
A Triple Interfaces Secure Token -TIST- for Identity
and Access Control in the Internet Of Things

Pascal Urien
Telecom ParisTech

23 avenue d’Italie, 75013 Paris, France
Pascal.Urien@telecom-paristech.fr

Michel Betirac
EtherTrust, Avenue Louis Philibert

Domaine Petit Arbois 13100 Aix en Provence
Michel.Betirac@EtherTrust.com

Abstract— This paper introduces an innovative technology
based on secure microcontrollers, such as smartcards,
equipped with TLS stack. The secure microcontroller,
identified by its X509 certificate, is embedded in a triple
interfaces secure token (the TIST), supporting USB, NFC and
Mifare connectivity. The TIST secures OPENID and electronic
key delivery services and makes them available for multiple
terminals such as mobiles, laptops or tablets.

Keywords- Security, smartcard, NFC, OPENID, TLS

I. INTRODUCTION

Figure 1. A TLS Stack for Secure Microcontroller

The Internet Of Things (IoT) is an architecture in which
billions of devices with computing capacities and
communication interfaces are connected to the internet and
perform collaborative tasks [4]. In this context security is a
major issue. In this paper we focus on access control services
to logical (OPENID) and physical (electronic key delivery)
resources, which are deployed in laptops, tablets, mobiles or
embedded systems such as electronic locks. In previous
works [1][2] we introduced a TLS stack with a small
memory footprint of about 20 KB, which works in most of
the secure microcontrollers of the market such as smartcards
(defined by the ISO 7816 standards). The TLS protocol
(RFC 2246) is the cornerstone of the internet security; the
server is usually identified by its X509 certificate; the client
is optionally authenticated with a certificate. Our TLS stack
always works with certificates for both client and server, and
therefore performs strong mutual authentication, based on
PKI, between these entities. Secure microcontrollers [7] (see
figure 1) are tamper resistant devices whose security is
enforced by multiple hardware and software
countermeasures; they include CPU (8, 16, 32 bits),
nonvolatile memory (about 100 KB), ROM (about 200 KB)
and RAM (about 10 KB). Most of them comprise a java

virtual machine (JVM), and therefore run software written in
javacard (a subset of the java language) such our TLS stack.
As a consequence an object equipped with a secure
microcontroller running a TLS stack (see figure 1), performs
strong mutual authentication with internet server, and
afterward establishes secure channel (i.e. the TLS Record
Layer) with cloud computing services. In this paper we
describe the integration of this TLS stack in a token that
offers three communication interfaces: USB for laptops,
NFC (Near Field Communication) for mobile phones, and
ISO 14443A (MIFARE) for physical access control.

This paper is constructed according to the following
outline. Section 2 introduces the Triple Interfaces Secure
Token (or TIST) architecture, and details some services such
as OPENID (http://openid.net) authentication and electronic
keys delivery [5] available for mobiles phones and laptops.
Section 3 describes the concept of dual NFC interfaces, and
the logical architecture of applications dealing with this
concept. Section 4 details the services supported by the TLS
stack embedded in the TIST. Section 5 presents the APIs
dedicated to the TIST, available for laptops and smartphones
environments. Finally section 6 concludes this paper.

This work was funded by the FEDER OnDemand
project.

II. TRIPLE INTERFACES SECURE TOKEN - TIST

Figure 2. Triple Interface Secure Token (TIST) hardware architecture

The TIST architecture is depicted by figure 1, it
comprises four main components

- The system core is a 32 bits microprocessor, which
drives an USB port and an ISO7816 serial interface with the
secure microcontroller (i.e. a smartcard)

TLS Stack

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-282-0

SMART 2013 : The Second International Conference on Smart Systems, Devices and Technologies

- The USB port gives access to the smartcard, which
usually exchanges packets with the terminal thanks to the
well-known PC/SC API.

- The ISO 7816 interface is used for the contact mode,
i.e. when the key is plugged to an USB terminal. It transports
messages to/from the smartcard, over the ISO 7816 serial
link.

- The secure microcontroller (see figure 1) is a smartcard
equipped with two communication protocols, first is used in
contact mode according to the ISO 7816 standards, and
second in contactless mode. In this last case the chip is feed
by an electromagnetic field at the frequency of 13,56 MHz;
radio packets are exchanged according to the ISO14443
specifications, which have been endorsed by the NFC
consortium (http://www.nfc-forum.org).

The TLS stack delivers two main facilities. First it
established TLS sessions with remote TLS servers, via the
EAP-TLS protocol (RFC 5216) that transports TLS without
TCP/IP flavors. The session is transferred to the application
(handling the secure microcontroller) upon the reception of
the server finished message for TLS full mode, and after the
transmission of the client finished message for the resume
mode. The session transfer requires two parameters a set of
ephemeral keys (the KeysBlock) and the associated
cryptographic algorithms (the CipherSuite). According to a
mechanism called container [5], the terminal may push data
(such as keys values used by electronic locks) that are
ciphered with the secure microcontroller public key (found in
its certificate) and signed by a trusted authority. Containers
are checked and decrypted by the secure microcontroller.

In summary the two services of TLS stack are first TLS
session booting and second container delivery. The
following sections presents applications based on these
facilities such as OPENID [3][8] and key delivery [5][6],
which are available with three communication interfaces, i.e.
NFC, Mifare, and USB.

A. NFC Interface
The NFC technology covers an umbrella of standards

working with the 13,56 MHz frequency, with throughput
ranging from 106 Kbits/s to 424 Kbits/s. Android is an
operating system originally created by the Android Inc
company, bought in 2005 by Google. The gingerbread
version (v2.3) endorses the NFC technology; more precisely
the mobile may be used as a NFC reader that communicates
with external NFC devices feed by its electromagnetic field.

When the TIST is tapped against the mobile, an Android
application registered to the NFC service is started (see [5]
for more details). This application realizes four main
functionalities:

- It exchanges packets with the TLS stack running in the
secure microcontroller;

- It boots the TLS session and transfers its control back to
the mobile (via the Get-KeysBlock and Get-CipherSuite
commands)

- It manages TCP/IP sockets resources, and realizes a
proxy server in order to establish the logical glue between
the browser, the external contactless smartcard and the
remote internet server.

- It pushes toward the NFC device, container received
over HTTPS session.

OPENID is a typical application for NFC services for
mobile in which the embedded TLS stack is used for mutual
authentication with the OPENID server (see [5][8] for more
details).

B. Mifare Interface
Mifare devices introduced in 1994 by the NXP Company

are very widely deployed for access control purposes, used
by transport infrastructures or electronic locks. For example
the “Mifare Classic S50” component is organized in sectors,
divided in 16 bytes blocks, whose reading and writing
operations are controlled by a couple of 48 bits keys (KeyA
and KeyB). Our contactless smartcard provides Mifare
emulation, and therefore is compatible with the Mifare
ecosystem. Furthermore the secure microcontroller has
access to Mifare blocks. As we demonstrated in [6] this
feature enables the secure delivery of keys, transported in
containers. TLS sessions with internet keys servers are
booted from the secure microcontroller. The user experience
is quite simple: the user taps the TIST against its mobile,
starts the Android application that collects a key which is
afterwards stored in the appropriate Mifare block.

C. USB Interface
The USB interface provides connectivity for laptops. The

TIST is accessed via the PC/SC API which is supported by
Windows and Linux operating systems. It works as a
smartcard reader to which is internally plugged the secure
microcontroller. A proxy server application (see section 2-A)
establishes the logical glue between the PC browser, the
secure microcontroller and a remote internet server. This
architecture was previously detailed in [2], and is used for
OPENID platform secured by EAP-TLS smartcard [1] It
should be noticed that the key delivery service described in
section 2-B is also provided for laptops.

III. ABOUT DUAL NFC INTERFACES APLLICATIONS
The ISO 14443A standard specifies the boot sequence of

a NFC device, when it is feed by the electromagnetic field
(whose frequency is 13,56 Mhz) generated by a NFC reader,
providing a throughput of 106 Kbits/s. The reader uses an
ASK 100% modulation with for packet transmission, and a
subcarrier of 848 kHz for data reception. The booting
process is illustrated by the figure 3,

Initially the card powered by the RF field is in the
IDDLE state. The reader sends a REQA (Request Command
of Type A) packet and waits for an ATQA (Answer To
Request of Type A) message, whose two bytes content
indicates the protocol to be used for the anti-collision
process. Afterwards the reader performs an anti-collision
loop (based on SELECT and ANTICOLLISION commands)

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-282-0

SMART 2013 : The Second International Conference on Smart Systems, Devices and Technologies

whose goal is to collect the UID (Unique Identifier), attribute
(4, 7 or 10 bytes). The anti-collision procedure ends by a
SAK packet (SELECT Acknowledge), which indicates if the
card works with the ISO7816-4 protocol or with the
MIFARE protocol. If the card is ISO7816-4 compliant the
reader sends the RATS (Request for Answer To Select),
which is acknowledged by an ATS (Answer To Select);
otherwise the reader and the card exchange MIFARE
messages.

The availability of both MIFARE and ISO7816-4
protocols is usually referred as a dual NFC interface. Despite
the fact that MIFARE protocols are proprietary (i.e. designed
by the NXP company), they are widely used for access
control and transport (about 70% of the transport market).

Figure 3. The ISO14443-A state machine (from the ISO14443 standard)

The ISO7816-4 standard provides a communication
interface both for contactless (NFC) and contact smartcards
that usually comprise a java virtual machine (JVM) and
therefore run programs written in the JAVACARD language
(a subset of JAVA).

Figure 4. Illustration of a dual interfaces apllication

The JCOP operating system, designed by the IBM
company and afterwards bought by the NXP company
supports a JAVACARD API (JZSystem.readWriteMifare)
that enables read and write operations in MIFARE blocks
from a JAVACARD application.

The Java Card Forum (JCF) API supports since the JC2.2
release a dedicated class (javacardx.external.Memory)
providing access to memory subsystems such as MIFARE.

The figure 4 illustrates the architecture of an electronic
key service dedicated to legacy MIFARE lock readers. A
TLS-Stack running in the javacard is used to securely
transfer a key value from a WEB server. This attribute is
afterwards written in the MIFARE memory.

IV. THE TLS APLLICATION

 CLA INS P1 P2 P3 LE

Select 00 A4 04 00 LC bytes 0 byte

Verify PIN 00/A0 20 00 00 or
01

LC bytes 0 byte

Set Identity 00/A0 16 80 00 LC bytes 0 byte

Reset 00/A0 19 10 00 0 0 byte

Process
EAP

00/A0 80 0.last
1.more

00 LC bytes LE
bytes

Get
CipherSuite

00/A0 82 CC 00 LE=0x03
or 0x24

0x40

Get
KeyBlock

00/A0 82 CA 00 LE=0x40
or 00

0x40

Get Result 00/A0 C0 00 00 LE #0

Fetch
Result

00/A0 12 00 00 LE #0

Write
Container

00/A0 D0 0.first
1.more
2.last

00 LC bytes 0 byte

Figure 5. ISO7816-4 Interfcae for theEAP-TLS smartcard

The TLS embedded application is based on the EAP-TLS
smartcard IETF draft specification [1]. The software
interface is made of ten (Select, Verify-PIN, Set-Identity,
Reset, Process-EAP, Get-CipherSuite, Get-KeyBlock, Get-

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-282-0

SMART 2013 : The Second International Conference on Smart Systems, Devices and Technologies

Result, Fetch-Result, Write-Container) ISO7816-4
commands, illustrated by figure 5.

Select activates the EAP-TLS application, which is
according to the ISO7816 standard identified by a 16 bytes
number, the AID (application identifier).

Verify-PIN unlocks the application; two PINs are
available one for the user and the other for the administrator,
which are associated to different privileges. The
administrator manages all the application resources.

Set-Identity binds TLS sessions to a set of cryptographic
credentials that form the user’s identity. An identity is a set
of attributes such as the CA (Certification Authority)
certificate, the TLS client or server certificate, and a private
key; this collection of data is identified by an alias name that
may be a well-known value if the device only hold a unique
identity.

Reset resets the EAP-TLS state machine.

Process-EAP forwards EAP-TLS packets to the secure
microcontroller, which processes its contents according to
the current state machine and returns an EAP-TLS packet.
The EAP-TLS standard (see RFC 5126) specifies the
transport of TLS over the EAP framework (Extensible
Authentication Protocol, RFC 3748). A double
segmentation/reassembly procedure performed both for EAP
and ISO7816 messages, realizes the transfer of TLS packets
(up to 16384 bytes) to and from secure microcontrollers
whose (ISO7816) command size is limited to 256 bytes.

Get-CipherSuite collects the cipher suite (algorithms
used for cipher and HMAC purposes) negotiated during the
TLS session establishment; if available this command returns
also the Session-Id of the current TLS session.

Get-KeysBlock returns a couple (for data transmission
and reception) of cryptographic keys, needed by the record
layer entity for encryption and integrity procedures, Due to
performances issues (cryptographic operations performed by
secure microcontrollers are not fast), the TLS session may be
exported from the secure microcontroller if a great amount of
exchanged data is expected.

Get-Result and Fetch-Result are service commands used
to collect EAP packets that are produced by the secure
microcontroller.

Write-Container pushes a set of data (the container) that
are ciphered with the secure microcontroller public key
(found in its certificate) and signed by a trusted authority.

The TLS application is downloaded in the TIST token
during the manufacturing process. The administrator PIN is
set by default to eight zeros. It may be thereafter modified,
and its knowledge gives access to personalization operations,
which imply the generation of identity attributes and their
downloading in the secure microcontroller.

V. USING TIST FROM APIS
The TIST works with two class of computing platforms,

laptops equipped with USB connectivity, and mobile phones

supporting NFC interface. Two kinds of APIs are available
written in C language for PC running the Windows operating
system, and JAVA for Android smartphones.

A. APIs for C environment
The glue with PC/SC Windows environment is realized

by five functions performing smartcards detection and
ISO7816-4 commands exchanges.

- int DetectAllCard(char *Aid), returns the number of
detected TLS modules.

- int StartFirstCard(int index,char *aid), starts a session with
a smartcard identified by its index (first index is set to zero).

- int GetPtcol(int index), returns the T-Protocol (ISO7816
transport protocol) used by a smartcard identified by its
index.

- int CloseCard(int index) closes a session with a smartcard
identified by its index.

- int send_apdu(int index, char *request, int offset, int length,
char *response, int response_offset) sends an ISO7816
command to a smartcard.

TLS sessions are opened by secure microcontrollers.
Upon success, a set of ephemeral cryptographic keys (the
KeysBlock) and the list of negotiated algorithms (the
CipherSuite parameter) are read from the smartcard. They
are handled by six procedures.

- BOOLEAN OpenSSLClient(int index, SOCKET s), opens
a TLS session with a client EAP-TLS device identified by its
index and a TCP/IP socket.

- BOOLEAN OpenSSLServer(int index, SOCKET s), opens
a TLS session with a server EAP-TLS device identified by
its index and a TCP/IP socket.

- int GetKey(int index, short *cs, char *key), collects the
negotiated CipherSuite and the KeysBlock from a EAP-TLS
device identified by its index and returns the keys size.

- int recordlayer(short cs, char* keybloc,CTX* ctx, int
mode), creates a record layer (either CLIENT or SERVER
side), working with a CipherSuite (cs) and a KeysBlock.

- int SSLRead(SOCKET s, char *buf, CTX *ctx), reads
information over TLS associated to a TCP/IP socket and
returns the data size.

- int SSLWrite(SOCKET s, char *buf, int len, CTX *ctx),
writes information over TLS associated to a TCP/IP socket,
returns the number of sent bytes.

B. APIs for JAVA environment
Two main java objects are required, the tls-tandem class

building the core framework for the management of TLS
session with an EAP-TLS RFID, and the recordlayer class
created at the end of the TLS handshake, which performs all
encryption decryption/operations.

The tls-tandem class is made of three main methods:

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-282-0

SMART 2013 : The Second International Conference on Smart Systems, Devices and Technologies

- public tls_tandem(int mode, ReaderSC reader, String aid,
String pin, String identity)

- public recordlayer OpenSession(String ServerName, short
Port)

- public void CloseSession(recordlayer RecordLayer)

The constructor of the tls-tandem class setups the
software environment for TLS operations with external
RFID, according to the following parameters,

- mode is the role of the RFID (either TLS CLIENT or TLS
SERVER)

- reader is an abstract representation of the RFID reader,
based on the NFC Android model. This object detects the
presence of an external RFID feed by the reader, and
provides support for IO operations.

- aid, is the Application Identifier for the application store in
the RFID. According to the ISO7816 standard, this identifier
size ranges between 5 to 16 bytes.

- pin is the optional PIN required for the RFID activation.

- identity is an optional alias that identifies the set of
parameters (client’s certificate, private key, CA Certificate)
to be used by the TLS stack.

The OpenSession method performs the handshake with a
remote TLS server identified by its name and its port
(usually 443). It returns a recordlayer object initialized with
the appropriate cryptographic parameters.

The CloseSession method deletes the TLS framework
and the associated resources.

The recordlayer object is created upon a successful TLS
handshake. It supports five main methods.

- public byte [] encrypt(byte[] msg). Perform encryption and
integrity operations, and return a TLS formatted packet.

- public byte[] send(). Transmit a TLS packet over the TCP
socket.

- public byte[] recv(). Receive a TLS packet from the TCP
socket.

- public byte [] decrypt(byte[] msg). Decrypt a TLS packet
and check its integrity.

- public void Close(). Close the TLS session.

VI. CONCLUSION
In this paper we introduced a new technology dealing

with NFC, MIFARE and USB connectivity, which performs
identity and access control services, compatible with both the
OPENID standard and the MIFARE ecosystem deployed for
electronics locks.

REFERENCES
[1] IETF Draft, "EAP support in smartcards”, 2002-2012
[2] Urien, P., "Collaboration of SSL smart cards within the WEB2

landscape", CTS'09, 2009

[3] "An OpenID Provider based on SSL Smart Cards", Consumer
Communications and Networking Conference, IEEE CCNC 2010,
Best demonstration Award

[4] IETF Workshop, "Interconnecting Smart Objects with the Internet
Workshop", Prague, March 2011.

[5] Urien, P., Kiennert, C. "A new key delivering platform based on NFC
enabled Android phone and Dual Interfaces EAP-TLS contactless
smartcards", in proceedings of MOBICASE 2011.

[6] Urien, P., Kiennert, C. "A New Keying System for RFID Lock Based
on SSL Dual Interface NFC Chips and Android Mobiles", IEEE
CCNC 2012

[7] Jurgensen, T.M. ET. al., "Smart Cards: The Developer's Toolkit",
Prentice Hall PTR, 2002, ISBN 0130937304.

[8] P.Urien, “Convergent Identity: Seamless OPENID services for 3G
dongles using SSL enabled USIM smart cards”, IEEE CCNC 2011.

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-282-0

SMART 2013 : The Second International Conference on Smart Systems, Devices and Technologies

