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Abstract—Ridesharing recommendation is an important appli-
cation in urban computing. The existing grid map method is
a popular method but may overlook many possible ridesharing
opportunities. In this paper, we proposed an algorithm to find
ridesharing paths that consist of two stages. In the first stage,
GPS tracjectoreis are segmented and represented as cubes, and in
the second stage, those cubes serve as landmarks for identifying
possible ridesharing paths. We used the GeoLife GPS trajectories
dataset to evaluate this approach and compared our algorithm
with the grid map method. The results show that the number of
possible ridesharing paths identified by our approach is six times
that of the grid map method.

Keywords–Urban computing; similar trajectories; ridesharing
paths; GeoLife GPS Trajectories.

I. INTRODUCTION

“Ridesharing is the sharing of vehicles by passengers
to reduce vehicle trips, traffic congestion and automobile
emissions.”, according to Wikipedia [1]. Many studies in
urban computing use GPS trajectories to analyze ridesharing
problems [2][3][4][5] in spatial or spatiotemporal space. These
methods can find the sub-trajectories where only partial paths
have ridesharing possibility while the origins and destinations
of two paths are not always the same. Some methods can
further find proximate trajectories where two parallel paths
are not exactly on the same road but can have ridesharing
relation. Most methods require the information of road network
to compute ridesharing paths [5][6][7][8][9] , while another
popular method proposed in [3][4] works without road network
information (termed as the grid map method here) by partition-
ing a map into numerous blocks and identifying overlapping
blocks for potential ridesharing paths. Figure 1 shows a simple
example of the grid map method. The data shown in Figure
1 are the GPS temporal traces (trajectories) extracted from
GeoLife dataset (from 9 am to 10 am in the downtown area of
Beijing). The whole map is divided into tiny rectangular grids
according to the x and y coordinates, and the number of traces
passing through each grid is calculated. Any grid that has less
than 10 passes is not shown on this map. While this method
is effective and can successfully identify ridesharing paths
without road network information, one caveate of the grid map
method is that only the paths in the same block are considered
as a candidate of possible ridesharing paths but the paths in the
adjacent blocks were not even if the gap between two paths in
adjacent blocks is just a few centimeters. Therefore, the grid
map method may overlook possible candidates.

In this paper, we proposed yet another approach that does
not require road network information either, with the aims to

Figure 1. An example of the grid map method. We used the GeoLife GPS
trajectories dataset to evaluate this approach.

improve the searching ability by solving the abovementioned
caveate in the grip map method. Our approach can find prox-
imate sub-trajectories, includes partial ridesharing paths and
the parallel paths. Inspired by computational geometry [10],
our approach segments and expands trajectories into numerous
cubes. Our approach finds ridesharing paths between one target
trajectory and all other trajectories on both spatial and temporal
space once. The evaluation was carried out by feeding the
GeoLife GPS trajectories dataset into our approach as well
as the grid map method. The results show that our method
outperformed the grid map method in terms of the number of
identified ridesharing path candidates.

The rest of the paper is organized as follows. Section
II gives an example of ridesharing paths. Our approach is
described in Section III. The experimental evaluation to show
the accuracy and compared results are in Section IV. Section
V gives an example to apply our approach. Related works are
explained in section VI. Finally, we conclude our study and
the future works in Section VII.

II. RIDESHARING PATHS

Figure 2 shows an example of ridesharing paths and each
symbol represents a GPS point. The averaged distance (spatial
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gap) between the two paths within the range of the red circle
in Figure 2 is about 20 meters. Figure 3 shows the same
trajectories as in Figure 2 but further including the temporal
data as the third dimension. Figure 3 shows that the temporal
gap between the two paths is about 1800 seconds and they
have ridesharing relation.
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Figure 2. An example of ridesharing paths. X-axis denotes the longitude and
Y-axis the latitude. The two paths (main track and track 73) are identified as

having a ridesharing relationship within the range of the red circle.
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Figure 3. The same tracjectories as in Figure 2 represented in a
three-dimensional plot. X-axis denotes the longitude, Y-axis the latitude, and

Z-axis the temporal dimension (sec). The total time duration is 86400
seconds(24 hours).

III. PROPOSED APPROACH

This section presents our algorithm for finding the rideshar-
ing paths, includes an algorithm for preprocessing raw data,
an algorithm for cube-intersection, and a heuristic for finding
the multiple ridesharing paths.

A. Preprocessing
The GPS trajectories are segmented and expanded into

a series of cubes objects in this step before inputted to our
cubes-intersection method. This step makes it feasible to get
ridesharing paths and reduce the computational cost while a
cube includes many GPS points. In Algorithm 1, the input
T is a GPS trajectory, where each point pi = {xi, yi, ti} is
characterized by the longitude, latitude and timestamp. The
sequence of T is in temporal order. The two parameters, ε and
τ , are the size of a cube in the x-y plane and time domain
respectively. In the beginning, a new cube object c is initiated
for inserting GPS points later. Next, each GPS point of T is
scanned to check whether the size of a cube cj is bigger than
the parameters, ε and τ when a new GPS point pi have been

inserted to cj . The checking is conducted by (1), (2) and (3).
dist() converts the distance of two coordinates to meters. The
new GPS point pi will be removed from cj if pi lead cj to out
of the threshold ε and τ , and the pi will be inserted to new
cj+1. The center position of the cube cj is computed by (4)
and stored as part of cube attribute. The direction of the route
in a cube is computed by (5). In the final step, cubes series
C will be outputted when every GPS point of T is scanned.
Figure 4 shows the concept of the cubes visually.

lng range (c) = dist ((lat1, b1) , (lat1, b2))

lat1 = Latitude (first point (c)) (1)
b1 = min Longitude (c) , b2 = max Longitude (c)

lat range (c) = dist ((lng1, d1) , (lng1, d2))

lng1 = Longitude (first point (c)) (2)
d1 = min Latitude (c) , d2 = max Latitude (c)

time range (c) =

max Timestamp (c)−min Timestamp (c)
(3)

center(c) = (xc, yc, zc)

xc =
max Longitude (c) +min Longitude (c)

2

yc =
max Latitude (c) +min Latitude (c)

2
(4)

zc =
max Timestamp (c) +min Timestamp (c)

2

direction (c) = arctan(

Latitude (last point (c))− Latitude (first point (c)) ,

Longitude (last point (c))− Longitude (first point (c)))
(5)

Figure 4. A conceptual plot of the cube series after Preprocessing algorithm.

B. Cubes intersection
This part is to check the intersection between any two cubes

in a three dimensional space to find ridesharing paths. In the
algorithm 2, the cube series C1 represents a target trajectory
and C2 represents a combination of all other trajectories. We
used a simple all pair checking between the cubes of C1 and
the cubes of C2. Equation (6) defines a function to check
the intersection. After (6), two cubes will be further checked
that the direction of two cubes are similar by comparing with
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Algorithm 1 Preprocessing

Input: Trajectory T = {p1, p2, . . . , pm}. Size threshold ε.
Time threshold τ .

Output: Cubes series C
1: initial a cube c1
2: let j = 1
3: for i = 1, 2, . . . ,m do
4: add pi into cj
5: if lng range(cj) > ε or lat range(cj) > ε or

time range(cj) > τ then
6: Remove pi from cj
7: compute center position and direction of cj .
8: insert cj into C
9: j = j + 1

10: initial a new cube cj
11: insert pi into cj
12: end if
13: end for
14: compute center position and direction of cj .
15: insert cj into C
16: return C

the input parameter δ, an angle threshold. In other words,
two trajectories have no ridesharing possibility if they have
opposite directions. Two cubes have ridesharing relation if they
had a intersection. The information of ridesharing paths will be
recorded in L. The cube ID j that intersects with the cube of
C1 will be added to L where the row number is the cube ID i
and the column number is the trajectory ID of cj . The output
L is a sparse matrix, whose number of rows is the number
of cubes in C1 and the number of columns is the number of
trajectories in C2.

isIntersect(ci, cj) =



if
dist((yci , xci), (yci , xcj)) < ε

true, and
dist((yci , xci), (ycj , xci)) < ε

and |zci − zcj | < τ

false, otherwise
(6)

Algorithm 2 Cubes-Intersection method

Input: cube series C1, C2 = {c1, c2, . . . , cm}. angle threshold
δ

Output: sparse matrix L: each element can store more than
one number.

1: for all ci ∈ C1 do
2: for all cj ∈ C2 do
3: θi,j ← get angle difference between direction(ci)

and direction(cj).
4: if isIntersect(ci, cj) and θi,j < δ then
5: add j into L(i, track ID(cj) ).
6: end if
7: end for
8: end for
9: return L

C. Multiple ridesharing paths

The matrix L is already a database of multiple ridesharing
paths. L contains every ridesharing path and can be seen as
a one-dimensional table where each column represents one
trajectory from a three-dimensional space. Each row represents
a ridesharing relation between the target and other trajectories.
Below is a heuristic to find the multiple ridesharing paths from
L.

1) In L, the columns with the number of non-zero
elements less than β shall be deleted, where β is a
user-defined parameter.

2) In L, rows with only zero shall be deleted.
3) Compute Φ vector from L, whose definition is

L = [r1, r2, · · · , rn]T

Φ = [φ(r1), φ(r2), · · · , φ(rn)] (7)
φ(rx) = #NonZeroElements(rx)

Simply said, Φ is a vector that each element is the
number of non-zero elements in row r of L.

4) Choose a range in Φ, in which the elements are large
enough.

5) Recover the GPS points from those cubes correspond
to the range of rows in L, to show the real paths with
ridesharing relation.

In L, We want as many non-zero columns as possible
because the columns represent the trajectories have ridesharing
relation; we want as long non-zero continuing rows as possible
because the rows represent a long ridesharing path. A user can
retrieve a short range of rows that have many columns with
non-zero elements, or just one column that have the longest
ridesharing path. However, it is difficult to have both at the
same time. Step 1∼4 can be repeated until the range of rows
and columns is small enough to find ridesharing paths. In
section V, we will show an example to explain this idea.

IV. EXPERIMENTAL EVALUATION

This section shows our experimental design to investigate
the questions of the performance. The structure of this section
begins with the experimental purposes, followed by the overall
experimental design and the experimental results.

A. Experimental Purposes

Some questions related to our approach were explored. The
intention was to examine the accuracy and the ability to search
ridesharing paths. Those questions were examined with Geo-
life dataset. The questions we explored were:

1) Will the gap between two ridesharing paths be like
the ε we set?

2) Can our approach find more ridesharing paths than
the grid map method?

Question 1 is to find out the distribution of GPS points in
two intersected cubes. GPS points are possible in any position
in a cube, and some GPS points may be in the corners of a
cube which may lead a gap space of two ridesharing paths
more than ε meters. Question 2 is to find out the ability of our
approach to search ridesharing paths is better than the grid
map method.
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B. Experimental Design
This experiments use the Geolife dataset[11] as the test

data. The dataset contains 17,621 GPS trajectories with a
total distance of 1,292,951 kilometers and a total duration of
50,176 hours by 182 users. Those trajectories were recorded by
various GPS loggers and GPS-phones with various sampling
rates. 91.5% of the trajectories are logged in a dense sampling
rate, e.g. every 1∼5 seconds or every 5∼10 meters per GPS
point. Each record in the dataset contains the information
of latitude, longitude, altitude and time-stamp. This dataset
recorded a broad range of user movements, including life
routines like go home, go to work, and some entertainments
and sports activities such as shopping, sightseeing, dining,
hiking, and cycling. The majority of this dataset is in Beijing,
China, few data is in other countries.

To reduce the variation, we only use the GPS points in Bei-
jing city that inside 6th Ring Rd, from coordinate (39.688403,
116.091945) to (40.179632, 116.714733). The experiments
were carried out on the mainframe with the specification
below:

• CPU: Intel Core i7-4790 3.6GHz
• Memory: DDR3-1600 16GB Non-ECC
• OS: Windows 7 64bits
• Programming Language: C++ on Visual Studio 2013

The experiment design for question 1, Figure 5, uses two
different cube sizes, (ε=20,τ=600) and (ε=100,τ=3600), to
show the distribution in all pairs of intersected cubes. To
check any pairs of ridesharing paths which found by our
approach have a gap distance as we expect, DTW(Dynamic
Time Warping) [12][13] was used to verify the gap distance
between two ridesharing paths. The DTW method can find
the pairwise GPS points on two trajectories. The DTW in
this experiment is the dynamic programming edition, whose
computational speed is much faster than the recursive edition.

The experiment design of question 2 is shown in Figure 6.
To evaluate the ability of our approach to search ridesharing
paths, we compare results of our approach with the grid map
method. The outputs of either approach are the ridesharing
information and the length of each ridesharing path was
accumulated. The larger accumulated result, the better ability
to find ridesharing paths. Both the block size of grid method
and the cube size of our approach are 100 meters width and
3600 seconds height.

C. Experimental Results
Will the gap between two ridesharing paths be like the

ε we set? Figure 7 shows a statistic result when ε=20 meters.
The figure shows that 92% pair-points have a gap distance less
than 20 meters. The Figure 8 shows a statistic result when
ε=100 meters. The result shows that 95% pair-points have a
gap distance less than 100 meters. Both results show that the
distribution in most intersected cubes is in our expectation.
Most of the ridesharing paths have a gap distance less than ε.

Can our approach find more ridesharing paths than
the grid map method?

The result in Figure 9 shows that the accumulated rideshar-
ing path of our approach is six times that of the grid map
method. The finding ridesharing ability of our approach is
significantly better than the grid map method. The possible

Figure 5. The design of experiment 1

Figure 6. The design of experiment 2
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Figure 7. Accumulated results of cube size ε=20 and τ=600. X-axis
represents the distance between the two corresponding GPS points (in

meter), and the. Y-axis dentoes the counts GPS point-pairs within each bin
in the X-axis.
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Figure 8. Accumulated results of cube size ε=100 and τ=3600. X-axis
represents the distance between the two corresponding GPS points (in

meter), and the. Y-axis dentoes the counts GPS point-pairs within each bin
in the X-axis.

reason is that in the grid map method, only the paths in the
same block are considered as a ridesharing path while the path
in the next block will not be considered even if there is only
a few centimeters gap between them. Our approach can find
every ridesharing paths while the gap between two paths is
smaller than ε. However, the computational time of the cube
method is 1960 seconds, which is larger than the grid method,
152 seconds. The possible reason is that our approach needs
more time to search wider range and more ridesharing distance.
On the other hand, we use a huge array to represent a grid
space in the grid map method for random access ability, which
any pair of paths can be checked whether they are in the same
block in a constant time.

Grid Cubes
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18,723,102 km
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Figure 9. The accumulated ridesharing path distance

V. APPLICATION

Our approach can find ridesharing paths by comparing
multiple candidate trajectories with one target trajectory. Here
we demostrate an application of the proposed method, by
using the trajectories data of User 0 and User 2 (about 170
trajectories for each user) in the Geo-life dataset. The task
was set as a query “Compare each trajectory of User 0 to all
the trajectories of User 2, and find the trajectory from User 0
that has the most ridesharing paths with User 2”. Because our
approach is comparing each trajectory to multiple trajectories
at once, our approach is performed 170 times if there were
170 trajectories in User 0. The parameters in this example are
β = 10, τ = 3600 seconds, ε = 100 meters. For example, by
setting β = 10 and ε = 100, the ridesharing paths in L with
the length less than 1000 (β× ε) meters will be excluded. The
results are shown on Figure 10 and Figure 11, the symbols in
the graph are original GPS points with timestamps. We set the
cube segments from 782 to 816 based on the values of Φ in
Figure 12. These segments have most continuous ridesharing
paths than other ranges of segments. The main track on the
graph represents a target trajectory of User 0. Other tracks on
the graph are the trajectories of User 2. Figure 10 is a two-
dimensional graph showing the geographical path. Figure 11
is a three-dimensional space with temporal space, shows that
there are four paths overlapped in terms of spatial distance
but not in terms of temporal gap. Table I demonstrates the
one-dimensional trajectories table extracted from L for the
application. We found that User 0 has a GPS trajectory on
2009-04-03 that significantly overlapped with the trajectories
of User 2 on 2008-11-19, 2008-12-05 and 2009-03-09.

VI. RELATED WORKS

This section introduces some works which are related to
our study.

A. Computational Geometry

The rectangles intersection problem has been thoroughly
investigated in computational geometry [10] . One research
which uses computational geometry to find similar parts of
trajectories is Buchin et al. [14] , which also takes temporal
data into account. However, the method can become inefficient
in practice for large sets of trajectories with many vertices.
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Figure 10. The application in two-dimensional plot. X-axis denotes the
longitude, Y-axis the latitude.
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Figure 11. The application in three-dimensional plot. The total time duration
is 86400 seconds(24 hours).
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Figure 12. The values in Φ of this application. X-axis denotes the cube ID
number. Y-axis denotes how many trajectories intersect with this cube.

TABLE I. ONE-DIMENSIONAL TRAJECTORIES TABLE FROM THE
MATRIX L IN THIS APPLICATION.

main track track 38 track 53 track 148
782 52 1 0

783 52,53 1,2 0

784 53,54 2,3 0

785 54,55 3,4 7

786 55,56 4,5 7,8

787 57 6 8,9
...

...
...

...

792 63,64 13 14

793 64,65 14 16

794 65 15 16,17

795 0 0 17,18

796 0 0 18,19
...

...
...

...

816 0 0 38

B. Methods of finding similar trajectories

The methods based on curve similarities, such as Longest
Common Sub-Sequence LCSS [15], Edit Distance on Real
sequence(EDR) [16], Hausdorff distance [17] and Dynamic
Time Warping(DTW) [12][13] , are essentially not designed
for ridesharing. These methods can get a value of similarity
of two trajectories. However, they can find only one common
sub-trajectory from two trajectories while there are multiple
separated common parts. These methods also measure the
similarity of the shape of two trajectories which is not required
in our approach. The computational cost is high while the
methods directly process GPS points without any points re-
duction methods. Usually, these methods only consider spatial
data but spatiotemporal data [18].

C. Graph-based methods

Graph-based methods, such as Network Hausdorff Dis-
tance(NHD) [6][7], temporal graph-based method [8], grid
with road network information method [5][9][19], the 2 syn-
chronization points shortest paths problem [20][21], use road
network information to simplify the analysis of trajectories.
The road network information is like the nodes and the edges
in Traveling Salesman Problem(TSP). The major issue of these
methods is they will be useless while there is no road network
information. Our approach processes GPS points directly but
not mapping the points into POI.

D. Ridesharing system

The studies of the ridesharing system, such as taxi rideshar-
ing [5], salient traffic problem [22] and the system of [3][4],
show effective results. However, the taxi ridesharing and the
salient traffic problem also need road network information.
The system of [3][4] uses no road network information but
splits user trajectories into a number of segments according
to temporal distance and match the segments into grid space.
The issue of the system is it may overlook possible candidates
in adjacent grids as we explained in the introduction of this
paper.
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VII. CONCLUSION AND FUTURE WORKS

In this study, we designed a different approach to identify
possible ridesharing paths for the ridesharing recommendation.
The proposed approach can find ridesharing paths between
one target trajectory and all other candidate trajectories in
spatiotemporal space. The experimental results show that more
than 92% ridesharing paths have a gap distance less than ε,
which represents our cube intersection approach function well.
The ability of searching ridesharing paths is significantly better
than the grid map method. However, the time cost of our
cube method is higher than the grid map method. The possible
reason is that our searching program is not yet optimized. We
expect to reduce the time cost of this method by incorporating
some optimization techniques from computational geometry
in future works. Based on the classification of ridesharing
system in a previous study [23], our proposed method is
categorized as “routing and time” class, which focuses on
matching passengers and drivers by checking the pick-up and
drop-off locations on the same path and the same time. Other
classes such as “Origin-Destination pair” and “Keyword/List”
consider only the starting and ending points but ignore the
route between the two points, which is also an effective way
for a ridesharing system. We leave this issue to future studies.
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