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Abstract—The WINNER DataLab aims to collect, evaluate and
forecast load data used to optimise the first-hand consumption of
locally generated energy within buildings, by rentee, as well as
electric vehicles. Every actor within a residential area has to be
considered, and integration into a centralised data stream process
is necessary. As a non-hard real-time system, the WINNER
DataLab has to solve enterprise application integration problems,
looking at complex event processing and knowledge discovery in
data. This paper targets to analyse possible architectural back-
bone technologies. Out of a wide range of potential technologies
Node-Red, WSO2 CEP and Apache Camel are selected and
compared. Those technologies with a diverse field of application
are used to implement a comparable test setup. Furthermore,
they are analysed through their characteristics of processing,
execution, usability and simplicity. As measured, Node-RED,
Apache Camel and WSO2 indicate stable and fast message
processing, especially in the case of raising message throughput.
Node-RED surprises with constant memory and CPU loads and
seams to be exciting option in rapid prototyping.

Keywords–System Architecture; Stream Processing; Message
Routing; Complex Event Processing; Renewable Energy; Smart
Grid.

I. INTRODUCTION

Research on the smart grid has become a well-known task
over the last years. Our research project WINNER [15] aims
to integrate electromobility, the energy consumption within
residential areas and the local production of electricity by,
e. g. photovoltaic systems. We do not look for electric vehicles
(EVs) as consumers only. They are used via the carsharing
approach so that it is possible to gain booking data. Knowing
the start and stop times of rides we can schedule the charging
or discharging process or create prognoses on it. Summarised
EVs can contribute to the stability of the power grid and help
to handle load variations and load peaks. If the EVs are not
used within the next hours, you can take the electric energy
from their batteries and supply it to the local power grid.
Additionally, it is possible to decide when to charge the car
based on available information like current energy production
as well as energy market prices.

Therefore, three main tasks have to be considered and
brought together within our so called WINNER DataLab
(WDL). At first, we collect all the produced data and store
them in a meaningful way. After that, potentials have to be
found, e. g. correlating weather forecasts, electricity consump-
tion, specific time information, and the usage characteristic
of EVs to optimise external energy purchase for charging

batteries. In the end, we have to optimise operation. So we
could control accumulate electric energy locally or supply it
to the grid. Maybe it is superior or necessary to get energy
from another grid operator, e. g., in case of too less output of
the local energy production.

The above-mentioned facts imply an information flow man-
aged by data streams. These must be routed and checked for
mistakes. Beyond various data sources have to be integrated,
like Representational State Transfer (REST) interfaces based
on Hypertext Transfer Protocol (HTTP) or mail services. Out
of that, we have to integrate devices using the System, Mess-
und Anlagentechnik (german solar energy equipment supplier)
(SMA) protocol or other TCP-based protocols.

According to backbone technologies, we have to discuss
the potentials of tools made for message routing and analysing
within the WDL. We focus on event-based approaches and
easy integration of external components. In the end, we ask
for a tool that offers the possibility of routing messages and
analysis of the contained data without dropping information.
This publication summarises our decision process.

In Section II, related work about terms and projects related
to our approach are discussed. Section III presents the level 0
view of our WDL, and the following Section IV lists the
requirements we impose on this system. As a result of that,
a short overview of possible tools is presented in Section V.
Furthermore, three tools are used to implement a uniform task
in Section VI and compare them in Section VII by using
measurement values of latency, memory consumption and CPU
load. Finally, we discuss the results in Section VIII.

II. RELATED WORK

The WDL seems to be far away from traditional database
management systems. The WDL should be usable as a plat-
form for data scientists for mining knowledge as well as a
platform to attach analyses for already known behaviours and
relationships directly on data streams. Furthermore, the WDL
should consume data from different kinds of systems as well
as produce data to optimise the usage of those systems.

Connecting various types of applications by using their
provided data and processes belongs to the term of enterprise
application integration (EAI) [23, P. 3]. Within the area of ap-
plication integration terms like message-oriented middleware
(MOM) and service-oriented architecture (SOA), as well as
enterprise service bus (ESB), describe how to challenge those
use cases [17, S. 1][24]. As a traditional approach, MOM
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describes how to use asynchronous messages to decouple ap-
plications based on messaging systems [24]. SOA, on the other
hand, represents an architectural concept where applications
publish their precisely defined functionalities within reusable
services [24]. Finally, ESB draws an open standard, which
merges those ideas and defines a distributed architecture usable
to integrate applications. The architecture itself describes calls
and distribution of messages between integrated applications
[24].

Within the scope of EAI, the enterprise integration patterns
(EIPs) are the base of tools to solve integration problems. The
EIPs describe a set of reusable patterns without a particular
technology reference. Base concepts within these patterns are
the usage of “routing” and “messages” [22].

Beside the application integration itself, activity tracking,
sensor networks and analysing of market data is a central topic
within the so-called complex event processing (CEP). CEP
describes a general term for methods, techniques and tools.
CEP helps to process events while they happen [20, S. 163].

Bringing together EAI, MOM, SOA, ESB and CEP seem
to be not clearly possible. Currently, there are multiple terms
to describe the problem of integration, routing, processing
and analysing. The first one, Information Flow Processing,
is described in [19]. This term focuses on event processing
in combination with data management to “collect information
produced by multiple, distributed sources, to process it in
a timely way” [19]. Another term, streaming data system,
focuses on processing data streams within “a non-hard real-
time system that makes its data available at the moment a
client application needs it” [25].

While EAI, MOM, SOA, ESB and CEP are concepts
to assemble setups based on already known behaviours and
relationships between messages (or events), data sciences
utilise tools to mine knowledge based on already available
data. This part within the WDL uses concepts from knowledge
discovery in databases (KDD), which describes methods to
statical analyses, applications within the field of artificial
intelligence (AI), pattern recognition and machine learning [21,
S. 3].

In addition to this classification of concepts within our field
of application, related work targeting onto architectural drafts
in data grids and smart grids can be used. Chervenak et al. [18],
e. g. describes basic principles for designing data management
architectures and Tierney et al. [27] introduce concepts how
to monitor such grids. Furthermore, Appelrath et al. describe
in [16] the process of developing an IT-architecture for smart
grids as a result of a German research project, and Rusitschka
et al. [26] present a computing model for managing real-
time data streams of smart grids within the scope of the
energy market. Unfortunately, these approaches are not directly
applicable to our use case. Either they are large scaled, or
focusing on data storing and mining. However, they can be
considered within our architecture, which has to fill the gap
between smart grids, data storing, possibilities for data mining
as well as non-hard real-time event processing.

III. ARCHITECTURAL DRAFT

At this point, the level 0 view of the WDL is discussed.
Taking a look at the data sources and data sinks you can get
a better understanding of what the WDL should do.

Figure 1. Level 0 view of the WDL.

At first, there are external services. They are sending
messages to the WDL, or it acquires data from them. These
data packages have to be assumed as inhomogeneous, e. g.
carsharing data of a booking system the WDL is connected to.
That means the WDL gets information on bookings like start
time and end time. Out of that current state updates on a reser-
vation such like an earlier beginning or a defect vehicle can
be received. Another data source offers messages containing
information on the current electrical power consumption. The
actual electricity price is obtained by an interface of European
Energy Exchange (EEX). Data of photovoltaic systems or
batteries are gained through SMA interfaces. The German
Meteorological Service [1] offers historical information on
the past weather, an application programming interface (API)
of the online service OpenWeatherMap [11] is available for
weather forecasts.

A system working with time series, forecasts and master
data must be created. As you can see in Figure 1, the WDL is
positioned between the aforementioned sources and at least five
data sinks. These refer to controllable devices like a charging
station, a battery or Smart Home systems. On the other hand,
data is delivered to the car sharing service and dumped to a
database. Within our setup, a KairosDB is used as data storage
as it is suitable for working with larger time series and quite
easy to use.

An unanswered question is how the different components
can be integrated and how analysis as well as event pro-
cessing can be handled. The WINNER project focuses on
the intelligent integration of components of the residential
area into the Smart Grid. That means predictions must be
made to get an overview of the future power consumption
and the electricity production. Either one charges the batteries
or one uses the stored energy to overcome load peaks. The
prediction mechanism might be implemented by using artificial
neural networks (ANNs) or regression methods. Thinking
about energy production predictions, you might need to receive
information from hardware components like SMA-devices and
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weather services. These specific data formats require reshaping
to use them in prediction mechanism. Using input filters,
output filters, and stream routing the arriving information is
transformed and sent to the prediction and dump units. These
units save the data, send commands or just forward information
to external devices.

IV. REQUIREMENTS

One can divide up the list of requirements into three
subsets. The first one refers to the system in general; the
second touches the various components and the third covers
the aspects of architecture and functional groups.

Thinking of the system in general shows that the ability
to process time series data is required. An incoming message
contains a time value referring to a point and a value e. g.
the result of a measurement. The WDLs task on an incoming
message is to associate the arriving values with a data source.
Possible data sources are photovoltaic installations, batteries,
power consumption measurement devices or actual weather
data. Out of that, the system must handle forecast data. They
are special because a complete time series and a time value,
which refers to a validity point are included. At the time this
point describes the time series is valid. Contemplable data
sources are weather forecast services or EEX. The last cat-
egory covers master data without time dependencies. Booking
information or general data on devices and services belong to
this group. This data may be very unstructured like text-only
entries.

Focusing on technical aspects derived from our archi-
tectural draft in Section III, the WDL needs the ability to
process JSON, XML and CSV values. Out of that proprietary
formats have to be handled as well. Especially photovoltaic
and smart metering installations tend to send production data
in proprietary formats.

Central non-functional requirements are scalability and
reliability. The latter refers to interfaces receiving data from
external services and devices. On occurring errors incoming
and shortly arrived messages should not get lost.

Keeping the interfaces in mind, one has to think of the
necessary contact points to other services or the environment
in general. The consumer interfaces of the WDL have to
accept HTTP requests, especially while communicating with
REST services. Similarly, FTP servers must be communicated
with. The WDL must receive and process e-mails as well.
Likewise, a file-based data transfer is needed. Finally, there are
interfaces to external services using proprietary communication
formats via TCP or UDP. The developed system has to enable
the reception of messages sent by them. In contrast, the
message producing components of the WDL primarily need to
communicate via HTTP. Particularly the interface to a database
can be made up of simple REST client services sending HTTP-
based messages.

After paying attention to input and output components,
the internal processes of routing and filtering shall be charac-
terised. Asynchronous processing describes the most important
requirement. Message queues or small buffer databases may
decouple various components so they can work without waiting
for each other to terminate. Furthermore, incoming messages
caused by occurring events have to be converted into an
internal format. To achieve this the WDL can extend these

TABLE I. TOOL OVERVIEW AND CLASSIFICATION. CLASSIFICATION IS
BASED ON TOOLS TO HANDLE APPLICATION INTEGRATION (AI), STREAM

PROCESSING (SP) AND KNOWLEDGE DISCOVERY (KD).

Name AI SP KD

Apache Camel 3 7 7

Apache Storm 7 3 7

Apache Spark 7 7 3

Apache Hadoop 7 7 3

Apache ServiceMix 3 3 7

Siddhi 7 3 7

ESPER 7 3 7

WSO2 CEP 3 3 7

RapidMiner 7 7 3

KNIME 7 7 3

Node-RED 3 7 7

JBoss Fuse 3 3 7

data packages with additional information. But after process-
ing unneeded contents must be removed as well. Alongside
external descriptors have to be mapped to internal descriptors
and vice versa.

The WDL has to transform the incoming data into an
internal format for further processing. Additionally, the WDL
has to be capable of providing data for doing manual statistical
evaluations and analysis. Furthermore, the WDL has to be
capable of triggering automatic evaluations and forecasts as
additional components. This work is done while keeping the
CEP pattern in mind.

Within this paper, we leave out the specific aspect of data
storage. That means different databases are not discussed or
compared. The built prototype uses a KairosDB to persist time
series data. It was chosen because of an existing simple HTTP-
based interface that provides easy access.

V. TOOL OVERVIEW

The WDL requirement analysis illustrates an EAI task with
KDD topics. Furthermore, results gathered from KDD could
result in CEP related tasks, which have to be considered as
well. The following list of tools covers these tasks. Of course,
this list is not complete. There are a lot of tools available to
handle specific tasks within the area of EAI, KDD or CEP.
Our selection focuses on widely used, platform independent
and easily accessible tools with suitable licenses models. Thus,
the list of our selection contains mainly open source tools.

Selected tools will be classified into at least one of our
primary topics: (1) tools to handle KDD related tasks, (2)
tools to solve EAI related tasks and (3) tools to implement
CEP related tasks. Additionally, there are (4) tools providing
runtime environments to execute solutions solved with tools
from class (1), (2) and (3).

Table I lists our selection of considered tools. Furthermore,
this table classifies them within our previously identified main
topics. Apache Camel is an open source lightweight framework
to solve EAI problems based on an implementation of EIPs in
[22]. Furthermore, a lot of components are available to extend
the functionality of Apache Camel [4]. Apache Storm is an
“open source distributed realtime computation system” with
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Figure 2. Visualization of our general prototype based on EIP notation.

a lot of use cases like “realtime analytics, online machine
learning, continuous computation”. This scalable environment
can handle a lot of data streams within a specific Storm
topology [5]. Apache Spark [6] and Apache Hadoop [3]
are tools for knowledge discovery in data. They differ in
performance as well as their internal approaches in data storage
and processing. Apache Service Mix [2] and JBoss Fuse [8] are
integration containers, which include other tools like Apache
Camel. Siddhi [14] and ESPER [7] are CEP engines and can
be used as standalone tools as well as an integration within
tools like Apache Camel. WSO2 CEP is a runtime environment
for the CEP engine Siddhi, which adds user interfaces for
external and internal usage [13]. RapidMiner [12] and KNIME
[9] are tools for knowledge discovery in already existing
data. It is also possible to integrate interfaces to access data
streams and use a wide range of algorithms to analyse collected
data. Finally, Node-RED is a message processing framework
with internet of things (IoT) roots and can be used to solve
application integration problems quicklys. This framework is
based on Node.js, can be extended with additional packages
and deployed into cloud services like Bluemix [10].

VI. PROTOTYPE

We have selected three tools based on our preselection
in Section V, which we want to use within a uniform test
setup. This selection focuses on tools from different fields of
application: (1) Node-RED because of its simplicity within
the field of IoT, (2) WSO2 CEP because of its Siddhi engine
for complex event processing and (3) Apache Camel as the
reference implementation for EIPs in combination with Wildfly
as Java EE based runtime environment.

The comparison is done with an uniform test setup with

a simplified task, which combines the integration of a REST-
based data source which encodes data with JSON, a KairosDB
based data sink with HTTP interface which consumes JSON
encoded data as well, and a calculation of the mean according
to a particular sender device, e. g. a photovoltaic station, has
to be calculated across multiple messages. The time window
of these multiple messages is ten seconds. That means if
sender “Station A” sends a message at 10:00:00 am the values
“Station A” sent between 09:59:50 am and 10:00:00 am are
used for calculating the mean. The result is delivered via HTTP
request to an external service which consumes JSON encoded
data as well as the data source and KairosDB.

The data source in our test setup gets its messages from a
generative photovoltaic data endpoint in configurable timings.
This source device transmits structured data like the tuple
“(time,energy,station,id)”. The first value of the generated
data tuple represents a long value as a point in time, the
second value a double based energy value of solar insolation.
Furthermore, a tag containing the string based station name
is included. Finally, the last value is a string based identifier
of this single message for further time measurements. The
identification value does not contain any relevant information
in the context of energy data aggregation. It is only used to
register and match the outgoing and incoming messages on the
peripheral systems around the measurement environment.

The KairosDB endpoint of this setup gets its message as
structured data like the tuple “(name,value,tags,time,id)”. This
tuple corresponds to the structure of data that are sent to a
KairosDB instance for storing also. The included ID is not
needed for the process of storing the data but necessary for
matching the messages afterwards. Finally, the aggregation
endpoint of this test setup gets its message as the same struc-
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tured data like the data source tuple “(time,station,energy,id)”,
The internal message routing has to be implemented across

Node-RED, WSO2 CEP and Apache Camel as shown in Fig-
ure 2. This figure illustrates the test setup and its components
by using the notation of EIPs. The selected transformation and
routing steps refere to the already mentioned requirements
in Section IV and architectural draft in Section III to cover
some kind of data source, transformation, processing, reverse
transformation as well as dumping.

A. Node-Red
Node-RED is a JavaScript based message processing

framework with IoT roots and can be used to solve application
integration problems quickly. The framework is executed with
Node.js and uses NPM for dependency management. Imple-
menting the test setup mentioned above within Node-RED web
client can be done by using a bunch of function nodes, nodes
to create HTTP endpoints as well as change nodes. Change
nodes are designed to modify the structure of our currently
handled message object. Function nodes, on the other hand, are
designed to execute custom scripts onto a particular message.
Finally, nodes to create HTTP endpoints ranges from HTTP
server nodes to some path which can be called, HTTP response
nodes which have to be placed within a message processing
path which starts with an HTTP server node and HTTP client
nodes to call external resources.

The implemented setup is shown in Figure 3. As men-
tioned, the messaging pipe starts with “PV Receiver” to
create an HTTP server endpoint for “/endpoints/pvenergy”.
The message is piped onto an HTTP response node as well as
to the primary processing path. The path starts with a function
node to clean, enrich and transform incoming messages into
the internal format. The result is forwarded to the database
handling as well as the aggregation processing. Our database
handling creates KairosDB compatible messages by using a
template node and submits the resulting message by using
an HTTP client node. The aggregation processing utilises the
other function node to implement the aggregation function.
This function node describes a simple memory to persist
messages within a time window of ten seconds as well as
calculating the mean within this window for the particular
installation. The aggregation handling is finalised with a switch
node to determine “NaN” values and an HTTP client node.

Summarising, Node-RED is a quickly providable platform
for fast prototyping which can integrate various data sources
as well as data sinks. Unfortunately, it is tricky to develop
collaboratively. Well, each developer can maintain its environ-
ment, but Node-RED-Flows are managed by Node-RED itself;
synchronising them between different development platforms
is hard. Furthermore, any particular use case, e. g. aggregate
values from messages have to be implemented manually or by
using additional NPM-based components which can be added
directly in Node-RED. However, it is possible to integrate
a broad range of endpoints with standardised formats and
protocols. Handling proprietary endpoints requires more efforts
in development.

B. WSO2 CEP and Siddhi
WSO2 CEP is a tool that runs within a Java Virtual

Machine (JVM). This CEP-environment offers a graphical
user interface within a web browser. Using this an input

receiver (named “SolarReceiver”) and two output publish-
ers (named “AveragesLog” and “SolarPublisherDB”) are cre-
ated (Figure 4). The receiver accepts data if they are JSON-
formatted and sent via “HTTP-POST” request. The HTTP
request is answered automatically if it is sent to the right
unified resource locator (URL) of the mentioned receiver i. e.
“HTTP://localhost:9763/endpoints/SolarReceiver”. The mes-
sages arriving at “SolarReceiver” are redirected to the data
stream “SolarRaw”. From this queue, the data packages are
picked by a so-called execution plan named “toInternalFormat”
and inserted into stream “SolarIn”.

The syntax of Siddhi can be used within execution plans
just as JavaScript functions. e. g. incoming string objects can
be converted to timestamps. Starting with message stream
“SolarIn” the internal workflow begins. Splitting is necessary
because two output publishers are required. The lower branch
from Figure 4 just processes the messages by adding a metric
attribute and sending them to an HTTP interface of a KairosDB
instance.

In contrast, the upper branch from Figure 4 performs a
more complex task. The average of the last ten seconds must
be computed corresponding to the last station that sent a value.
This is done by taking messages from “SolarIn” and sending
them to a helper stream if they are not to old. Beforehand
an id for one measurement is added matching the time of
arrival. If a new message arrives the helper stream is matched
against it by using the station name. The average is calculated
over the resulting messages and put to the output stream
“averagesclean”.

The measurement values are discussed later. But some
facts need to be mentioned at this point. WSO2 CEP offers
a graphical user interface that aims to provide access to some
script files. Out of that data streams are illustrated. The direct
manipulation of data streams happens while editing script files.
Other options like tracking of messages or a CPU log provide
support for software engineers.

C. Apache Camel and Wildfly
Apache Camel is a Java-based EAI-framework, which is

lightweight and extendable. It can be executed as a stan-
dalone routing system or within middleware infrastructures
like Spring, Java EE, Apache ServiceMix or JBoss Fuse.
Implementing the test setup mentioned above within Apache
Camel can be done by utilising a REST endpoint and de-
scribing a route which channels incoming messages to our
HTTP database and aggregation endpoints. Apache Camel
offers a large number of implemented patterns, which are
described within [22], as well as the option to implement
custom processes, for example within “Beans”. Furthermore,
it is possible to extend the framework with own components
for further functionalities.

Figure 2 visualises general and the finally implemented
route within Apache Camel. Its components are shown in
Figure 5. The route itself is implemented by using the so-called
“Java Domain Specific Language (Java DSL)” in Apache
Camel. This route is implemented within “DataLabRoute-
Builder” and describes the REST endpoint, which uses a
servlet to process a specific resource and utilises SEDA to
decouple incoming message flows from database and aggrega-
tion flows locally. SEDA is a lightweight in-memory message
queue component within Apache Camel. The decoupled route
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Figure 3. Node-RED implementation of the example from Section VI.
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Figure 5. Apache Camel implementation of the example from Section VI.

contains the transformation and enrich bean “EnrichPvRe-
ceiverData” to transform external “PvReceiverData” into inter-
nal “EnergyData” as well as a multicast to handle the database
and aggregation route. The database route contains another
bean “KairosDbPrepare” to transform internal “EnergyData”
into “Metric” datatypes for “KairosDb”. The aggregation route
includes the aggregation bean “AggregationByInstallation” it-
self, which is implemented as stateful bean to save messages
within a time window of ten seconds and finally calculate the
mean for a particular installation. Both routes are completed
with an HTTP client call onto the respective external endpoint.

Finally, Apache Camel is easy to use, especially when used
in combination with Maven as build and deployment tool. It
is possible to describe routes within Java DSL as we did or
use XML-based description to build those routes. Furthermore,
Apache Camel is primary a routing engine. Any particular
use case, e. g. aggregate values from messages, has to be

implemented manually or by using additional libraries.

VII. EVALUATION

In this section, we want to test the aforementioned proto-
types. To guarantee the same conditions for every application
Docker containers are used on the same machine. These
containers encapsulate the runtime environment as well as the
prototype itself. Our test machine runs on Debian GNU/Linux
9.0 Stretch using an Intel(R) Core(TM) i5-4570 CPU @
3.20GHz. Because of the main task of our prototypes is routing
messages some exclusions are necessary. First, the application
sending information to the routing engine is installed on
another machine. Furthermore, the service which receives
information the routing engine sends is placed on another
machine too. This setup admits for quantifying the response
time, memory consumption and CPU load of the various
Docker containers or the applications within them omitting the
aspect of additional load of sending and receiving applications.

The sending device transmits JSON-based structured data
tuples like “(time,energy,station,id)”. One could think of a
solar system with a particular station identifier sending the
actual energy production. The frequency of sent messages is
configurable and initially set to 10 per second for the first
measurements. Later we will increase them multiple times up
to 200 messages per second.

The JVM for our WSO2 CEP instance and the Apache
Camel prototypes are fixed to use 1024 MB of memory.
We use the measured values of “jstat” for calculating the
memory consumption of the tools mentioned above with a time
resolution of one second. Furthermore, we sum up the usage
of survival space (“S0U” and “S1U”), eden space (“EU”),
old space (“OU”), metaspace space (“mu”), and compressed
class space (“ccsu”). A node.js module measures the memory
consumption of Node-RED, i. e. the “heapUsed” value. Out
of that, the CPU load is measured by the “top” command
every second. We get the response times of the various systems
by measuring the time of sending and the time of receiving
messages in milliseconds. The arrival timestamps of messages
corresponding to database operations and aggregations are
measured separately.

A. Results
At first, we want to describe and discuss the respond time,

the memory consumption and the CPU load. As you can see
in Figure 6(a) and Figure 6(b) the mean time between sending
and receiving never increases up to more than 1 second.
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Figure 6. Mean response times of tested systems with various message frequencies for database (a) and aggregation (b) messages.

Apache Camel shows a mentionable effect of becoming faster
by receiving more messages. All considered tools exhibit the
same behaviour on database and aggregation messages. Out of
that, we have to mention, that there is no significant difference
between the response times of aggregation 6(b) and saving
processes 6(a). The progressions of both cases are similar.

Figure 7 shows four segments separated by vertical dotted
lines: The left one refers to the message frequency of 10
messages per second, the right to 200. In between, there are
parts with increasing message rate (50 and 100). Watching the
CPU load, we see an expectable process. The more messages
are sent, the more CPU load is reached. WSO2 CEP uses the
processor the most at least while processing 100 messages per
second or more.

Figure 8 describes the memory consumption of the evalu-
ated tools. The segments are placed according to Fig 7. We
identify a memory peak for Node-RED at the beginning of
the 100 messages per second section. Apache Camel presents
a trend of using the less memory, the more messages arrive.
WS02 CEP shows fluctuation in metaspace, which may be
caused by runtime generated classes per message to execute
JavaScript based functions.

B. Comparison
Watching only memory consumption in Figure 8 Node-

RED works with the lowest. Apache Camel uses three to four
times as much memory as Node-RED but does not demand the
CPU that much (Figure 7). The less memory consumption of
Apache Camel while processing a larger amount of messages
is caused by the “eden space utilisation”. Measuring this,
we see that the consumed memory decreases down to a
constant minimum. WSO2 CEP shows characteristic minima
of memory consumption and CPU load (Figure 7, Figure 8).
Garbage collections cause these. Especially the memory graph
indicates that the points of lower consumption values can be
located in the middle of a sending phase not only between
them.

For further evaluation, the response times can be compared.
All test messages were answered. That means database infor-
mation, as well as aggregation information, was not dropped.
Figure 6 illustrates the fact that messages of both categories
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Figure 7. CPU load within four phases of sending (100 values aggregated).
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Figure 8. Memory consumption within four phases of sending (100 values
aggregated).

are sent with the same time delay. WSO2 CEP reaches a limit
when receiving 200 messages per second. At this point, only
applications allowing a time delay of one second can be built.
Up to a message frequency of 100 messages per second, WSO2
and Apache Camel show a solid response time below ten
milliseconds. Especially Apache Camel becomes faster while
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handling more messages. This may be caused by the decreased
overall usage of memory.

VIII. DISCUSSION

Thinking about the main goal focusing on the architectural
backbone technologies for our WDL the selected technologies
cover different aspects as required. WSO2 CEP, Apache Camel
and Node-RED are not directly comparable. WSO2 CEP is an
environment for handling complex events, which use Siddhi
to redirect message flows as well as creating high-level events
based on multiple low-level events. Apache Camel, on the
other hand, is an implementation of EIPs which also allows
to route message. Its advantage is primary to solve integration
problems, which results in much more effort to handle complex
events. Finally, Node-RED is an readily usable environment to
create message flows within the scope of IoT. The environment
enables developers to easily integrate endpoints and handle
related tasks in case of occurred events.

Apache Camel seems to be an efficient framework in case
of routing messages. It is usable as a standalone application,
and it is possible to use this framework within a wide range
of environments like Spring, Java EE (e. g. Wildfly), Apache
ServiceMix and JBoss Fuse. Our measurements show a quiet
strange behaviour when raising the amount of messages per
second, which cannot be comprehended fully. Taking a closer
look onto the measurements show, that the eden space within
the JVM is not used that much which may save garbage
collection time. This might be an explanation for our strange
behaviour. However, it is possible to quickly setup new routes
and integrate them with a broad range of potential endpoints.

Node-RED, on the other hand, seems to be an easy to use
prototyping platform at least because of its graphical user inter-
face. This easiness applies as long as the integrated endpoints
use standard formats and protocols. CEP has to be handled
separately, in the case of clean code development processes
it is necessary to implement additional nodes. Surprisingly,
Node-RED runs quietly efficiently. The memory consumption,
as well as the CPU load and response times, illustrates that,
despite JavaScript, all messages are handled fast and efficiently.

Watching WSO2 CEP, there are some remaining chal-
lenges. The complexity of using windows and aggregation
functions on one stream with messages from different logical
sources forces the user to research intensively. A desirable
feature is missing. There is no opportunity to create own
objects and saving them. The included event tables only offer
the option of saving whole messages. The feature of adding
custom JavaScript functions cannot be used in its entirety
(at least not in the release we used). A weird phenomenon
shows up when comparing long values. Even if you declare
all variables of streams using matching types the log of
WSO2 CEP shows parsing errors. These refer to string-to-long
conversions, which actually should not happen.

Finally, the evaluation lack discrete measurments on usabil-
ity and simplicity. Usability and simplicity are rated, within
the discussion, based on our development experience while
implementing the described prototypes.

IX. CONCLUSION

The WDL has to be able to handle data streams as
mentioned in different manners. Beside the integration and

routing itself, there are tasks in the area of complex event
processing as well as knowledge discovery in data. Our first
reflection of architectural backbone technologies covers those
aspects. Based on our experiences and measurements gathered
from this test setup, we can make some decisions. In the case
of a complex heterogeneous environment with different kinds
of interfaces, Apache Camel seems to be a right choice. It is
usable within a wide range of conditions and able to handle a
lot of technologies to cover integration problems. Furthermore,
in the case of handling complex events, WSO2 CEP seems to
be the right choice. Unfortunately, its surrounding environment
does not cover our requirements. So there are three possible
approaches: (1) build CEP algorithms based on beans manually
within Apache Camel; (2) integrate WSO2 CEP as a backend
system; (3) extract Siddhi and integrate its functionalities into
Apache Camel. However, Node-RED has its advantages in
rapid prototyping and fast message processing. It might be
usable as front end system to easily integrate standardised
external interfaces as well as an additional platform for ex-
periments within a productive setup. Nevertheless, everything
you can do with Node-RED seems to be possible with Apache
Camel too. The main difference can be found within the
usability, the deployment process and the underlying language.
Adapting knowledge discovery in such setups, independent of
which routing engine is used, should be possible by using
a database and route messages as required or by integrating
available public interfaces from tools for knowledge discovery
within Apache Camel or Node-RED.

However, next steps might be a final concept for the WDL
by using results of this analyse as well as the implementing of
this concept. Further, it is neccessary to integrate mentioned
data sources into this finally implemented WDL-prototype,
e.g., PV, weather forecasts, booking information, and electric-
ity consumption.

Related implementations and instructions for further analy-
ses of this test setup can be found within a public repository1.
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