
Verification of Security Protocols for Smart Meters in Smart Grid Networks

Mustafa Saed

Electrical and Computer Engineering

University of Detroit Mercy

Detroit, USA

email: saedma@udmercy.edu

Nizar Al Holou and Kevin Daimi

College of Engineering and Science

University of Detroit Mercy

Detroit, USA

email: {alholoun, daimikj}@udmercy.edu

Abstract— The smart grids’ heavy reliance on cyber

resources introduces frequent security concerns. The extensive

attack surface revealed by the Advanced Metering

Infrastructure (AMI) along with the distribution of sensitive

data including; customer information, billing, and control

information will provide attackers with a major economic

reason to attempt the attacks. To ensure the security protocols

between the various parties in smart grid are secure,

automated security verification tools are sought. This paper

presents one method of security verification for

communications protocols between smart meters, a central

gateway, and supervisory nodes using the CryptoVerif tool.

There are two types of networks supported by these protocols,

namely direct and indirect communication between smart

meters and the central gateway. Each of these protocols has

three sub-protocols: Enrollment and activation, Smart meter

to central gateway security process, and key update and

exchange process. The analysis of these protocols proceeds in

two phases. In the first phase, the protocols were manually

analyzed for security flaws, inconsistencies, and incorrect

usage of cryptographic primitives. During the second phase,

the protocols were analyzed using CryptoVerif, an automated

formal methods-based analysis tool. Several efficiency

improvements are presented as an outcome of these analyses.

Keywords— Security protocol; smart meters; smart grid;

formal verification; CryptoVerif.

I. INTRODUCTION

 Today’s smart grid networks, especially the smart meters,

have more stringent security requirements compared to the

traditional power grid of last decade [1]. This is primarily

due to a smart grid offering a myriad amount of connections

and thus is susceptible to security incidents. On top of that,

new protocols are frequently introduced to take full

advantage of available features and resources, such as

appliances’ operation schedule, incident reporting, and

utilizing shared/public charging stations. Saed et al. [2]

presented security protocols for smart meters within the

smart grid. Before deploying any security protocol, it is

prudent to do a thorough security analysis to understand the

protocols’ strengths and weaknesses.

The proposed protocols were designed to provide secure

communications among three entities: user nodes, a central

gateway, and supervisory nodes. A user node (smart meter),

denoted by U, is an end-entity, typically a smart meter unit

that wants to connect to a collector (central gateway). A user

node may be directly connected to either a central gateway

or another user node. Multiple user nodes are denoted by Ui,

where i = 1 to n. The Central Gateway (collector), G, acts as

a connection medium between a user node and a supervisory

node (Substation). When there are multiple central gateways

involved in a protocol, G1, G2… Gn are used. Finally, a

supervisory node (substation), S, plays the role of a

Certificate Authority (CA) in a Public Key Infrastructure.

Note that the symbols and notations used in the above-

mentioned protocols have been changed to serve the

requirements of the verification tools.

 The purpose of those communications is for the node

(smart meter) to provide authenticated information, such as

temperature readings and electricity consumption, to the

gateways. The gateways would then bill the node based on

the information received. To facilitate secure and

authenticated communication between a node and a central

gateway, the server (Substation) acts as a Certificate

Authority that provides certificates to nodes and gateways.

These protocols are expected to run over the DNPSec [3]-

[4], a security framework for Distributed Network Protocol

Version 3 (DNP3). DNP3 is an open and optimized protocol

developed for the Supervisory Control and Data Acquisition

(SCADA) Systems supporting the utility industries. Overall

analysis of security protocols starts with manual analysis

(phase1) followed by formal verification (phase2). In the

first phase, thorough manual analysis is performed on all the

protocols, with special attention given to renaming and

arranging the symbols and notations used in the three

protocols as these notations may not suitable for the

verification algorithm. In the second phase, protocols are

analyzed using a formal method-based approach. Formal

methods-based verification consists of a process for

generating a set of reductions that connects the protocol to

some known hard problems. It is usually carried out

manually, which may require a lot of creativity and effort.

This could have a direct impact on the cryptographic design

of the protocol. However, modern protocols tend to be more

and more complicated and it is possible that a manual

analysis may not cover all the aspects. Additionally, human

errors may surface during the generation of long sequences

of proofs. To this end, researchers sometimes resort to

automated verification tools.

 An excellent verification tool is CryptoVerif [5]. It is an

automated tool to verify the secrecy and authenticity of a

cryptographic protocol. It provides a generic mechanism for

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

specifying the security assumptions on cryptographic

primitives.

 CryptoVerif has been used to analyze a number of

important schemes and protocols in the field. Bhargavan et

al. [6] performed a formal verification using CryptoVerif

and established the correctness of the authenticated key

exchange protocol within the Transport Layer Security

(TLS) protocol. The authors also provided an automated

proof that concluded the security of the handshake protocol

within TLS is as hard as the underlying Diffie-Hellman

assumption over certain groups. In the field of network

security, TLS is perhaps the most important and widely used

protocol for secure communications over the Internet [7].

Numerous analyses have been performed using this scheme

over the years, in instances where manual analysis is

performed to show the correctness of the scheme [8]-[10].

 Blanchet and Pointcheval [11] analyzed the Full Domain

Hash (FDH) scheme where CryptoVerif was used to

generate automated security proof via sequence games.

Their analysis showed that the FDH was scheme remains

secure so long as the RSA scheme and the hash function are

secure. FDH formalized by Bellare and Rogaway in [12]

using the RSA encryption scheme [13].

 Prior to introducing CryptoVerif, Blanchet [14],

introduced another tool, ProVerif. This tool is enhanced and

improved to get the CryptoVerif tool.

This paper adopts the CryptoVerif tool to analyze the three

protocols presented in [2]. It first presents formalized

descriptions of all the protocols performed. This is done by

addressing some of the shortcomings identified during

manual analysis, such as the translation of the notations

used in the three protocols language in accordance to the

language understood by cryptoVerif tool. The manual

analysis also identified the potential for improvements to the

protocols in terms of network throughput and latency. Next,

the protocols were translated into the language (codes) of

CryptoVerif for formal verification. These codes were then

executed using the tool, generating a sequence of proofs that

confirm the security of the protocol.

 The reminder of the paper is organized as follows: Section

II provides all the necessary notations and primitives.

Overview of formal verification and CryptoVerif tool are

presented in Section III. Section IV presents all the three

protocols [2] used in CryptoVerif language. In Sections V

and VI, source code for CryptoVerif and the outputs of

running those codes in CryptoVerif are discussed. Section

VII introduces the proposed changes. Finally, Section VIII

concludes the paper with suggestions for future work.

II. NOTATIONS AND PRIMITIVES

 This section will briefly introduce the notations and

primitives needed for implementation of CryptoVerif. In

Tables I and II depict a list of symbols and notations used.

A. Notation:

 Protocols are described using the dot (.) notation. For

example, the encryption key ek of user U is denoted by

U.ek. For two bit strings x, y, x||y denotes their

concatenation, and x XOR y denotes their bitwise exclusive-

OR. Finally, for any two entities, such as U and S, and a

message m, U  S : m denotes that U sends m to S.

B. Cryptographic Primitives:

 Three cryptographic primitives: Hash Function, Public

Key Encryption, and Digital Signature are described in this

section. They will be used in the protocols described in

Section III. Detailed definition of the notations used can be

found in [14]-[15].

1) Hash Function: A cryptographic hash function

family is a set of hash functions HFs, such that each HF ϵ H

is a mapping from {0, 1} m to {0, 1} n, where m, n ϵ N, and

m > n. The security of a cryptographic hash function is

defined in terms of an adversary’s ability to invert the

function (one-way property), and find collisions in the

functions (collision-resistance property). Detailed security

definitions are omitted from this paper. There are many

forms of cryptographic hash functions. The National

Institute of Standards and Technology (NIST) has

recommendations for some of them [16]-[17].

2) Public Key Encryption: A public key encryption, E,

involves Key Generation Algorithm (EKG), Encryption

Algorithm (ENC), and Decryption Algorithm (DEC), with

the associated security parameter 1ּג and message space M,

consists of the following three probabilistic polynomial-time

primitives:

a) Key Generation: (ek, dk)  EKG(1
גּ
) Here, the

input is the security parameter 1
גּ
, and the output is pair of an

encryption key ek and a decryption key dk.

TABLE I. GENERAL NOTATIONS AND SYMBOLS

Symbol Meaning

SCADA Supervisory Control and Data Acquisition

DNP3 Distributed Network Protocol Version 3

Ui User Node (Smart meter) #i, i=1, 2, …n

G Central Gateway (Collector)

S Supervisory Node (Substation)

Aux Auxiliary time: Period of validity (T1 & T2)

CPU Center Processing Unit

NIST National Institute of Standard and Technology

XOR Exclusive OR

LIST List of all {U.ID, U.AID} Pairs

ɛ Probability

f(ɛ) Function of Probability

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

TABLE II. PROTOCOLS NOTATIONS & SYMBOLS

Symbol Meaning

 Security Parameter ג1ּ

c Ciphertext

Ui.ID User Node Identity

ek Public Key/Encryption Key

sk Private Key or Signing Key

Ui.AID User Node anonymous identity

Ui.pk User Node public key

Ui.sk User Node private key

Gi.ID Central Gateway Identity

Gi.AID Central Gateway anonymous identity

Gi.pk Central Gateway public key

Gi.sk Central Gateway private key

σ Signature

s Digital Signature Scheme

vk Verification Key

DSS.sk Signing Key of s

DSS.vk Verification Key of s

Gi.DSS.sk Central Gatway signing key

Gi.DSS.VK Central Gateway verification key

Ui.r User Node #i ’s Reading, i=1, 2, …n

Ui.t User Node #i ’s Processor temperature, i=1, 2,

…n
Hash(Ui.r) Hash value for User Node #i ’s reading, i=1, 2,

…n
Ui.M Ui.M = Ui.r XOR Ui.t

S.pk Supervisory public key

S.sk Supervisory private key

A-IDi, A-IDg , A-

IDs

Anonymous ID for Node, Central Gateway &

Supervisory
Gcert, Ui–cert, CRi Certificate of Central Gateway and User Node i

respectively
|| Concatenation

E Public Key Encryption

 Send to

 Result

DEC Decryption Algorithm of E

dk Decryption Key of E

EKG Key Generation Algorithm of E

ENC Encryption Algorithm of E

H Cryptographic Hash Function Family

HF Hash Function

M Message Space

m Message

SIG Signature Algorithm of s

SKG Key Generation Algorithm of s

VER Verification Algorithm of s

b) Encryption: c  ENC(ek,m) For this notation, the

input is an encryption key ek ϵ EKG(1
גּ
) and a message m ϵ

M, and the output is a ciphertext c.

c) Decryption: m  DEC(dk, c) Here, the input is a

decryption key dk and a ciphertext c, where (ek, dk) ϵ EKG

(1
גּ
), m ϵ M, and c ϵ ENC(ek, m).

 These need a correctness criterion, which is stated as

follows: for every (ek, dk) ϵ EKG(1
גּ
), m ϵ M, and c ϵ

ENC(ek, m), the probability that DEC(dk, c) ≠ m is

negligible.

 The security of the encryption scheme is defined in terms

of an adversary’s ability to learn partial information about

the message underlying a ciphertext and is based on attack

models, such as Chosen-Plaintext Attack and Chosen-

Ciphertext Attack [18]. There are many forms of public key

encryption algorithm. NIST has recommendations for

factoring-based algorithms [19] and discrete logarithm-

based algorithms [20].

3) Digital Signature Scheme: A digital signature

scheme, S = (SKG, SIG, VER), with the associated security

parameter 1
גּ
 and message space M, consists of the

following three probabilistic polynomial time algorithms:

a) Key Generation: (sk, vk) SKG(1
גּ
) For this

notation, the input is security parameter 1
גּ
 and the output is

a pair of a signing key sk and a verification key vk.

b) Signature: σ  SIG(sk,m) For this notation, the

input is a signing key sk ϵ SKG(1
גּ
) and a message m ϵ M,

and the output is a signature σ

c) Verification: 1/0  VER(vk, m, σ) For this

notation, the input is a verification key vk, a message m, and

a signature σ, where (sk, vk) ϵ SKG(1
גּ
), m ϵ M, and σ ϵ

SIG(sk,m). The output is 1 for valid signature, and 0 for

invalid signature. These need a correctness criterion, which

is stated as follows: for every (sk, vk) ϵ SKG(1
גּ
), m ϵ M,

and σ ϵ SIG(sk,m), the probability that VER(vk, m, σ) ≠ 1

is negligible.

 The security of signature schemes is defined in terms of an

adversary’s ability to forge a signature and is based on

attack models, such as Chosen-Message Attack. There are

many forms of digital signature scheme. NIST has

recommendations for some of them [21].

III. OVERVIEW OF CRYPTOVERIF

 This section will present provable security and formal

verification required for using the CryptoVerif tool. Also,

this section will explain briefly the CryptoVerif code.

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

A. Provable security and Formal verification

 When analyzing the security of cryptographic protocols, a

notion of “provable security” is raised, where adversaries

are modeled as probabilistic polynomial time Turing

machines with capabilities and limitations of the verification

tool. Through such modeling, one can prove that the

cryptographic protocol is secure by showing that if there

exists an adversary under the defined model that breaks the

protocol, then the certain hard mathematical problem

becomes easy to solve. A proof is then obtained via

contradiction: since this problem is hard to solve, then it

must be that the protocol is also hard to break. A security

proof for a given protocol is a reduction from the protocol to

a problem assumed to be hard. This reduction can be

obtained via a sequence of games, where each game is a

slight modification of the previous one.

 Formal verifications, or formal methods, as defined in the

Dolev-Yao et al [22] framework, is a method to obtain a

proof. As shown in [23], the reductions of a proof are

obtained via a “sequence of games” (also known as the

game hopping technique), where each game differs from

previous one by being slightly changed. The sequence of

games is statistically or computationally indistinguishable

from the point of view of an adversary. In such a proof, the

initial game is the real attack game that models the

adversary and the protocol. Then, two consecutive games

will look either identical, or very close to each other in the

view of the adversary.

1) Rename some variables. In this case the two games

are perfectly identical.

2) Replace one variable x with another one y where the

distributions are “statistically” indistinguishable. Here, the

two Games are statistically identical except for negligible

probabilities.

3) Replace one variable x with another one y where the

distributions are “computational” indistinguishable -

distinguishing two Games implies the ability of solving a

certain computational hard problem.

 The proof is obtained via a chain of reductions such that if

an adversary is capable of breaking the initial game (given

protocol) with certain probability ɛ, then he/she is also able

to break the final game with probability function of f(ɛ).

Since the final game is assumed hard - in other words f(ɛ) is

negligible- it is implied that ɛ itself is also small.

 In the final game, a certain known hard problem will be

arrived at in which the adversary is believed to be incapable

of solving.

B. CryptoVerif

 CryptoVerif is an automatic tool to generate a sequence of

games. CryptoVerif can also evaluate the probability of

success of an attack against the protocol as a function of the

probability of breaking each cryptographic primitive and of

the number of sessions (exact security). A list of reserved

words of the CryptoVerif tool syntax is listed in Table III:

1) Reading the output and games

 As mentioned earlier, CryptoVerif presents the results in

terms of a sequence of games. As one shall be seen in

Section V, the sequence is presented as follows. Using the

source code, CryptoVerif performs a compilation

optimization to produce the initial game, game 0. This

process does not change the content of the source code. In

other words, the initial game is equivalent to the source code

written in CryptoVerif syntax, as it performs a sequence of

reductions through the chain of the games. Only slight

difference is observed between each two consecutive games.

Such differences may be due to one of the following

reasons:

a) Removing an unused variable. This is done with

simplification pass, see VI-C for instance.

b) Removing variables that do not have an impact on

the game. This is done with findcond, see VI-B for instance.

c) Applying equivalence between certain

cryptographic primitive and pre-defined probability; see VI-

E for instance.

 Through this sequence of the reductions, the final game,

which is secured by assumption, is arrived at. This

completes the overall proof. If an attacker is able to break

the protocol which is equivalent to the initial Game, then the

attacker will also be able to break the underlying encryption

algorithm with probability of at least Penccoll, or break

Game 7. These are illustrated in Section VI-G.

TABLE III. CRYPTOVERIF INSTRUCTIONS

Keyword Meaning

const declare a constant

expand expand a cryptographic primitive

fun abstract functions

if . . . then . . . conditional flow control

in input to a channel

out output to a channel

let assign value to a variable

new declare a variable for a given type

proba declare a probabilistic variable

process main function

type define a new type of variable

2) Limitations of CryptoVerif:

 CryptoVerif is a tool to generate a chain of proofs in the

form of a sequence of games, to show a reduction from a

given protocol into a certain hard mathematical problem or

assumed-hard problem. Such a proof does not guarantee the

security of the final game. Thus, if an insecure hash

function, for example SHA-1 [24] is used, CryptoVerif will

28Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

still produce a valid reduction to SHA-1. However, the

scheme will no longer be secure due to the insecurity of

SHA-1. Another limitation of CryptoVerif is that it does not

find redundancy in the protocols. The redundancy occurs

when extra and maybe unnecessary cryptographic

operations are performed. Such operations will not reduce

the overall security of the system. Hence, from

CryptoVerify point of view, those operations are not flagged

as they are still technically correct.

IV. SMART METER SECURITY PROTOCOL

 In this section, the three protocols [2] are presented. The

protocols described in sections A and B are for the direct

communication setting as shown in Figure 1, and the one

described in section C is for the indirect communication

setting as depicted in Figure 2. The direct and indirect

communications are between the user node and the central

gateway.

Figure 1. Direct communication.

Figure 2. Indirect communication.

A. Direct communication

The first protocol consists of three processes: Enrollment

and activation process, Security process, and Key update

and exchange process.

1) Enrollment and Activation Process

 In this process, the user nodes (smart meters) and the

central gateways will be enrolled and activated so that they

will be authenticated during the rest of the processes in

sections IV-A-2 and IV-A-3. This process is as follows:

Step 1: The supervisory node S obtains the identities of all

user nodes {Ui, ID}i=1,2… and identities and encryption keys

of all central gateways {Gi.ID, Gi.ek}i=1,2…

Step 2: S  {Ui}i=1,2… : {Gi.ID, Gi.ek}i=1,2…

S simply forwards to all user nodes the identities and

encryption keys of all central gateways that it obtained in

step 1.

Step 3: S  {Gi}i=1,2… : {Ui.ID}i=12…

S simply forwards the identities of all user nodes that were

obtained in step 1 to all central gateways.

Step 4: G  U : (m3σ3), where

m3  (U.ek || G.ID), and

σ3  SIG(G.sk,m3).

Here, G sends a request message and signature to U.

Step 5: U extracts G.ID from m3 and validates it against the

list obtained in step 1.

Step 6: If step 4 is successful, U  G : c5  ENC(G.ek,

m5), where

m5  (U.ID || U.ek).

Step 7: G decrypts c5: m5  DEC(G.dk, c5), extracts U.ID

from m5 and validates it against the list obtained in step 2. If

validation is successful, G extracts U.ek from m5 and stores

it.

2) Security Process

 Once the nodes are activated, they will be able to send

relevant data to the gateways during this process.

Step 1: U  G : c1, where c1  ENC(G.ek, m1). Here,

m1  (U.r || U.t || U.m || h), U.r is U’s reading, U.t is U’s

CPU temperature, and U.m  (U.r XOR U.t). Finally, h 

HF(U.r).

Step 2: G decrypts c1 : m1  DEC(G.dk, c1), extracts

(U.ID, U.t, U.m, h) from m1, computes U.r  (U.t XOR

U.m), and checks if h = HF(U.r). If the check is successful,

G stores U.r.

3) Key update and exchange process

 The last process of protocol A is a process for both nodes

and gateways to update their keys. The process of the

gateways will be shown as follows in the steps below. The

process to update keys for U is similar, and therefore

omitted for simplicity.

Step 1: G  U : (c1 || G.ID), where

c1  ENC(U.ek, G.ek || G.vk || σ), and

σ  SIG(G.sk, G.ek || G.vk).

Step 2: U decrypts c1: m1  DEC(U.dk, c1), extracts (G.ek,

G.vk, σ) from m1, and checks if VER(G.vk, G.ek || G.vk, σ)

= 1. If the check is successful, U stores G.ek and G.vk.

B. Direct communication- Certificates

 The second protocol consists of three processes:

Enrollment and activation process, Security process, and

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

Key update and exchange process. Compared to protocol A,

here the major difference will be the presence of certificates.

1) Enrollment and activation process

 The purpose of this process is to establish enrollments for

nodes and gateways with the help of certificates. Some of

the variables used below will be used in other sections

preserving the same meaning.

Step1: G  S : c1  ENC(S.ek, m1), where

m1  (G.AID || G.ID || G.ek)

Step2: S  G : c2  ENC(S.ek, cert2), where

cert2  (m2 || σ2)

σ2  SIG(S.sk, m2)

m2  (m1 || AUX).

m1  DEC(S.dk, c1).

Step3: U  S : c3  ENC(S.ek, m3), where

m3  (U.AID || U.ID || U.ek).

Step4: S  U : c4  ENC(S.ek, cert4), where

cert4  (m4|| σ4)

σ4  SIG(S.sk, m4).

m4  (m3 || AUX).

m3  DEC(S.dk, c3).

Step5: S  G : LIST, where

LIST is a list of all {U.ID, U.AID} pairs.

2) Security Process

 Once connections are established, this process, is adopted

to exchange data between user nodes and central gateways.

Step1: U and G exchange their certificates.

Step2: Each party verifies the certificate to obtain the other

party’s ek and ID.

Step3: sk and ID are accepted if AUX information is also

verified.

Step4: Apply the steps of A-2.

3) Certificate Update Process

 This last process of protocol B allows the users and

gateways to update their certificates.

Step1: S informs U and G to create new keys

Step2: Both parties will follow same steps as B-1 to get

new certificates.

C. Indirect Communication

The last protocol consists of three processes: Enrollment,

Activation and Certificate Exchange, Secure Reading

Collection Process, and Key Update and Certificate

Exchange Process.

1) Enrollment, Activation, and Certificate Exchange

 This process allows user nodes and central gateways to

exchange their certifications.

Step1: Ui  G : c1  ENC(G.ek, m1), where

m1  (Ui.AID || Ui.ID)

Step2: G  Ui : e2  ENC(Ui.ek, m2 || σ2), where

σ2  SIG(G.sk, m2)

m2  Ui.E.pk || Ui.AID || Ui.AUX

Step3: On node Uj for i ≠ j: forward the message.

Step4: On node Ui:

m2 || σ2  DEC(Ui.sk, e2);

Ui Store m2 and σ2 as the message and certificate pair.

2) Secure Reading Collection Process

 This process allows user nodes to send their readings to a

central gateway, via either a direct connection or an indirect

connection. The data flow is omitted due to the involvement

of multiple entities.

Step1: Processing at node Ui:

Ui.T  TRNG;

Ui.R  reading of the data;

Ui.M  Ui.T XOR Ui.R;

m1  Ui.M || Hash(Ui.R) || Ui.T

σ1  SIG(Ui.sk, m1)

Ui.Y  ENC(G.ek, m1 || σ1)

Step2: Ui  Ui-1: c2, where

c2  ENC(Ui-1.ek, Ui.Y)

Step3: On node Ui-1:

Compute Ui-1.Y as in step 1;

Ui.Y  DEC(Ui-1.dk, c2)

Step4: Ui-1  Ui-2 : c4, where

Using a pseudonym number generation to randomize the

output (c4)

b  a random bit;

if b = 1, c4  ENC(Ui-2.ek, Ui.Y || Ui-1.Y)

else c4  ENC(Ui-2.ek, Ui-1.Y || Ui.Y)

Step5: Repeat steps 1-4 for all other user nodes until G is

reached.

Step6: Processing at G:

mj  DEC(G.dk, cj); where j = 1 to N

Extract Ui.Y from mj for each user;

m1 || σ1  DEC(G.dk, Ui.Y);

Step7: Check the correctness of σ1

Extract Ui.T , Ui.M and recover Ui.R

G Store the reading Ui.R if σ1 is verified

3) Key Update and Certificate Exchange Process

 This last process allows the entities to update their keys

and the certificates associated with them.

Step1: G  U : e1|| G.ID, where

(G.ek`, G.dk`)  KG(1
גּ
)

(G.sk`, G.vk`)  KG(1
גּ
)

e1  ENC(U.ek, m1|| σ1)

m1  G.ek` || G.sk`

σ1  SIG(G.sk, m1)

Step2: On node U

m1 || σ1  DEC(U.dk, e1)

Extract G.ek` and G.vk` from m1

If VER(G.vk, m1, σ1) = 1, accept G.ek` and G.vk`

Step3: U  G : e3 || U.AID, where

(U.ek`, U.dk`)  KG(1
גּ
)

(U.sk`, U.vk`)  KG(1
גּ
)

m3  U.ek` || U.sk`

σ3  SIG(U.sk, m3)

e3  ENC(G.ek, m3 || σ3)

Step4: On node G

30Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

m3 || σ3  DEC(G.dk, e3)

Extract U.ek` and U.vk` from m3

If VER(U.vk, m3, σ3) = 1, accept U.ek` and U.vk`

V. CRPTOVERIF CODE

 The CryptoVerif code for process A-1 of protocol A

(section IV-A-1) will be provided in this section. All the

code sections share the same set of pre-defined parameters

and macros. The sections display all the related symbols,

notations, functions, and algorithms for all the related

entities, namely Nodes, Gateways, and Servers, are defined

using CryptoVerif language as follows:

A. Defining hosts, nodes, gateways and server

t y p e host [bounded] .

c o n s t Node : host . (* node s)

c o n s t Gateway : host . (* gateway)

c o n s t Server : host . (* server)

B. Defining Parameters

 The relevant macros are given as below. The spaces

are the locations where the variables, such as the reading R

or the time T, are drawn from.

t y p e Rspace [bounded] .

t y p e AIDspace [bounded] .

t y p e AUXspace [bounded] .

C. hash function

 The hash functions, encryption functions, and decryption

functions are defined. A hash function has two inputs, an

input channel hc1 and an output channel hc2. The exact

hash function to be used (such as SHA-2) is not defined here

since only abstract functionality is required here.

param qH [noninteractive] .

channel hc1 , hc2 .

let hash oracle = ! qH i n (hc1 , x : bit string) ;

out (hc2 , hash (hk , x)) .

D. Public key encryption parameters

 Public key, secret key (private key), seed, block size, and

key generation parameters are defined below.

t y p e pkey [bounded] .

t y p e blocksize [fixed] .

proba Penc .

proba Penccoll .

expand IND CCA2 public key enc (keyseed, pkey, skey,

blocksize, bit string, seed, skgen, pkgen, enc, dec, injbot, Z,

Penc, Penccoll).

E. Digital signature algorithms

 The key locations, ciphertext spaces, and the seeds for

both key generations and encryptions are defined. Then, the

probability of an adversary breaking the scheme is also

defined in order to achieve a meaningful reduction at the

end. The encryption algorithm will be equivalent to an

expansion over the above variables. The codes for signature

function are as follows:

t y p e sskey [bounded] .

proba Psign .

proba Psigncoll .

expand UF CMA signature (keyseed, spkey, sskey,

sblocksize, signature, sseed, sskgen, spkgen, sign, check,

Psign, Psigncoll).

F. Defining I/O channels

 The key spaces and ciphertext spaces are defined, as

well as the seeds for both key generations and signatures.

Also, as in encryption scheme, the probability of an

adversary breaking the scheme is also defined, in order to

achieve a meaningful reduction in the end. The signature

algorithm is then an expansion over the above variables. In

CryptoVerif, the variables of different types are not

compatible. To solve this issue, conversion functions to

resolve the incompatibility between different types are

defined. To save space the conversion functions are omitted.

The last step before protocol simulation is to define the

input and output channels. Depending on the actual

protocol, the number of channels may vary as defined

below:

c h a n n e l c0 , c1 , c2 , c3 , c4 , c5 , start , finish .

G. Defining Gateway parameters

new gid : IDspace ;

new gateway seed : keyseed ;

l e t gspk = spkgen (gateway signseed) i n

l e t gssk = sskgen (gateway signseed) i n

H. Defining server (substation) parameters

new sid : IDspace ;

new serverseed : keyseed ;

l e t sspk = spkgen (server signseed) i n

l e t sssk = sskgen (serversignseed) i n

I. Defining user node (smart meter) parameters

new nid : IDspace ;

new nodeseed : keyseed ;

l e t nepk = pkgen (nodeseed) i n

l e t nesk = skgen (nodeseed) i n

J. Message generation and signature

 The gateway generates a message which is the

concatenation of Node’s encryption key and Gateway’s ID.

The Gateway also signs this message.

l e t process step 4 =

i n (c0 , (= nepk ,= gid ,= gssk , hostX : host)) ;

i f (hos tX = Gateway) t h e n

o u t (c1 , (m, sigma)) .

31Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

K. Extracting the gateway’s ID

 The node extracts the Gateway’s ID from the message and

validates it against the list obtained in G above. It then

forms another message by concatenating the ID with the

Node’s public key. If the code in J above is successful, the

message will be encrypted with the public key of the central

gateway.

let process step 5 6 =

in (c1 , (msg : sblocksiz e , gidrec : IDspace , =

nid , =nepk , =gepk , hostX : host)) ;

if (hostX = Node) t h e n

new encseed : seed ;

let cipher = enc (m2 , gepk , encseed) in

out (c2 , cipher) .

L. Message decryption

 The Gateway decrypts the message and extracts the

Node’s ID.

let process step 7 =

in (c3, (= gesk, cipher: bitstring,=nepk,=nid,hostX: host));

if (nidrec = nid) t h e n

out (c4 , (nid , nepk)) .

M. Assembling all process

 Finally, a master process is called to assemble all those

processes

p r o c e s s

i n (start , ()) ;

o u t (finish , (nid , nepk , gid , gs sk , ge sk)) ;

(process step 4 | process step 5 6 | process step 7)

VI. CRYPTOVERIF RESULTS

 To begin with, a block diagram of the reduction flow is

presented in Figure 3. Then, the details of the proofs are

illustrated for section IV-A-1 as follows:

A. Game 1- Initial State

in (s t a r t , ()) ;

new gid 218 : IDspa c e ;

new gateway seed : keyseed ;

let gepk : pkey = pkgen (gateway seed) in

let gesk : skey = skgen (gateway seed) in

new serversignseed : skeyseed ;

let sspk : spkey = spkgen (serversignseed) in

let sssk : sskey = sskgen (serversignseed) in

new nid : IDspace ;

new nodeseed : keyseed ;

if (hostX 220 = Gateway) t h e n

new sigseed : sseed ; 23

let m: sblocksize = concat 5 (gid 218 , nepk 219) i n

let sigma : signature = sign (m, gssk , sigseed) in

out (c1 , (m, sigma))) j (

in (c1 , (msg : sblocksize , gidrec : IDspace , =

nid , =nepk 219 , =gepk , hostX 221 : host));

if (hostX 221 = Node) t h e n

let concat 5 (gid 223 : IDspace , nepk 222 : pkey) = msg in

if (gid 223 = gidrec) t h e n

let m2 : blocksize = concat 4 (nid , nepk 222) in

new encseed : seed ;

let cipher 2 2 4 : bitstring = enc (m2 , gepk ,encseed) i n

out (c2 , cipher 2 2 4)) j (

in (c3 , (= gesk , cipher 2 2 6 : bitstring , =

nepk 219 , =nid , hostX 225 : host)) ;

if (nidrec = nid) t h e n

out (c4 , (nid , nepk 219))

B. Difference between Game 1 and 2

 In game 2, the find condition function, findcond, is

applied to remove the assignments for the following

variables in the code: gspk, sepk,sesk, sspk,sssl and nesk.

These are the variables that were not used in the game but

necessary during the execution. For example, the public key

for the central gateway gspk was not used, but since its

secret key is crucial to the proof, it is still necessary to

generate this key for the protocol. To sum up, this

modification yields the removal of the following lines of

code:

l e t gspk : spkey = spkgen (gateway signseed) in

new sid : IDspace ;

l e t sssk : sskey = sskgen (serversignseed) in

l e t nesk : skey = skgen (nodeseed) in

C. Difference between Game 2 and 3

 In Game 3, a simplification process is performed to

remove the following lines:

new sid : IDspace ;

new serverseed : keyseed ;

new serversignseed : skeyseed ;

D. Difference between Game 3 and 4

 In Game 4, the tool tries to remove assignments for the

variable nepk. This yields:

- out (f i n i s h , (nid , nepk 241 , gid 240 , gssk ,

gesk)) ;

+ out (finish , (nid , pkgen (nodeseed) , gid 240 ,

gssk , gesk)) ;

in (c0 , (= nepk 241 , =gid 240 , = gssk)) ;

+ in (c0 , (= pkgen (nodeseed) , =gid 240 , = gssk));

l e t m: sblocksize = concat 5 (gid 240 ,

nepk 241) i n

+ l e t m: sblocksize = concat 5 (gid 240 , pkgen (

nodeseed)) in

in (c3 , (= gesk , cipher 2 4 5 : bitstring , =

nepk 241 , = nid)) ;

+ in (c3 , (= gesk , cipher 2 4 5 : bitstring , =pkgen

(nodeseed) , = nid)) ;

out (c4 , (nid , nepk 241))

+ out (c4 , (nid , pkgen (nodeseed)))

32Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

E. Difference between Game 4 and 5

 The formal reductions are performed in Game 5, where

the tool applies the following:

 IND CCA2(enc) with node seed, encseed = probability

Penccoll + Penc(time(context for Game 4) + time, 0). This

equation indicates the security of the underlying encryption

primitive, depending on the ciphertext indistinguishability

against chosen ciphertext attacks (IND-CCA), which is a

function of the probability of finding collisions (Penccoll)

and the time of encryption (Penc). With a few substitutions

for some of the variables, this yields:

- new nodeseed : keyseed ;

- out (finish , (nid , pkgen (nodeseed) , gid 240 ,

- new encseed : seed ; 11

- l e t cipher 2 4 4 : bitstring = enc (m2 , gepk ,

encseed) in

+ l e t @8 x 285 : blocksize = m2 i n

+ l e t @8 y 284 : pkey = gepk i n

+ l e t cipher 2 4 4 : bitstring = enc (@8 x 285 ,

@8 y 284 , @8 r3 287) in

F. Difference between Game 5 and 6

 During this step, the individual variables for public keys

and ciphertexts are removed. Their values are saved. These

variables are passed directly to the encryption function for

compactness.

- l e t @8 x 285 : blocksize = m2 in

- l e t @8 y 284 : pkey = gepk in

- l e t cipher 2 4 4 : bitstrin g = enc (@8 x 285 ,

@8 y 284 , @8 r3 287) in

+ l e t cipher 2 4 4 : bitstring = enc (m2,gepk,@8 r3 287) in

G. Difference between Game 6 and 7

 Since the encryption function in previous step has been

made explicit without referring to

run-time variables, there is no need to use an encryption

seed anymore. This is reflected in this code below:

new encseed 286 : seed ;

Once Game 7 is reached, a conclusion is generated via the

following inequality:

ADV(Game1; Initial Game) ≤ Penccoll + Penc(time(Game

4) + time, 0) + ADV(Game7; Initial Game) (1)

 This implies that the Advantage an adversary gains to be

able to break the initial Game is less than or equal the sum

of three quantities; the probability to break the encryption

scheme Penccoll, the time to perform various polynomial

time algorithms such as key generation and encryption

Penc(time(Game 4) + time, 0), and the Advantage of

breaking the last Game by the adversary ADV(Game7;

Initia Game). By assumption, this last quantity is bounded

by:

ADV(Game7; Initial Game) ≤ 0 (2)

 The last two quantities are both small. Hence, if the

adversary is able to break the IV-A-1 process, Penccoll must

be non-negligible, which implies that the adversary must

also be able to break the underlying encryption algorithm.

H. Summary of Statistical Analysis

 The summery of the statistical analysis for the three

protocols and the number of Games that is required to

obtain a proof is presented in table IV. The following

equations are used in the statistical analysis

Pre-compile optimization = 1 – (No. of lines in the initial

Game/No. of lines of codes) (3)

Total run time optimization = 1 – (No. of lines in the final

game/No. of lines in the initial Game) (4)

Average run time optimization = Total run time

optimization/Number of Games (5)

Total improvement = 1 – (No. of lines in the final Game/No.

of lines of codes) (6)

Figure 3. Reduction flow for A-1.

TABLE IV. GAMES SATATISTICS FOR THE PROTOCOLS

VII. PROPOSED CHANGES AND IMPROVEMENTS

 In addition to the automated analysis from CryptoVerif, a

preliminary manual analysis was also performed and the

following findings are observed. First, protocol A does not

state how authenticity was established. It was assumed that

entities involved in this protocol obtain certain mutual

authenticity through some channel not specified by the

protocol. Inappropriate authentication methods may lead to

potential attacks. Nonetheless, it is common that in practice

one may rely on pre-established authenticity. It is also worth

33Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

noting that in protocol B and C, certificates are used for

authentication. Second, some of the operations seem to be

redundant.

 For example, in protocols A and B, signatures are

encrypted before they are sent. Thus, this operation does not

add any additional security features to the protocol. Third, in

protocol C, the forward message employs a random bit to

determine the sequence of concatenating the encrypted

readings Yi-1 and Yi. This design is adhoc and a security

proof for this is not straightforward. Nonetheless, it is noted

that this operation at least will not reduce the overall

security.

VIII. CONCLUSION AND FUTURE WORK

 In this paper, a formal analysis of three security protocols

for the communication of smart meters was performed using

CryptoVerif. A proof is produced through the reduction of a

sequence of games. The analysis showed that the three

schemes have no flaws in their security. In addition, a

manual analysis of the protocol was performed and some

redundancy was observed. This redundancy does not impact

the overall security of the protocol, but it is highly likely

that the protocol will be more efficient once the redundancy

is removed.

 The security evaluation performed with CryptoVerif

revealed that the protocol is secure. A logical next step

would be to perform simulation and benchmarking to judge

the efficiency of the protocols. Once the protocols reach

certain level of maturity, the next straightforward future

work will be the deployment of the three protocols.

REFERENCES

[1] Draft Smart Grid Cyber Security Strategy and Requirements, NIST

IR 7628, Sept, 2009
[2] M. Saed, K. Daimi, and N. Al-Holou, “Approaches for Securing

Smart Meters in Smart Grid Networks,” International Journal On

Advances in Systems and Measurements, pp. 265–274, 2017.
[3] M. Majdalawieh, F. Parisi-Presicce, and D. Wijesekera, DNPSec:

Distributed Network Protocol Version 3 (DNP3) Security

Framework. Dordrecht: Springer Netherlands, 2006, pp. 227–234.
[Online]. Available: https://doi.org/10.1007/1-4020-5261-8 36,

[retrieved: May, 2018].

[4] TriangleMicroWorks, “Modbus and DNP3 Communication
Protocols,”2017.[Online].Available:

https://scadahacker.com/library/Documents/ICSProtocols/TriangleMi

croworks-Modbus-DNP3Comparison.pdf, [retrieved: May, 2018].
[5] B. Blanchet, “CryptoVerif: Cryptographic Protocol Verifier in the

Computational Model,” INRIA, Tech. Rep., 2017. [Online].

Available:
http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/,

[retrieved: May, 2018].

[6] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the TLS 1.3 standard candidate,” in

2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose,

CA, USA, May 22-26, 2017, 2017, pp. 483– 502. [Online]. Available:
https://doi.org/10.1109/SP.2017.26, [retrieved: May, 2018].

[7] T. Dierks and E. Rescorla, The Transport Layer Security (TLS)

Protocol Version 1.2. Internet Engineering Task Force, 2008.

[Online]. Available: https://tools.ietf.org/html/rfc5246, [retrieved:

May, 2018].
[8] B. Dowling, M. Fischlin, F. Gnther, and D. Stebila, “A cryptographic

analysis of the tls 1.3 handshake protocol candidates,” Cryptology

ePrint Archive, Report 2015/914, 2015,
https://eprint.iacr.org/2015/914, [retrieved: May, 2018].

[9] X. Li, J. Xu, Z. Zhang, D. Feng, and H. Hu, “Multiple handshakes

security of tls 1.3 candidates,” in 2016 IEEE Symposium on Security
and Privacy (SP), May 2016, pp. 486–505.

[10] C. J. F. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der

Merwe, “A comprehensive symbolic analysis of tls 1.3,” in CCS,
2017, pp. 1773-1788.

[11] B. Blanchet and D. Pointcheval, “Automated security proofs with

sequences of games,” in CRYPTO’06, ser. Lecture Notes in
Computer Science, C. Dwork, Ed., vol. 4117. Santa Barbara, CA:

Springer, Aug. 2006, pp. 537–554.

[12] M. Bellare and P. Rogaway, “The exact security of digital signatures-
how to sign with rsa and rabin,” in Advances in Cryptology —

EUROCRYPT ’96, U. Maurer, Ed. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1996, pp. 399–416.

[13] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for

obtaining digital signatures and public-key cryptosystems,” Commun.

ACM, vol. 21, no. 2, pp. 120–126, 1978.
[14] B. Blanchet, “Automatic verification of security protocols in the

symbolic model: the verifier ProVerif,” in Foundations of Security

Analysis and Design VII, FOSAD Tutorial Lectures, ser. Lecture
Notes in Computer Science, A. Aldini, J. Lopez, and F. Martinelli,

Eds. Springer, 2014, vol. 8604, pp. 54–87.
[15] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second

Edition, 2nd ed. Chapman & Hall/CRC, 2014.

[16] S. Goldwasser and M. Bellare, “Lecture Notes on Cryptography,”
MIT, Tech. Rep., 2008. [Online]. Available:

https://cseweb.ucsd.edu/_mihir/papers/gb.pdf, [retrieved: May, 2018].

[17] Q. H. Dang, Secure Hash Standard (SHS). National Institute of
Standards and Technology, 2015. [Online]. Available:

https://dx.doi.org/10.6028/NIST.FIPS.180-4, [retrieved: May, 2018].

[18] NIST, SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. National Institute of Standards and Technology,

2015. [Online]. Available: http://doi.org/10.6028/NIST.FIPS.202,

[retrieved: May, 2018].
[19] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations

among notions of security for public-key encryption schemes,” in

CRYPTO, 1998, pp. 26–45.
[20] E. Barker, L. Chen, and D. Moody, Recommendation for Pair-Wise

Key-Establishment Schemes Using Integer Factorization

Cryptography. National Institute of Standards and Technology, 2014.
[Online]. Available: http://doi.org/10.6028/NIST.SP.800-56Br1,

[retrieved: May, 2018].

[21] E. Barker, L. Chen, A. Roginsky, and M. Smid, “Recommendation
for Pair-Wise Key Establishment Schemes Using Discrete Logarithm

Cryptography,” National Institute of Standards and Technology,

2013. [Online]. Available: http://doi.org/10.6028/NIST.SP.800-
56Ar2, [retrieved: May, 2018].

[22] E. Barker, “Digital Signature Standard (DSS),” National Institute of

Standards and Technology, 2013. [Online]. Available:
http://doi.org/10.6028/NIST.FIPS.186-4, [retrieved: May, 2018].

[23] D. Dolev and A. C. Yao, “On the security of public key protocols,”

IEEE Trans. Information Theory, vol. 29, no. 2, pp. 198–207, 1983.

[Online]. Available: https://doi.org/10.1109/TIT.1983.1056650,

[retrieved: May, 2018].

[24] M. Bellare and P. Rogaway, “The security of triple encryption and a
framework for code-based game-playing proofs,” in Advances in

Cryptology - EUROCRYPT 2006, S. Vaudenay, Ed. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2006, pp. 409–426.
[25] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full SHA-

1,” in Advances in Cryptology - CRYPTO 2005: 25th Annual

International Cryptology Conference, Santa Barbara, California,
USA, August 14-18, 2005, Proceedings, 2005, pp. 17–36. [Online].

Available: https://doi.org/10.1007/11535218 2, [retrieved: May,

2018].

34Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

http://doi.org/10.6028/NIST.FIPS.202

