protocols proceeds in 

two phases. In the first phase, the protocols were manually 

analyzed for security flaws, inconsistencies, and incorrect 

usage of cryptographic primitives. During the second phase, 

the protocols were analyzed using CryptoVerif, an automated 

formal methods-based analysis tool. Several efficiency 

improvements are presented as an outcome of these analyses. 

Keywords— Security protocol; smart meters; smart grid; 

formal verification; CryptoVerif. 

 

I. INTRODUCTION 

   Today’s smart grid networks, especially the smart meters, 

have more stringent security requirements compared to the 

traditional power grid of last decade [1]. This is primarily 

due to a smart grid offering a myriad amount of connections 

and thus is susceptible to security incidents. On top of that, 

new protocols are frequently introduced to take full 

advantage of available features and resources, such as 

appliances’ operation schedule, incident reporting, and 

utilizing shared/public charging stations. Saed et al. [2] 

presented security protocols for smart meters within the 

smart grid. Before deploying any security protocol, it is 

prudent to do a thorough security analysis to understand the 

protocols’ strengths and weaknesses. 

The proposed protocols were designed to provide secure 

communications among three entities: user nodes, a central 

gateway, and supervisory nodes. A user node (smart meter), 

denoted by U, is an end-entity, typically a smart meter unit 

that wants to connect to a collector (central gateway). A user 

node may be directly connected to either a central gateway 

or another user node. Multiple user nodes are denoted by Ui, 

where i = 1 to n. The Central Gateway (collector), G, acts as 

a connection medium between a user node and a supervisory 

node (Substation). When there are multiple central gateways 

involved in a protocol, G1, G2… Gn are used. Finally, a 

supervisory node (substation), S, plays the role of a 

Certificate Authority (CA) in a Public Key Infrastructure. 

Note that the symbols and notations used in the above-

mentioned protocols have been changed to serve the 

requirements of the verification tools. 

   The purpose of those communications is for the node 

(smart meter) to provide authenticated information, such as 

temperature readings and electricity consumption, to the 

gateways. The gateways would then bill the node based on 

the information received. To facilitate secure and 

authenticated communication between a node and a central 

gateway, the server (Substation) acts as a Certificate 

Authority that provides certificates to nodes and gateways. 

These protocols are expected to run over the DNPSec [3]-

[4], a security framework for Distributed Network Protocol 

Version 3 (DNP3). DNP3 is an open and optimized protocol 

developed for the Supervisory Control and Data Acquisition 

(SCADA) Systems supporting the utility industries. Overall 

analysis of security protocols starts with manual analysis 

(phase1) followed by formal verification (phase2). In the 

first phase, thorough manual analysis is performed on all the 

protocols, with special attention given to renaming and 

arranging the symbols and notations used in the three 

protocols as these notations may not suitable for the 

verification algorithm. In the second phase, protocols are 

analyzed using a formal method-based approach. Formal 

methods-based verification consists of a process for 

generating a set of reductions that connects the protocol to 

some known hard problems. It is usually carried out 

manually, which may require a lot of creativity and effort. 

This could have a direct impact on the cryptographic design 

of the protocol. However, modern protocols tend to be more 

and more complicated and it is possible that a manual 

analysis may not cover all the aspects. Additionally, human 

errors may surface during the generation of long sequences 

of proofs. To this end, researchers sometimes resort to 

automated verification tools.  

   An excellent verification tool is CryptoVerif [5]. It is an 

automated tool to verify the secrecy and authenticity of a 

cryptographic protocol. It provides a generic mechanism for 
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specifying the security assumptions on cryptographic 

primitives.  

   CryptoVerif has been used to analyze a number of 

important schemes and protocols in the field. Bhargavan et 

al. [6] performed a formal verification using CryptoVerif 

and established the correctness of the authenticated key 

exchange protocol within the Transport Layer Security 

(TLS) protocol. The authors also provided an automated 

proof that concluded the security of the handshake protocol 

within TLS is as hard as the underlying Diffie-Hellman 

assumption over certain groups. In the field of network 

security, TLS is perhaps the most important and widely used 

protocol for secure communications over the Internet [7]. 

Numerous analyses have been performed using this scheme 

over the years, in instances where manual analysis is 

performed to show the correctness of the scheme [8]-[10]. 

   Blanchet and Pointcheval [11] analyzed the Full Domain 

Hash (FDH) scheme where CryptoVerif was used to 

generate automated security proof via sequence games. 

Their analysis showed that the FDH was scheme remains 

secure so long as the RSA scheme and the hash function are 

secure. FDH formalized by Bellare and Rogaway in [12] 

using the RSA encryption scheme [13]. 

   Prior to introducing CryptoVerif, Blanchet [14], 

introduced another tool, ProVerif. This tool is enhanced and 

improved to get the CryptoVerif tool. 

This paper adopts the CryptoVerif tool to analyze the three 

protocols presented in [2]. It first presents formalized 

descriptions of all the protocols performed. This is done by 

addressing some of the shortcomings identified during 

manual analysis, such as the translation of the notations 

used in the three protocols language in accordance to the 

language understood by cryptoVerif tool. The manual 

analysis also identified the potential for improvements to the 

protocols in terms of network throughput and latency. Next, 

the protocols were translated into the language (codes) of 

CryptoVerif for formal verification. These codes were then 

executed using the tool, generating a sequence of proofs that 

confirm the security of the protocol. 

   The reminder of the paper is organized as follows: Section 

II provides all the necessary notations and primitives. 

Overview of formal verification and CryptoVerif tool are 

presented in Section III. Section IV presents all the three 

protocols [2] used in CryptoVerif language. In Sections V 

and VI, source code for CryptoVerif and the outputs of 

running those codes in CryptoVerif are discussed. Section 

VII introduces the proposed changes. Finally, Section VIII 

concludes the paper with suggestions for future work. 

 

II. NOTATIONS AND PRIMITIVES 

   This section will briefly introduce the notations and 

primitives needed for implementation of CryptoVerif. In 

Tables I and II depict a list of symbols and notations used. 

A. Notation: 

   Protocols are described using the dot (.) notation. For 

example, the encryption key ek of user U is denoted by 

U.ek. For two bit strings x, y, x||y denotes their 

concatenation, and x XOR y denotes their bitwise exclusive-

OR. Finally, for any two entities, such as U and S, and a 

message m, U  S : m denotes that U sends m to S. 

B. Cryptographic Primitives: 

   Three cryptographic primitives: Hash Function, Public 

Key Encryption, and Digital Signature are described in this 

section. They will be used in the protocols described in 

Section III. Detailed definition of the notations used can be 

found in [14]-[15]. 

1) Hash Function: A cryptographic hash function 

family is a set of hash functions HFs, such that each HF ϵ H 

is a mapping from {0, 1} m to {0, 1} n, where m, n ϵ N, and 

m > n. The security of a cryptographic hash function is 

defined in terms of an adversary’s ability to invert the 

function (one-way property), and find collisions in the 

functions (collision-resistance property). Detailed security 

definitions are omitted from this paper. There are many 

forms of cryptographic hash functions. The National 

Institute of Standards and Technology (NIST) has 

recommendations for some of them [16]-[17]. 

2) Public Key Encryption: A public key encryption, E, 

involves Key Generation Algorithm (EKG), Encryption 

Algorithm (ENC), and Decryption Algorithm (DEC), with 

the associated security parameter 1ּג and message space M, 

consists of the following three probabilistic polynomial-time 

primitives: 

a) Key Generation: (ek, dk)   EKG(1
גּ
) Here, the 

input is the security parameter 1
גּ
, and the output is pair of an 

encryption key ek and a decryption key dk. 

   

TABLE I. GENERAL NOTATIONS AND SYMBOLS 

Symbol Meaning 

SCADA Supervisory Control and Data Acquisition 

DNP3 Distributed Network Protocol Version 3 

Ui User Node (Smart meter) #i, i=1, 2, …n 

G Central Gateway (Collector) 

S Supervisory Node (Substation) 

Aux Auxiliary time: Period of validity (T1 & T2)  

CPU Center Processing Unit 

NIST National Institute of Standard and Technology 

XOR Exclusive OR 

LIST List of all {U.ID, U.AID} Pairs 

ɛ Probability 

f(ɛ) Function of Probability 
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TABLE II. PROTOCOLS NOTATIONS & SYMBOLS 

Symbol Meaning 

 Security Parameter ג1ּ

c Ciphertext 

Ui.ID User Node Identity 

ek Public Key/Encryption Key 

sk Private Key or Signing Key 

Ui.AID User Node anonymous identity 

Ui.pk User Node public key 

Ui.sk User Node private key 

Gi.ID Central Gateway Identity 

Gi.AID Central Gateway anonymous identity 

Gi.pk Central Gateway public key 

Gi.sk Central Gateway private key 

σ Signature 

s Digital Signature Scheme 

vk Verification Key 

DSS.sk Signing Key of s 

DSS.vk Verification Key of s 

Gi.DSS.sk Central Gatway signing key 

Gi.DSS.VK Central Gateway verification key 

Ui.r User Node #i ’s Reading, i=1, 2, …n 

Ui.t User Node #i ’s Processor temperature, i=1, 2, 

…n 
Hash(Ui.r) Hash value for User Node #i ’s reading, i=1, 2, 

…n 
Ui.M Ui.M = Ui.r XOR Ui.t 

S.pk Supervisory public key 

S.sk Supervisory private key 

A-IDi, A-IDg , A-

IDs 

Anonymous ID for Node, Central Gateway & 

Supervisory 
Gcert, Ui–cert, CRi Certificate of Central Gateway and User Node i 

respectively 
|| Concatenation 

E Public Key Encryption 

 Send to 

 Result 

DEC Decryption Algorithm of E 

dk Decryption Key of E 

EKG Key Generation Algorithm of E 

ENC Encryption Algorithm of E 

H Cryptographic Hash Function Family 

HF Hash Function 

M Message Space 

m Message 

SIG Signature Algorithm of s 

SKG Key Generation Algorithm of s 

VER Verification Algorithm of s 

 

b) Encryption: c   ENC(ek,m) For this notation, the 

input is an encryption key ek ϵ EKG(1
גּ
) and a message m ϵ 

M, and the output is a ciphertext c. 

c) Decryption: m   DEC(dk, c) Here, the input is a 

decryption key dk and a ciphertext c, where (ek, dk) ϵ EKG 

(1
גּ
), m ϵ M, and c ϵ ENC(ek, m). 

   These need a correctness criterion, which is stated as 

follows: for every (ek, dk) ϵ EKG(1
גּ
), m ϵ M, and c ϵ 

ENC(ek, m), the probability that DEC(dk, c) ≠  m is 

negligible. 

   The security of the encryption scheme is defined in terms 

of an adversary’s ability to learn partial information about 

the message underlying a ciphertext and is based on attack 

models, such as Chosen-Plaintext Attack and Chosen-

Ciphertext Attack [18]. There are many forms of public key 

encryption algorithm. NIST has recommendations for 

factoring-based algorithms [19] and discrete logarithm-

based algorithms [20]. 

3) Digital Signature Scheme: A digital signature 

scheme, S = (SKG, SIG, VER), with the associated security 

parameter 1
גּ
 and message space M, consists of the 

following three probabilistic polynomial time algorithms: 

a) Key Generation: (sk, vk)   SKG(1
גּ
) For this 

notation, the input is security parameter 1
גּ
 and the output is 

a pair of a signing key sk and a verification key vk. 

b) Signature: σ  SIG(sk,m) For this notation, the 

input is a signing key sk ϵ SKG(1
גּ
) and a message m ϵ M, 

and the output is a signature σ 

c) Verification: 1/0  VER(vk, m, σ) For this 

notation, the input is a verification key vk, a message m, and 

a signature σ, where (sk, vk) ϵ SKG(1
גּ
), m ϵ M, and σ ϵ 

SIG(sk,m). The output is 1 for valid signature, and 0 for 

invalid signature. These need a correctness criterion, which 

is stated as follows: for every (sk, vk) ϵ SKG(1
גּ
), m ϵ M, 

and σ ϵ SIG(sk,m), the probability that VER(vk, m, σ) ≠ 1 

is negligible. 

   The security of signature schemes is defined in terms of an 

adversary’s ability to forge a signature and is based on 

attack models, such as Chosen-Message Attack.  There are 

many forms of digital signature scheme. NIST has 

recommendations for some of them [21]. 

 

III. OVERVIEW OF CRYPTOVERIF 

   This section will present provable security and formal 

verification required for using the CryptoVerif tool. Also, 

this section will explain briefly the CryptoVerif code. 
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A. Provable security and Formal verification 

   When analyzing the security of cryptographic protocols, a 

notion of “provable security” is raised, where adversaries 

are modeled as probabilistic polynomial time Turing 

machines with capabilities and limitations of the verification 

tool. Through such modeling, one can prove that the 

cryptographic protocol is secure by showing that if there 

exists an adversary under the defined model that breaks the 

protocol, then the certain hard mathematical problem 

becomes easy to solve. A proof is then obtained via 

contradiction: since this problem is hard to solve, then it 

must be that the protocol is also hard to break.  A security 

proof for a given protocol is a reduction from the protocol to 

a problem assumed to be hard. This reduction can be 

obtained via a sequence of games, where each game is a 

slight modification of the previous one. 

   Formal verifications, or formal methods, as defined in the 

Dolev-Yao et al [22] framework, is a method to obtain a 

proof. As shown in [23], the reductions of a proof are 

obtained via a “sequence of games” (also known as the 

game hopping technique), where each game differs from 

previous one by being slightly changed. The sequence of 

games is statistically or computationally indistinguishable 

from the point of view of an adversary. In such a proof, the 

initial game is the real attack game that models the 

adversary and the protocol. Then, two consecutive games 

will look either identical, or very close to each other in the 

view of the adversary. 

1) Rename  some variables. In this case the two games 

are perfectly identical. 

2) Replace one variable x with another one y where the 

distributions are “statistically” indistinguishable. Here, the 

two Games are statistically identical except for negligible 

probabilities. 

3) Replace one variable x with another one y where the 

distributions are “computational” indistinguishable - 

distinguishing two Games implies the ability of solving a 

certain computational hard problem. 

   The proof is obtained via a chain of reductions such that if 

an adversary is capable of breaking the initial game (given 

protocol) with certain probability ɛ, then he/she is also able 

to break the final game with probability function of f(ɛ). 

Since the final game is assumed hard - in other words f(ɛ) is 

negligible- it is implied that ɛ itself is also small. 

   In the final game, a certain known hard problem will be 

arrived at in which the adversary is believed to be incapable 

of solving. 

B. CryptoVerif 

   CryptoVerif is an automatic tool to generate a sequence of 

games. CryptoVerif can also evaluate the probability of 

success of an attack against the protocol as a function of the 

probability of breaking each cryptographic primitive and of 

the number of sessions (exact security). A list of reserved 

words of the CryptoVerif tool syntax is listed in Table III: 

1) Reading the output and games 

   As mentioned earlier, CryptoVerif presents the results in 

terms of a sequence of games. As one shall be seen in 

Section V, the sequence is presented as follows. Using the 

source code, CryptoVerif performs a compilation 

optimization to produce the initial game, game 0. This 

process does not change the content of the source code. In 

other words, the initial game is equivalent to the source code  

written in CryptoVerif syntax, as it performs a sequence of 

reductions through the chain of the games. Only slight 

difference is observed between each two consecutive games. 

Such differences may be due to one of the following 

reasons: 

a) Removing an unused variable. This is done with 

simplification pass, see VI-C for instance. 

b) Removing variables that do not have an impact on 

the game. This is done with findcond, see VI-B for instance. 

c) Applying equivalence between certain 

cryptographic primitive and pre-defined probability; see VI-

E for instance. 

   Through this sequence of the reductions, the final game, 

which is secured by assumption, is arrived at. This 

completes the overall proof. If an attacker is able to break 

the protocol which is equivalent to the initial Game, then the 

attacker will also be able to break the underlying encryption 

algorithm with probability of at least Penccoll, or break 

Game 7. These are illustrated in Section VI-G. 

 
TABLE III. CRYPTOVERIF INSTRUCTIONS 

Keyword Meaning 

const declare a constant 

expand expand a cryptographic primitive 

fun abstract functions 

if . . . then . . . conditional flow control 

in input to a channel 

out output to a channel 

let assign value to a variable 

new declare a variable for a given type 

proba declare a probabilistic variable 

process main function 

type define a new type of variable 

 

2) Limitations of CryptoVerif:  

   CryptoVerif is a tool to generate a chain of proofs in the 

form of a sequence of games, to show a reduction from a 

given protocol into a certain hard mathematical problem or 

assumed-hard problem. Such a proof does not guarantee the 

security of the final game. Thus, if an insecure hash 

function, for example SHA-1 [24] is used, CryptoVerif will 
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still produce a valid reduction to SHA-1. However, the 

scheme will no longer be secure due to the insecurity of 

SHA-1. Another limitation of CryptoVerif is that it does not 

find redundancy in the protocols. The redundancy occurs 

when extra and maybe unnecessary cryptographic 

operations are performed. Such operations will not reduce 

the overall security of the system. Hence, from 

CryptoVerify point of view, those operations are not flagged 

as they are still technically correct. 

 

IV. SMART METER SECURITY PROTOCOL 

   In this section, the three protocols [2] are presented. The 

protocols described in sections A and B are for the direct 

communication setting as shown in Figure 1, and the one 

described in section C is for the indirect communication 

setting as depicted in Figure 2. The direct and indirect 

communications are between the user node and the central 

gateway. 

 

 
Figure 1. Direct communication. 

 

 

 
Figure 2. Indirect communication. 

 

A.   Direct communication 

The first protocol consists of three processes: Enrollment 

and activation process, Security process, and Key update 

and exchange process. 

1) Enrollment and Activation Process 

  In this process, the user nodes (smart meters) and the 

central gateways will be enrolled and activated so that they 

will be authenticated during the rest of the processes in 

sections IV-A-2 and IV-A-3. This process is as follows: 

Step 1: The supervisory node S obtains the identities of all 

user nodes {Ui, ID}i=1,2… and identities and encryption keys 

of all central gateways {Gi.ID, Gi.ek}i=1,2…  

Step 2: S  {Ui}i=1,2… : {Gi.ID, Gi.ek}i=1,2… 

S simply forwards to all user nodes the identities and 

encryption keys of all central gateways that it obtained in 

step 1. 

Step 3: S  {Gi}i=1,2… : {Ui.ID}i=12… 

S simply forwards the identities of all user nodes that were 

obtained in step 1 to all central gateways. 

Step 4: G  U : (m3σ3), where 

m3  (U.ek || G.ID), and 

σ3   SIG(G.sk,m3). 

Here, G sends a request message and signature to U. 

Step 5: U extracts G.ID from m3 and validates it against the 

list obtained in step 1. 

Step 6: If step 4 is successful, U  G : c5   ENC(G.ek, 

m5), where 

m5  (U.ID || U.ek). 

Step 7: G decrypts c5: m5   DEC(G.dk, c5), extracts U.ID 

from m5 and validates it against the list obtained in step 2. If 

validation is successful, G extracts U.ek from m5 and stores 

it. 
 

2) Security Process 

   Once the nodes are activated, they will be able to send 

relevant data to the gateways during this process. 

Step 1: U  G : c1, where c1   ENC(G.ek, m1). Here, 

m1  (U.r || U.t || U.m || h), U.r is U’s reading, U.t is U’s 

CPU temperature, and U.m   (U.r XOR U.t). Finally, h   

HF(U.r). 

Step 2: G decrypts c1 : m1   DEC(G.dk, c1), extracts 

(U.ID, U.t, U.m, h) from m1, computes U.r   (U.t XOR 

U.m), and checks if h = HF(U.r). If the check is successful, 

G stores U.r. 

 
3) Key update and exchange process 

   The last process of protocol A is a process for both nodes 

and gateways to update their keys. The process of the 

gateways will be shown as follows in the steps below. The 

process to update keys for U is similar, and therefore 

omitted for simplicity. 

Step 1: G  U : (c1 || G.ID), where 

c1  ENC(U.ek, G.ek || G.vk || σ), and 

σ   SIG(G.sk, G.ek || G.vk). 

Step 2: U decrypts c1: m1  DEC(U.dk, c1), extracts (G.ek, 

G.vk, σ) from m1, and checks if VER(G.vk, G.ek || G.vk, σ) 

= 1. If the check is successful, U stores G.ek and G.vk. 

B. Direct communication- Certificates 

   The second protocol consists of three processes: 

Enrollment and activation process, Security process, and 
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Key update and exchange process. Compared to protocol A, 

here the major difference will be the presence of certificates. 

1) Enrollment and activation process 

   The purpose of this process is to establish enrollments for 

nodes and gateways with the help of certificates. Some of 

the variables used below will be used in other sections 

preserving the same meaning. 

Step1: G  S : c1  ENC(S.ek, m1), where 

m1  (G.AID || G.ID || G.ek) 

Step2: S  G : c2  ENC(S.ek, cert2), where 

cert2  (m2 || σ2) 

σ2   SIG(S.sk, m2) 

m2   (m1 || AUX). 

m1   DEC(S.dk, c1). 

Step3: U  S : c3   ENC(S.ek, m3), where 

m3   (U.AID || U.ID || U.ek).  

Step4: S  U : c4  ENC(S.ek, cert4), where 

cert4  (m4|| σ4) 

σ4  SIG(S.sk, m4). 

m4  (m3 || AUX). 

m3  DEC(S.dk, c3). 

Step5: S  G : LIST, where 

LIST is a list of all {U.ID, U.AID} pairs. 

2) Security Process 

   Once connections are established, this process, is adopted 

to exchange data between user nodes and central gateways. 

Step1:  U and G exchange their certificates. 

Step2: Each party verifies the certificate to obtain the other 

party’s ek and ID. 

Step3: sk and ID are accepted if AUX information is also 

verified. 

Step4: Apply the steps of A-2. 

3) Certificate Update Process 

   This last process of protocol B allows the users and 

gateways to update their certificates. 

Step1: S informs U and G to create new keys 

Step2: Both parties will follow same steps as B-1 to get 

new certificates. 

C. Indirect Communication 

The last protocol consists of three processes: Enrollment, 

Activation and Certificate Exchange, Secure Reading 

Collection Process, and Key Update and Certificate 

Exchange Process. 

1) Enrollment, Activation, and Certificate Exchange 

   This process allows user nodes and central gateways to 

exchange their certifications. 

Step1: Ui  G : c1  ENC(G.ek, m1), where 

m1   (Ui.AID || Ui.ID) 

Step2: G  Ui : e2  ENC(Ui.ek, m2 || σ2), where 

σ2  SIG(G.sk, m2) 

m2  Ui.E.pk || Ui.AID || Ui.AUX 

Step3: On node Uj for i ≠ j: forward the message. 

Step4: On node Ui: 

m2 || σ2  DEC(Ui.sk, e2); 

Ui Store m2 and σ2 as the message and certificate pair. 

2) Secure Reading Collection Process 

   This process allows user nodes to send their readings to a 

central gateway, via either a direct connection or an indirect 

connection. The data flow is omitted due to the involvement 

of multiple entities. 

Step1: Processing at node Ui: 

Ui.T  TRNG; 

Ui.R  reading of the data; 

Ui.M  Ui.T XOR Ui.R; 

m1   Ui.M || Hash(Ui.R) || Ui.T 

σ1   SIG(Ui.sk, m1) 

Ui.Y  ENC(G.ek, m1 || σ1) 

Step2:  Ui  Ui-1: c2, where 

c2   ENC(Ui-1.ek, Ui.Y) 

Step3: On node Ui-1: 

Compute Ui-1.Y as in step 1; 

Ui.Y  DEC(Ui-1.dk, c2) 

Step4: Ui-1  Ui-2 : c4, where 

Using a pseudonym number generation to randomize the 

output (c4)   

b   a random bit; 

if b = 1, c4   ENC(Ui-2.ek, Ui.Y || Ui-1.Y) 

else c4  ENC(Ui-2.ek, Ui-1.Y || Ui.Y) 

Step5: Repeat steps 1-4 for all other user nodes until G is 

reached. 

Step6: Processing at G: 

mj  DEC(G.dk, cj); where j = 1 to N 

Extract Ui.Y from mj for each user; 

m1 || σ1  DEC(G.dk, Ui.Y); 

Step7: Check the correctness of σ1 

Extract Ui.T , Ui.M and recover Ui.R 

G Store the reading Ui.R if σ1 is verified 

3) Key Update and Certificate Exchange Process 

   This last process allows the entities to update their keys 

and the certificates associated with them.  

Step1: G  U : e1|| G.ID, where 

(G.ek`, G.dk`)   KG(1
גּ
) 

(G.sk`, G.vk`)  KG(1
גּ
) 

e1    ENC(U.ek, m1|| σ1) 

m1   G.ek` || G.sk` 

σ1    SIG(G.sk, m1) 

Step2: On node U 

m1 || σ1    DEC(U.dk, e1) 

Extract G.ek` and G.vk` from m1 

If VER(G.vk, m1, σ1) = 1, accept G.ek` and G.vk` 

Step3: U  G : e3 || U.AID, where 

(U.ek`, U.dk`)    KG(1
גּ
) 

(U.sk`, U.vk`)    KG(1
גּ
) 

m3   U.ek` || U.sk` 

σ3   SIG(U.sk, m3) 

e3   ENC(G.ek, m3 || σ3) 

Step4: On node G 
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m3 || σ3   DEC(G.dk, e3) 

Extract U.ek` and U.vk` from m3 

If VER(U.vk, m3, σ3) = 1, accept U.ek` and U.vk` 

V. CRPTOVERIF CODE 

   The CryptoVerif code for process A-1 of protocol A 

(section IV-A-1) will be provided in this section. All the 

code sections share the same set of pre-defined parameters 

and macros. The sections display all the related symbols, 

notations, functions, and algorithms for all the related 

entities, namely Nodes, Gateways, and Servers, are defined 

using CryptoVerif language as follows: 

A. Defining hosts, nodes, gateways and server 

t y p e  host [ bounded ] .  

c o n s t  Node : host . (* node s) 

c o n s t  Gateway : host . (* gateway)  

c o n s t  Server : host  . (* server)  

B. Defining Parameters 

   The relevant macros are given as below. The spaces 

are the locations where the variables, such as the reading R 

or the time T, are drawn from. 

t y p e Rspace [ bounded ] .  

t y p e AIDspace [ bounded ] .  

t y p e AUXspace [ bounded ] . 

C. hash function 

   The hash functions, encryption functions, and decryption 

functions are defined. A hash function has two inputs, an 

input channel hc1 and an output channel hc2. The exact 

hash function to be used (such as SHA-2) is not defined here 

since only abstract functionality is required here. 

param qH [ noninteractive ] .  

channel hc1 , hc2 .  

let hash oracle = ! qH i n ( hc1 , x : bit string ) ;  

out ( hc2 , hash ( hk , x ) ) . 

D. Public key encryption parameters 

   Public key, secret key (private key), seed, block size, and 

key generation parameters are defined below.  

t y p e pkey [ bounded ] .  

t y p e blocksize [ fixed ] .  

proba Penc .  

proba Penccoll .  

expand IND CCA2 public key enc ( keyseed, pkey, skey, 

blocksize, bit string, seed, skgen, pkgen, enc, dec, injbot, Z, 

Penc, Penccoll). 

E. Digital signature algorithms 

   The key locations, ciphertext spaces, and the seeds for 

both key generations and encryptions are defined. Then, the 

probability of an adversary breaking the scheme is also 

defined in order to achieve a meaningful reduction at the 

end. The encryption algorithm will be equivalent to an 

expansion over the above variables. The codes for signature 

function are as follows: 

t y p e sskey [ bounded ] .  

proba Psign .  

proba Psigncoll .  

expand UF CMA signature (keyseed, spkey, sskey, 

sblocksize, signature, sseed, sskgen, spkgen, sign, check, 

Psign, Psigncoll). 

F. Defining I/O channels 

   The key spaces and ciphertext spaces are defined, as 

well as the seeds for both key generations and signatures. 

Also, as in encryption scheme, the probability of an 

adversary breaking the scheme is also defined, in order to 

achieve a meaningful reduction in the end. The signature 

algorithm is then an expansion over the above variables. In 

CryptoVerif, the variables of different types are not 

compatible. To solve this issue, conversion functions to 

resolve the incompatibility between different types are 

defined. To save space the conversion functions are omitted. 

The last step before protocol simulation is to define the 

input and output channels. Depending on the actual 

protocol, the number of channels may vary as defined 

below: 

c h a n n e l c0 , c1 , c2 , c3 , c4 , c5 , start , finish . 

G. Defining Gateway parameters 

new gid : IDspace ;  

new gateway seed : keyseed ;  

l e t gspk = spkgen ( gateway signseed ) i n  

l e t gssk = sskgen ( gateway signseed ) i n  

H. Defining server (substation) parameters 

new sid : IDspace ;  

new serverseed : keyseed ;  

l e t sspk = spkgen ( server signseed ) i n  

l e t sssk = sskgen ( serversignseed ) i n  

I. Defining user node (smart meter) parameters 

new nid : IDspace ;  

new nodeseed : keyseed ;  

l e t nepk = pkgen ( nodeseed ) i n  

l e t nesk = skgen ( nodeseed ) i n  

J. Message generation and signature 

   The gateway generates a message which is the 

concatenation of Node’s encryption key and Gateway’s ID. 

The Gateway also signs this message. 

l e t process step 4 =  

i n ( c0 , (= nepk ,= gid ,= gssk , hostX : host ) ) ;  

i f ( hos tX = Gateway ) t h e n  

o u t ( c1 , (m, sigma ) ) .  
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K. Extracting the gateway’s ID 

   The node extracts the Gateway’s ID from the message and 

validates it against the list obtained in G above. It then 

forms another message by concatenating the ID with the 

Node’s public key. If the code in J above is successful, the 

message will be encrypted with the public key of the central 

gateway. 

let process step 5 6 =  

in ( c1 , (msg : sblocksiz e , gidrec : IDspace , =  

nid , =nepk , =gepk , hostX : host ) ) ; 

if ( hostX = Node ) t h e n  

new encseed : seed ;  

let cipher = enc (m2 , gepk , encseed ) in  

out ( c2 , cipher ) .  

L. Message decryption 

   The Gateway decrypts the message and extracts the 

Node’s ID. 

let process step 7 =  

in (c3, (= gesk, cipher: bitstring,=nepk,=nid,hostX: host)); 

if ( nidrec = nid ) t h e n  

out ( c4 , ( nid , nepk ) ) .  

M. Assembling all process 

   Finally, a master process is called to assemble all those 

processes 

p r o c e s s  

i n ( start , ( ) ) ;  

o u t ( finish , ( nid , nepk , gid , gs sk , ge sk ) ) ;  

( process step 4 | process step 5 6 | process step 7 ) 

VI. CRYPTOVERIF RESULTS 

   To begin with, a block diagram of the reduction flow is 

presented in Figure 3. Then, the details of the proofs are 

illustrated for section IV-A-1 as follows: 

A. Game 1- Initial State 

in ( s t a r t , ( ) ) ;  

new gid 218 : IDspa c e ;  

new gateway seed : keyseed ;  

let gepk : pkey = pkgen ( gateway seed ) in  

let gesk : skey = skgen ( gateway seed ) in  

new serversignseed : skeyseed ;  

let sspk : spkey = spkgen ( serversignseed ) in  

let sssk : sskey = sskgen ( serversignseed ) in  

new nid : IDspace ;  

new nodeseed : keyseed ;  

if ( hostX 220 = Gateway ) t h e n  

new sigseed : sseed ; 23 

let m: sblocksize = concat 5 ( gid 218 , nepk 219 ) i n 

let sigma : signature = sign (m, gssk , sigseed ) in 

out ( c1 , (m, sigma ) )) j (  

in ( c1 , (msg : sblocksize , gidrec : IDspace , =  

nid , =nepk 219 , =gepk , hostX 221 : host ) ); 

if ( hostX 221 = Node ) t h e n  

let concat 5 ( gid 223 : IDspace , nepk 222 : pkey ) = msg in 

if ( gid 223 = gidrec ) t h e n  

let m2 : blocksize = concat 4 ( nid , nepk 222 ) in 

new encseed : seed ;  

let cipher 2 2 4 : bitstring = enc (m2 , gepk ,encseed ) i n 

out ( c2 , cipher 2 2 4 ) ) j (  

in ( c3 , (= gesk , cipher 2 2 6 : bitstring , =  

nepk 219 , =nid , hostX 225 : host ) ) ; 

if ( nidrec = nid ) t h e n  

out ( c4 , ( nid , nepk 219 ) )  

B. Difference between Game 1 and 2 

   In game 2, the find condition function, findcond, is 

applied to remove the assignments for the following 

variables in the code: gspk, sepk,sesk, sspk,sssl and nesk. 

These are the variables that were not used in the game but 

necessary during the execution. For example, the public key 

for the central gateway gspk was not used, but since its 

secret key is crucial to the proof, it is still necessary to 

generate this key for the protocol. To sum up, this 

modification yields the removal of the following lines of 

code: 

l e t gspk : spkey = spkgen ( gateway signseed ) in  

new sid : IDspace ;  

l e t sssk : sskey = sskgen ( serversignseed) in  

l e t nesk : skey = skgen ( nodeseed ) in  

C. Difference between Game 2 and 3 

   In Game 3, a simplification process is performed to 

remove the following lines: 

new sid : IDspace ;  

new serverseed : keyseed ;  

new serversignseed : skeyseed ;  

D. Difference between Game 3 and 4 

   In Game 4, the tool tries to remove assignments for the 

variable nepk. This yields: 

- out ( f i n i s h , ( nid , nepk 241 , gid 240 , gssk ,  

gesk ) ) ; 

+ out ( finish , ( nid , pkgen ( nodeseed ) , gid 240 ,  

gssk , gesk ) ) ; 

in ( c0 , (= nepk 241 , =gid 240 , = gssk ) ) ; 

+ in ( c0 , (= pkgen ( nodeseed ) , =gid 240 , = gssk ) ); 

l e t m: sblocksize = concat 5 ( gid 240 ,  

nepk 241 ) i n 

+ l e t m: sblocksize = concat 5 ( gid 240 , pkgen (  

nodeseed ) ) in 

in ( c3 , (= gesk , cipher 2 4 5 : bitstring , =  

nepk 241 , = nid ) ) ; 

+ in ( c3 , (= gesk , cipher 2 4 5 : bitstring , =pkgen  

( nodeseed ) , = nid ) ) ; 

out ( c4 , ( nid , nepk 241 ) )  

+ out ( c4 , ( nid , pkgen ( nodeseed ) ) )  
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E. Difference between Game 4 and 5 

   The formal reductions are performed in Game 5, where 

the tool applies the following:  

   IND CCA2(enc) with node seed, encseed = probability 

Penccoll + Penc(time(context for Game 4) + time, 0 ). This 

equation indicates the security of the underlying encryption 

primitive, depending on the ciphertext indistinguishability 

against chosen ciphertext attacks (IND-CCA), which is a 

function of the probability of finding collisions (Penccoll) 

and the time of encryption (Penc). With a few substitutions 

for some of the variables, this yields: 

-  new nodeseed : keyseed ;  

-  out ( finish , ( nid , pkgen ( nodeseed ) , gid 240 ,  

- new encseed : seed ; 11 

- l e t cipher 2 4 4 : bitstring = enc (m2 , gepk ,  

encseed ) in 

+ l e t @8 x 285 : blocksize = m2 i n  

+ l e t @8 y 284 : pkey = gepk i n  

+ l e t cipher 2 4 4 : bitstring = enc (@8 x 285 ,  

@8 y 284 , @8 r3 287 ) in 

F. Difference between Game 5 and 6 

   During this step, the individual variables for public keys 

and ciphertexts are removed. Their values are saved. These 

variables are passed directly to the encryption function for 

compactness. 

- l e t @8 x 285 : blocksize = m2 in  

- l e t @8 y 284 : pkey = gepk in  

- l e t cipher 2 4 4 : bitstrin g = enc (@8 x 285 ,  

@8 y 284 , @8 r3 287 ) in 

+ l e t cipher 2 4 4 : bitstring = enc (m2,gepk,@8 r3 287 ) in 

G. Difference between Game 6 and 7 

   Since the encryption function in previous step has been 

made explicit without referring to 

run-time variables, there is no need to use an encryption 

seed anymore. This is reflected in this code below: 

new encseed 286 : seed ;  

Once Game 7 is reached, a conclusion is generated via the 

following inequality: 

ADV(Game1; Initial Game) ≤ Penccoll + Penc(time(Game 

4) + time, 0) + ADV(Game7; Initial Game)      (1) 

   This implies that the Advantage an adversary gains to be 

able to break the initial Game is less than or equal the sum 

of three quantities; the probability to break the encryption 

scheme Penccoll,  the time to perform various polynomial 

time algorithms such as  key  generation  and  encryption 

Penc(time(Game 4) + time, 0),  and  the  Advantage  of 

breaking the last Game by the adversary ADV(Game7;  

Initia  Game). By assumption, this last quantity is bounded 

by: 

ADV(Game7; Initial Game) ≤ 0      (2) 

   The last two quantities are both small. Hence, if the 

adversary is able to break the IV-A-1 process, Penccoll must 

be non-negligible, which implies that the adversary must 

also be able to break the underlying encryption algorithm. 

H. Summary of Statistical Analysis 

   The summery of the statistical analysis for the three 

protocols and the number of Games that is required to 

obtain a proof is presented in table IV. The following 

equations are used in the statistical analysis 

Pre-compile optimization = 1 – (No. of lines in the initial 

Game/No. of lines of codes)      (3) 

Total run time optimization = 1 – (No. of lines in the final 

game/No. of lines in the initial Game)      (4) 

Average run time optimization = Total run time 

optimization/Number of Games      (5) 

Total improvement = 1 – (No. of lines in the final Game/No. 

of lines of codes)      (6) 

 
Figure 3. Reduction flow for A-1. 

 

 

TABLE IV. GAMES SATATISTICS FOR THE PROTOCOLS 

 

VII. PROPOSED CHANGES AND IMPROVEMENTS 

   In addition to the automated analysis from CryptoVerif, a 

preliminary manual analysis was also performed and the 

following findings are observed. First, protocol A does not 

state how authenticity was established. It was assumed that 

entities involved in this protocol obtain certain mutual 

authenticity through some channel not specified by the 

protocol. Inappropriate authentication methods may lead to 

potential attacks. Nonetheless, it is common that in practice 

one may rely on pre-established authenticity. It is also worth 
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noting that in protocol B and C, certificates are used for 

authentication. Second, some of the operations seem to be 

redundant. 

   For example, in protocols A and B, signatures are 

encrypted before they are sent. Thus, this operation does not 

add any additional security features to the protocol. Third, in 

protocol C, the forward message employs a random bit to 

determine the sequence of concatenating the encrypted 

readings Yi-1 and Yi. This design is adhoc and a security 

proof for this is not straightforward. Nonetheless, it is noted 

that this operation at least will not reduce the overall 

security. 

VIII. CONCLUSION AND FUTURE WORK 

   In this paper, a formal analysis of three security protocols 

for the communication of smart meters was performed using 

CryptoVerif. A proof is produced through the reduction of a 

sequence of games. The analysis showed that the three 

schemes have no flaws in their security. In addition, a 

manual analysis of the protocol was performed and some 

redundancy was observed. This redundancy does not impact 

the overall security of the protocol, but it is highly likely 

that the protocol will be more efficient once the redundancy 

is removed. 

   The security evaluation performed with CryptoVerif 

revealed that the protocol is secure. A logical next step 

would be to perform simulation and benchmarking to judge 

the efficiency of the protocols. Once the protocols reach 

certain level of maturity, the next straightforward future 

work will be the deployment of the three protocols. 
    

 
REFERENCES 

[1] Draft Smart Grid Cyber Security Strategy and Requirements, NIST 

IR 7628, Sept, 2009 
[2] M. Saed, K. Daimi, and N. Al-Holou, “Approaches for Securing 

Smart Meters in Smart Grid Networks,” International Journal On 

Advances in Systems and Measurements, pp. 265–274, 2017. 
[3] M. Majdalawieh, F. Parisi-Presicce, and D. Wijesekera, DNPSec: 

Distributed Network Protocol Version 3 (DNP3) Security 

Framework. Dordrecht: Springer Netherlands, 2006, pp. 227–234. 
[Online]. Available: https://doi.org/10.1007/1-4020-5261-8 36, 

[retrieved: May, 2018]. 

[4] TriangleMicroWorks, “Modbus and DNP3 Communication 
Protocols,”2017.[Online].Available: 

https://scadahacker.com/library/Documents/ICSProtocols/TriangleMi

croworks-Modbus-DNP3Comparison.pdf, [retrieved: May, 2018]. 
[5] B. Blanchet, “CryptoVerif: Cryptographic Protocol Verifier in the 

Computational Model,” INRIA, Tech. Rep., 2017. [Online]. 

Available: 
http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/, 

[retrieved: May, 2018]. 

[6] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and 
reference implementations for the TLS 1.3 standard candidate,” in 

2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, 

CA, USA, May 22-26, 2017, 2017, pp. 483– 502. [Online]. Available: 
https://doi.org/10.1109/SP.2017.26, [retrieved: May, 2018]. 

[7] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) 

Protocol Version 1.2. Internet Engineering Task Force, 2008. 

[Online]. Available: https://tools.ietf.org/html/rfc5246, [retrieved: 

May, 2018]. 
[8] B. Dowling, M. Fischlin, F. Gnther, and D. Stebila, “A cryptographic 

analysis of the tls 1.3 handshake protocol candidates,” Cryptology 

ePrint Archive, Report 2015/914, 2015, 
https://eprint.iacr.org/2015/914, [retrieved: May, 2018]. 

[9] X. Li, J. Xu, Z. Zhang, D. Feng, and H. Hu, “Multiple handshakes 

security of tls 1.3 candidates,” in 2016 IEEE Symposium on Security 
and Privacy (SP), May 2016, pp. 486–505. 

[10] C. J. F. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der 

Merwe, “A comprehensive symbolic analysis of tls 1.3,” in CCS, 
2017, pp. 1773-1788. 

[11] B. Blanchet and D. Pointcheval, “Automated security proofs with 

sequences of games,” in CRYPTO’06, ser. Lecture Notes in 
Computer Science, C. Dwork, Ed., vol. 4117. Santa Barbara, CA: 

Springer, Aug. 2006, pp. 537–554. 

[12] M. Bellare and P. Rogaway, “The exact security of digital signatures-
how to sign with rsa and rabin,” in Advances in Cryptology — 

EUROCRYPT ’96, U. Maurer, Ed. Berlin, Heidelberg: Springer 

Berlin Heidelberg, 1996, pp. 399–416. 

[13] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for 

obtaining digital signatures and public-key cryptosystems,” Commun. 

ACM, vol. 21, no. 2, pp. 120–126, 1978. 
[14] B. Blanchet, “Automatic verification of security protocols in the 

symbolic model: the verifier ProVerif,” in Foundations of Security 

Analysis and Design VII, FOSAD Tutorial Lectures, ser. Lecture 
Notes in Computer Science, A. Aldini, J. Lopez, and F. Martinelli, 

Eds. Springer, 2014, vol. 8604, pp. 54–87. 
[15] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second 

Edition, 2nd ed. Chapman & Hall/CRC, 2014. 

[16] S. Goldwasser and M. Bellare, “Lecture Notes on Cryptography,” 
MIT, Tech. Rep., 2008. [Online]. Available: 

https://cseweb.ucsd.edu/_mihir/papers/gb.pdf, [retrieved: May, 2018]. 

[17] Q. H. Dang, Secure Hash Standard (SHS). National Institute of 
Standards and Technology, 2015. [Online]. Available: 

https://dx.doi.org/10.6028/NIST.FIPS.180-4, [retrieved: May, 2018]. 

[18] NIST, SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. National Institute of Standards and Technology, 

2015. [Online]. Available: http://doi.org/10.6028/NIST.FIPS.202, 

[retrieved: May, 2018]. 
[19] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations 

among notions of security for public-key encryption schemes,” in 

CRYPTO, 1998, pp. 26–45. 
[20] E. Barker, L. Chen, and D. Moody, Recommendation for Pair-Wise 

Key-Establishment Schemes Using Integer Factorization 

Cryptography. National Institute of Standards and Technology, 2014. 
[Online]. Available: http://doi.org/10.6028/NIST.SP.800-56Br1, 

[retrieved: May, 2018]. 

[21] E. Barker, L. Chen, A. Roginsky, and M. Smid, “Recommendation 
for Pair-Wise Key Establishment Schemes Using Discrete Logarithm 

Cryptography,” National Institute of Standards and Technology, 

2013. [Online]. Available: http://doi.org/10.6028/NIST.SP.800-
56Ar2, [retrieved: May, 2018]. 

[22] E. Barker, “Digital Signature Standard (DSS),” National Institute of 

Standards and Technology, 2013. [Online]. Available: 
http://doi.org/10.6028/NIST.FIPS.186-4, [retrieved: May, 2018]. 

[23] D. Dolev and A. C. Yao, “On the security of public key protocols,” 

IEEE Trans. Information Theory, vol. 29, no. 2, pp. 198–207, 1983. 

[Online]. Available: https://doi.org/10.1109/TIT.1983.1056650, 

[retrieved: May, 2018]. 

[24] M. Bellare and P. Rogaway, “The security of triple encryption and a 
framework for code-based game-playing proofs,” in Advances in 

Cryptology - EUROCRYPT 2006, S. Vaudenay, Ed. Berlin, 

Heidelberg: Springer Berlin Heidelberg, 2006, pp. 409–426. 
[25] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full SHA-

1,” in Advances in Cryptology - CRYPTO 2005: 25th Annual 

International Cryptology Conference, Santa Barbara, California, 
USA, August 14-18, 2005, Proceedings, 2005, pp. 17–36. [Online]. 

Available: https://doi.org/10.1007/11535218 2,  [retrieved: May, 

2018]. 

34Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

http://doi.org/10.6028/NIST.FIPS.202

