
Clock Pulse Modeling and Simulation
of Push and Pull Processes in Logistics

Carlo Simon, Stefan Haag and Lara Zakfeld

Hochschule Worms
Erenburgerstr. 19, 67549 Worms, Germany

Email: {simon, haag, lara.zakfeld}@hs-worms.de

Abstract—This paper is about a new technique to find Petri
net models for a clock pulse spotted simulation of processes in
logistics and production. These models can be used to observe the
raising and discharging of stocks in production in order to iden-
tify bottlenecks, to observe differences of push and pull strategies
on the valued stocks, and to decide on strategic changes. For this,
however, significant preliminary tasks had to be conducted first
which are also the objective of this paper: a novel, Web-based
Petri net modeling and simulation environment called Process-
Simulation.Center (P-S.C) has been developed since existing tools
are not at the least able to handle such sophisticated models. At
the moment the tool worked properly, different approaches to
model the described situation had to be compared. A teaching
laboratory for logistics has been chosen as a sample application.
The simulation now helps students to scale up their personal
observations in the laboratory with respect to time, amount and
value. This paper explains the situation in the laboratory, the new
features of the P-S.C that enable the modeling of these processes,
and the finding of the model itself. Finally, its development led to
another, different approach to describe the teaching processes by
a so called event triggered simulation that is shortly considered
in contrast.

Keywords–Conceptual models of timed dynamic systems; Sim-
ulation; Petri nets; Logistics; Teaching.

I. INTRODUCTION

Enterprise Resource Planning systems (ERP) can collect
and integrate data using a common database, thereby repre-
senting a good basis for the overall accounting process [1].
This information can be used in all areas of a company such
as sales, purchasing and finance, but also human resources
or production. In many companies, they are used to plan and
control manufacturing processes. These systems evaluate and
name the next upcoming orders, record the progress of work
by means of confirmation messages and determine production
plans.

ERP systems, however, do not support their users
in making decisions concerning a modified production
strategy. For example, turning push processes in logistics
and production into pull processes often comes along with a
significant reduction of stock costs and, at the same time, an
increased flexibility. Nonetheless, we observe that still many
companies produce in accordance with the push principle
because of over-reliance on the production strategy suggested
by the ERP system, but also because of nescience of the
different strategies and their effects. In order to avoid the
latter, it is very important for students in the field of logistics
to experience different strategies in their lectures.

However, practical experience is typically restricted con-
cerning available time as well as amount of handled goods,
machines and space. The so called box game, explained in
Section III, for example, imparts this knowledge in a relatively
simple setting. In order to extend this experience, we had the
idea to develop a simulation model to overcome the mentioned
limitations.

Since we work on Petri nets for decades, we decided to
use Petri models to demonstrate the consequences of various
processes in logistics, especially concerning the application of
push and pull strategies. This, however, was a more challenging
task than assumed at the beginning:

1) Especially models and simulations of pull processes
rely on the possibility to distinguish between different
customer orders. Hence, such processes cannot be
modeled with simple Petri nets, but need Petri nets
with individual tokens, so-called high-level Petri nets.
Although such Petri net classes are known for many
years (e.g., [2] [3]), no blueprint could be found how
to develop appropriate models with them. Actually,
most publications on this topic are of theoretical
nature and not intended to make use of simulation
results. We even assume that many of the shown
models have never been tested in practice using
tools. This, however, delivers new insights and new
modeling techniques. Thus, one of the outcomes of
this paper is a description of how the final clock pulse
simulation model has been developed.

2) The above mentioned experience concerning
modeling and simulation of Petri nets relies on the
existence of an appropriate tool. At the present,
this is a real problem. Almost all Petri net tools
listed in [4] are either obsolete, do not support
time aspects or Petri nets with individual tools, and
none of them have modern user interfaces. They are
useless for the finding of new modeling techniques
for high-level Petri nets and new applications of
simulation models in logistics and production. In
order to overcome this limitation, we developed the
Process-Simulation.Center (P-S.C), a novel, Web-
based Petri net modeling and simulation environment
that, among others, can be applied to the above
mentioned logistics laboratory. Actually, this tool
has been developed over years and its application to
the box game is the last one in a series of use cases
in the recent years.

31Copyright (c) IARIA, 2020. ISBN: 978-1-61208-831-0

SIMUL 2020 : The Twelfth International Conference on Advances in System Simulation

In order to explain the research progress that could be
achieved in the fields of the development of a tool for the
conceptual modeling and simulation of processes with the aid
of Petri nets, the finding of an appropriate model for the
logistics problem, derived recommendations on how to find
such models, and finally concerning the concrete laboratory
process, this paper is organized as follows: The considered
laboratory process is briefly described in Section III, while the
related work is discussed in Section II. These two sections
have a lot in common with the corresponding sections in [5]
where a different modeling approach is considered for the same
process. Section IV describes the development of the clock
pulse model, explains its components, and discusses how the
simulation results can be interpreted. Then, Section V shortly
summarizes the specifics of the modeling approach of [5] and
explains the fundamental differences between both modeling
techniques. In Section VI, a conclusion both on the simulation
results and the modeling approach is presented. The paper
closes with an overview of planned and possible future work.

Contrary to other publications of ours, an explanation of the
research agenda is omitted in this paper since this is outlined
in other contemporaneous publications [5].

II. RELATED WORK

Originally, Petri nets are defined as Place/Transition (P/T)
nets with anonymous tokens indicating a system’s state [6].
Diverse concepts for representing high level information in
Petri nets exist, with the most widely known being:
Predicate/Transition nets omit anonymous tokens for ones

carrying data that can be processed and altered by use
of functions encoded on transitions. When firing, these
functions accept data from tokens on the preset. Func-
tions return their results by putting appropriate tokens on
the postset. The places serve as predicates according to
which transitions may fire. Thus, it is possible to model
interactions of tokens according to real-world influences
or with each other. [2]

Colored Petri Nets integrate colors into Petri nets such that
tokens, places and transitions have an assigned identity,
their color. When determining if a transition is enabled,
the adjacent places and their tokens are examined by color
separately. This allows for more compact net representa-
tions under certain circumstances. [3] [7]

Regarding modeling, more specifically that of technical
systems or business processes, time is important. Without
claiming completeness, several approaches combining Petri
nets and time concepts have been presented: Time Petri Nets
(TPN) [8] and Timed Petri Nets (TdPN) [9] associate time with
transitions, Time Place & Transition Nets (TPTN) [10] assign
time with places and their marking, and Arc Timed Petri Nets
(ATPN) [11] [12] associate time with the arcs of Petri nets.

The aforementioned formalisms share one concept differ-
entiating them inherently from original Petri nets: Their state
relies not only on information as given by their respective
markings, but also on some kind of timer clocks. Timestamps
are means to encode time information in the marking only.
Timestamp Nets introduce tokens with timestamps designat-

ing the moment the corresponding token was placed.
Transitions may fire in time windows as given by two non-
negative values on the transitions’ incoming arcs [13]. The
permeability of arcs depends on these timestamps [14].

Extended Timestamp Nets integrate the concepts of Pr/T
and Timestamp nets such that tokens carry timestamps
and any further information [15].

Some of the approaches may be transformed into each
other quite effortlessly [16] [17]. All of the presented Petri
net formalisms, however, use artificial, abstract time units. To
model and simulate real-world applications, real time values
should be used. To this end, date and time data types seem
beneficial to be included as possible information on tokens.
For reference, there are other modeling methods that were
developed to combine time and process structures.
Value Stream Diagrams (VSD) establish models of flows

of information and material in order to evaluate value
streams. To optimize the value streams, wait times -
beside other factors - need to be minimized. The value
stream method exposes such wait times. This concept
became widely known due to Toyotas Production System
from 1930 and its advancements by Japanese engineers
Taiichi Ohno and Eiji Toyoda, but dates back as far as
1914 when graphical nets were used to examine routings
and other flows to help Installing Efficiency Methods in a
manufacturing company [18] [19].
Figure 2 depicts the exemplary process as a VSD. It gives
a suitable high-level overview of the whole value stream
from customer to supplier, however cannot be simulated.

Business Process Model and Notation (BPMN) is a nota-
tion and representation language for modeling business
processes. It is extensively used due to the relative ease of
both creating and understanding models. Using BPMN, it
is possible to create both high-level models of companies
and low-level models of single processes in a graphical
approach similar to flowcharts [20] [21].
Although there are similarities between BPMN and Petri
nets, the former lack the mathematical toolset that can be
used to analyze Petri nets in form of linear algebra.

If conceptual models are developed for process simulation
or execution, also tools are needed in addition to the formal
mathematical base. The Process-Simulation.Center (P-S.C) is
a Web-based modeling and simulation environment supporting
the development of P/T and Pr/T nets [22].

In P-S.C, it is possible to assign data types to places
and to use these places in analogy to tables in databases.
Special types for time and date are important substructures
for the simulation of processes in production and logistics and
enhance the mentioned approaches to timed Petri nets.

In contrast to Relational Algebra and SQL where oper-
ations like select or projection are applied to the set of all
affected tuples and result in a set again, in P-S.C the tuples
are processed serially. This is since, in business and production,
work items are also treated one after another. A decision on the
concrete sequence is made locally by the transitions of the net
which also has the ability to aggregate over the tuple tokens
on a place, like this is known for database systems.

Also, the P-S.C can be used to combine the process view on
a system with other views. Process maps can be used to collate
different processes with each other and to express the strategic
value of processes as primary, supportive or managing.

The organizational structure of an institution can be com-
bined with the Petri net view on the processes by assigning its
nodes to swim lanes for the responsible organizational units.
Organizational charts complete the functions of the P-S.C.

32Copyright (c) IARIA, 2020. ISBN: 978-1-61208-831-0

SIMUL 2020 : The Twelfth International Conference on Advances in System Simulation

Contrary to most other conceptual modeling tools, espe-
cially those that have been developed for Petri nets, for the
P-S.C a specification language has been developed with which
all types of models are scripted. Due to strong algorithms for
automatic layout, modelers can concentrate purely on structural
aspects of the domain to be expressed.

III. A SIMULATION LABORATORY
FOR PROCESSES IN LOGISTICS

The so-called box game has been developed at the Worms
University of Applied Sciences to teach students in logistics
and is used as a sample application. Despite its simplicity, very
different kinds of processes that also have a high impact for
practice can be observed. It is, therefore, ideal for trying out
different ways of conceptual modeling and simulation.

The concrete example is a simple construction process
where students assemble small and large boxes, put the smaller
into the larger ones, and check the quality at the end of the
process. With this process, characteristics of push and pull
systems are illustrated.

Training members are present during the game. Ideally,
they take part in the game in order to gain first hand expe-
rience of motivation and work situations. Being engaged in
the training helps the students to recognize different types
of waste, such as overproduction, waiting, and motion, but
also the transformation of waste types. Finally, discussing the
shared experiences is a major part of the learning success. A
complete simulation run of the box game lasts approximately
two to three hours.

Despite the simplicity of the used material and the low level
of technical requirements, the box game is easily transferable
to assembly work stations in a more generalized form and
has a highly practical impact. Mechanical production, however,
where schedules, shift patterns, changeover times or multiple
machine set-ups are of particular importance, is not an objec-
tive of this training.

Figure 1 shows the spatial organization of the box game
in the learning laboratory: five work tables are arranged in a
suitable location and standard positions like interim storages
are marked with adhesive tape. As can be seen, the setting
can also be build up in locations such as conference rooms,
training rooms, or even canteens.

The following activities have to be conducted at the five
stations or (transport-wise) between them:

Material

Big Boxes Small Boxes
1

Preassembly
Big Boxes

Preassembly
Small Boxes

2 3

Finish Assembly

Buffer

4

Test

Buffer

5

Finished Items

Buffer

Figure 1. Layout design of the box game

1. Storage (S) Deliver boxes.
2. Preassemble big boxes (PBB) Fold box, close lid, and

pass the box on.
3. Preassemble small boxes (PSB) Fold box, close lid, and

pass the box on.
4. Finish assembly (FA) Open big box, insert small one,

label small box with a post-it as ”package note”, close
and tape big box lid up, and pass on.

5. Test (QA) Shake box for an acoustic quality check, apply
a red dot to the upper left corner of outer box, and place
the finished box in the storage area.

Beside the trainer, the following can partake in the game:
5 participants who will occupy the work stations
3 players who record the processing times
1 observer who records the inventory in the system
1 observer who records productivity levels
Possibly 2 employees who will disassemble the boxes

The initial stock of the box game is 75 big and 75 small
boxes. However, it is not the aim to produce the entire demand
in the shortest possible time, but to produce them according
to the customer demand - one part every 15 seconds - without
inventory and with as few employees as possible.

Figure 2 shows the value stream diagram of the box
game. Although the processing time can be annotated in the
diagram, it is hardly simulated due to a lacking mathematical
foundation. Even software that replicates human intuition of
value stream diagrams is missing. Nonetheless, the diagram
helps to understand how the box game is played in detail.

Typically, the simulation is played in four rounds where
each round lasts for a defined duration (e.g., 5 or 8 minutes).
During the simulation, two types of principles with two batch
sizes are played.
Batch size 3 - push principle: The products are passed on in

batches of size 3. Each process step works functionally
independent from the other and the participants are paid
by the number of pieces they work on. Hence, it is the
goal at each station to produce as much output as possible.

Batch size 3 - pull principle: Stations produce and pass on
products in batches of size 3. Upstream stations have to
hold their pieces and stop production until it is demanded
by an internal or external customer. The capacity of a
station and its buffer is limited to 3 items and items can
only be replaced accordingly.

Batch size 1 - pull principle: The third round is played like
the second one, but the batch size is reduced to one.

Improvement - pull principle: The last round is used to find
improvements autonomously and to apply them as a team.

2 sec/pc
Material

9 sec/pc
Preassembly SB

75 BB
75 SB

0 SB

18 sec/pc
Preassembly BB

0 BB 0 BB

0 SB

25 sec/pc
Finish Assembly

0 FB 7 sec/pc
Test

0 FB

Production
ControlSupplier Customer

15 sec/pc

Figure 2. Value stream diagram of the box game

33Copyright (c) IARIA, 2020. ISBN: 978-1-61208-831-0

SIMUL 2020 : The Twelfth International Conference on Advances in System Simulation

The advantage of this approach is that the participants
gather personal experiences. This can hardly be replaced by
a computer simulation. However, augmenting this hands-on
experience by a computer simulation helps to scale up both
complexity and range of the considered process.

IV. CLOCK PULSE SIMULATION MODELS

The aim of observing storage utilization over time neces-
sitates a constant flow of time. To this end, the first step in
modeling the box game is the implementation of a clock that
ticks every second, as depicted in Figure 3 (upper left). A tiny
Petri net consists of a time-typed place clock, a corresponding
transition pulse and two arcs, one of which removes a time
token from the clock, while the other one adds one second
to the received value and puts the token back on the clock.
Thus, each firing increments the elapsed total time by one
second. At this point, it is worth mentioning that the Process-
Simulation.Center draws places such that both their labels and
token quantity can be presented within the node.

The basic model of a working station - here, the folding of
the big boxes, as shown in Figure 3 (lower) - consists of a place
inBB for the attached upstream storage and a place buildBB for
the workplace itself. An adjacent transition deliverBB provides
the storage with feedstock coming from the material warehouse
(and possibly information about the order volume).

The transition startBB gets the item with the minimal id
according to the fifo principle and puts it on the workplace
buildBB. Then, the transition stopBB waits for the item to be
finished as indicated by the processing time (which is encoded
on the item’s token) and the time of the aforementioned clock
elapsed. For this, in our models, all enabled transitions fire
together in steps. This waiting is implemented as a condition
on stopBB. Conditions and selection criteria can be displayed
inside the model by clicking on the plus-symbol.

The transition stopBB is attached to an interim storage
serving as buffer for the succeeding working station, as shown
later. The place idleBB serves two purposes: as a semaphore
that prohibits startBB from firing while the workplace is busy,
and as a counter of the idle time of the workplace.

An observer net, as presented in Figure 3 (upper right),
evaluates the costs associated with the storage. The value of
place inBBEval is increased by the number of tokens on place
inBB indicating the cost of the storage in that exact moment.
In combination, these models allow for the observation of
fluctuating storage levels, of bottlenecks, and of storage cost.

By expanding on the presented working space model and
implementing the mentioned concepts, the first iteration of the
box game - the push version as presented during a simulation
run in Figure 4 - can be modeled.

As the main principle of the building net - exemplarily
shown for the big boxes - can be used for the other workplaces,
they can be structurally copied and then adapted with respect
to the processing time.

Connected to the upstream storage places of the big and
small box folding nets, there is the mentioned place for the
main warehouse. The downstream storage places are linked to
the interim storage serving as buffer for the finishing step.

The working station for tests is connected directly to the
outgoing storage of the final assembly. As is the case for
conditions, functions and data accesses on arcs can be shown
or hidden, as needed.

s/
pulse(s)

pulse

clock 
v/

evalBB(v)

observeBB

EvalBB 

(..)

(..) (..) (..) (..)


deliverBB


startBB


stopBB

clockmaterial

InBB buildBB

idleBB 



1

Figure 3. (upper left) Simple Petri net clock · (upper right) Observer net that
evaluates the upstream storage in (lower) · (lower) Building big boxes as

instance of a single working station

To further enhance the visual understanding of their re-
spective functionality, nodes can be provided with symbols.

The pull version of the box game as depicted in Figure 5
is slightly more complicated, as supplementary elements are
needed to implement pull requests. This is done by additional
pull-transitions that keep track of the contents of upstream
storage places for all three construction workplaces. As soon as
these are empty, a pull request is issued, leading to a delivery.

Comparison of the two models’ simulation runs show
neither a change in total processing time nor one in idle times
for the different workplaces, which is as expected. Differences
on utilization of storage places become evident, though.

Dashboard

box

pass(box)

box

startB(box,i)

box (SUM(clock.sec))

(i)

box

pass(box)

box

startB(box,i)

box(SUM(clock.sec))

(i)

pass(box) pass(box)

bBox sBox

startF(bBox,sBox,i)

box(SUM(clock.sec))

(i)

pass(box)

box

startB(box,i)

box(SUM(clock.sec))

(i)

pass(box)

s/
pulse(s)

v/
evalMat(v)

v/
evalBB(v)

v/
evalSB(v)

v/
evalF(v)

v/
evalT(v)


deliverBB


startBB


stopBB


deliverSB


startSB


stopSB


startF


stopF


startT


stopT

pulseobserveMA

observeBB

observeSB

observeF

observeT

material

inBB

buildBB idleBB

inSB

buildSBidleSB

inFBB inFSB

finishidleF

inT

testidleT

goods

clockmatEval

inBBEval

inSBEval

inFEval

inTEval

 







 4





2



31 27









 

80

 

Figure 4. Pulse Clock Push Model

34Copyright (c) IARIA, 2020. ISBN: 978-1-61208-831-0

SIMUL 2020 : The Twelfth International Conference on Advances in System Simulation

Dashboard

box

pass(box)

box

startB(box,i)

box (SUM(clock.sec))

(i)

(0)/
(3)

(r)/
(r-1)

(0)/
(3)

(r)/
(r-1)

box

pass(box)

box

startB(box,i)

box(SUM(clock.sec))

(i)

(0)/
(3)

(r)/
(r-1)

(0)/
(3)

(r)/
(r-1)

pass(box) pass(box)

bBox sBox

startF(bBox,sBox,i)

box(SUM(clock.sec))

(i)

pass(box)

box

startB(box,i)

box(SUM(clock.sec))

(i)

pass(box)

s/
pulse(s)

v/
evalMat(v)

v/
evalBB(v)

v/
evalSB(v)

v/
evalF(v)

v/
evalT(v)


deliverBB


startBB


stopBB


pullUBB


pullBB


deliverSB


startSB


stopSB


pullUSB


pullSB


startF


stopF


startT


stopT

pulseobserveMA

observeBB

observeSB

observeF

observeT

material

inBB

buildBB idleBB

reqUBB

reqBB

inSB

buildSBidleSB

reqUSB

reqSB

inFBB inFSB

finishidleF

inT

testidleT

goods

clockmatEval

inBBEval

inSBEval

inFEval

inTEval

138

 

2







 1



1



2











 

 

Figure 5. Pulse Clock Pull Model

The first model using push principles clearly shows the
drawback of this approach: large interim storage and, as
a result, high inventory costs. Figure 6 (upper) depicts the
inventory on the material storage, the building buffer storages
and the finished goods storage during the push simulation.

Figure 6 (lower) presents the pull simulation run’s results
with otherwise unaltered preconditions. The interim storage
places are much less utilized as only those items are put into
the assembly lines that are demanded by downstream stations.

0

20

40

60

80

0 3 6 9 12 15 18 21 24 27 30 33

St
o

ck
s

[p
cs

]
· P

u
sh

Elapsed �me [min]

rawBB rawSB inBB inSB inFBB inFSB goods

0

20

40

60

80

0 3 6 9 12 15 18 21 24 27 30 33

St
o

ck
s

[p
cs

]
· P

u
ll

Elapsed �me [min]

rawBB rawSB inBB inSB inFBB inFSB goods

Figure 6. Stocks in the pulse clock model for Push (upper) and Pull (lower)

0

50

100

150

0 3 6 9 12 15 18 21 24 27 30 33

In
te

ri
m

 s
to

ra
ge

 c
o

st
s

[1
 0

0
0

 s
ec

]
· P

u
sh

Elapsed �me [min]

inBB inSB inF totals

0

5

10

15

0 3 6 9 12 15 18 21 24 27 30 33

In
te

ri
m

 s
to

ra
ge

 c
o

st
s

[1
 0

0
0

 s
ec

]
· P

u
ll

Elapsed �me [min]

inBB inSB inF totals

Figure 7. Inventory costs per interim storage and accumulated
for Push (upper) and Pull (lower)

This is as expected, as it corresponds to the main goal behind
just-in-time production schedules.

Figure 7 (upper) presents the costs of interim storage in
the push model, while Figure 7 (lower) presents the same for
the pull model. Also shown are the accumulated costs of all
interim storage places. The finished goods storage is omitted as
throughput is the same in both models, thus leading to the same
costs on this storage. The material warehouse, otherwise, is put
aside as the difference between the accumulated totals equals
to the possible savings when externalizing the warehouse. By
simply implementing pull principles, the evaluated stock cost
on the interim storage places plummet. Thus, the advantages of
a just-in-time production and a smaller main storage become
obvious. The pull principle allows for exactly this.

What is not accounted for in these models are for example
costs of transportation, as smaller batch sizes usually corre-
spondent to higher transportation costs, leading to familiar
knowledge: decreasing one muda typically increases other
muda. Hence, batch size 1, which is optimal for the interim
storage cost, is not necessarily the globally optimal solution.

V. AN ALTERNATIVE MODELING APPROACH

The advantage of the described way to model the box
game is that the rising and discharging of the stocks can
be observed throughout the simulation in a very illustrative
way. The number of items in each stock is obvious for every
second. Since in the P-S.C the color of and the symbol on
places can change dependent on the number of tokens on the
place, the advantages and disadvantages of push and pull can
be demonstrated very well. As a consequence, for the students
in the logistics laboratory the simulation is a demonstrative
extension of their personal experience.

For the concrete example described here, 1902 steps that
represent seconds (or almost 32 minutes) in the real world
game are calculated for the full simulation, both for push
and pull. This is a much longer period than the one that can
be played by the students, because the concentration of the
students decreases after about 5 minutes. But the calculation
of all of these steps take time. On an iMac with 4 GHz
Quad-Core Intel Core i7 processor and 16 GB RAM, the full
simulation takes in a Chrome browser 8234 milliseconds. The
duration for the simulation of a working day would increase
linearly. This observation led to the question how to save
simulation time. Actually, this can be reduced drastically if the
visualization is less important compared to the concrete result.

35Copyright (c) IARIA, 2020. ISBN: 978-1-61208-831-0

SIMUL 2020 : The Twelfth International Conference on Advances in System Simulation

In this case, it would be sufficient to calculate new states only
in the moments of state changes. For the concrete example
discussed in this paper, the simulation can be reduced from
1902 down to 79 steps for push and 228 steps for pull. On the
same computer mentioned above, the simulation takes then 315
or 923 milliseconds, respectively. We call this second approach
an event triggered simulation. Its benefits increase even more,
if the demand interval in which changes occur vary strongly
from one part of the model to the other since it takes into
account local state changes.

The price that has to be paid for this is that a visualization
of the simulation results must be generated in a separate
working step. Also, we sensed the development of the event
triggered model as more difficult compared to the clock pulse
model. From this personal observation, we derive the following
suggestion:
Use a clock pulse simulation if either a clock pulse visual-

ization of the system’s states is needed or if the computer
is fast enough for the few simulations that must be run
for the modeled system.

Use an event triggered simulation if simulation speed is
necessary due the complexity of the modeled system,
if fast answers are needed in production, or if a large
number of variations of the production schedule or input
data has to be compared. In general, the more often a
specific model needs to be simulated, the more it is worth
to develop an event triggered model instead of a clock
pulse model.

VI. CONCLUSION AND FUTURE WORK

The modeling exercises that had to be solved for this paper
led to some new insights in the development of conceptual
models for discrete timed systems. Finally, we found our
personal good practice that consists of the following steps:
1. Define data types for the different stocks and other data

objects, and initialize the corresponding places in accor-
dance with the starting condition.

2. Augment the model by transitions for beginning and ending
specific tasks like delivering raw materials, building or
testing a box.

3. Identify the next item to be taken and the moment this will
occur. This also allows for implementation of different
prioritization strategies.

4. Start with modeling the simpler push principle and augment
this model by pull principles.

Moreover, we now see the development of a clock pulse
model as a preliminary for the development of an event
triggered model. If an event triggered model is needed due to
the above mentioned reasons, we suggest the following steps:
1. Develop the clock pulse model first.
2. Observe the reasons for state changes with the aid of the

clock pulse model and derive the event triggered model
from these observations.

3. Look for a proper visualization of the simulation results.
In order to ease the step from a clock pulse model to

an event triggered model, in the future we will work on an
extension of the P-S.C such that users are supported in finding
the relevant moments of state changes. Probably it will be
possible to automatically support the modelers in conducting
this task.

What impressed us most is that what can be modeled
and simulated with the aid of Petri nets is only restricted by
the modelers imagination and the ability of the used tool. In
opposite to other out of the box modeling environments for
logistics, a user is free to lay the focus on any parameter they
are interested in most.

However, two challenges exist: Modelers must be able to
develop sophisticated, abstract models and must find a way to
visualize the results. We hope that we have given one answer
to the first challenge and see major future work concerning the
second one.

REFERENCES
[1] C. Caserio and S. Trucco, Enterprise Resource Planning and Business

Intelligence Systems for Information Quality. Cham, Switzerland:
Springer, 2018.

[2] H. J. Genrich and K. Lautenbach, “System Modelling with High-Level
Petri Nets,” Theoretical Computer Science, vol. 13, 1981.

[3] K. Jensen, Coloured Petri-Nets, 1st ed. Berlin: Springer, 1992.
[4] “Petri Nets Tools Database Quick Overview,”

https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
(last accessed 2020.09.20).

[5] S. Haag, L. Zakfeld, C. Simon, and C. Reuter, “Event Triggered
Simulation of Push and Pull Processes,” in SIMUL 2020: The Twelfth
International Conference on Advances in System Simulation. Porto,
Portugal: IARIA XPS Press.

[6] W. Reisig, Understanding Petri Nets. Berlin: Springer, 2013.
[7] M. Montali and A. Rivkin, “From DB-nets to Coloured Petri Nets

with Priorities (Extended Version),” CoRR, vol. abs/1904.00058, 2019.
[Online]. Available: http://arxiv.org/abs/1904.00058

[8] P. Merlin, “The Time-Petri-Net and the Recoverability of Processes,”
University California, Irvine, Tech. Rep., 1974.

[9] C. Ramchandani, “Analysis of Asynchronous Concurrent Systems by
Timed Petri Nets,” MIT, Project MAC, Technical Report 120, 1974.

[10] J. Sifakis, “Use of petri nets for performance evalutation,” in Measuring,
modelling and evalutating computer systems, ser. IFIP, H. Beilner and
E. Gelenbe, Eds., North Holland Publ. Co., 1977, pp. 75–93.

[11] R. König and L. Quäck, Petri-Netze in der Steuerungs- und Digital-
technik. München, Wien: Oldenbourg Verlag, 1988.

[12] H.-M. Hanisch, Petri-Netze in der Verfahrenstechnik. München:
Oldenbourg, 1992.

[13] C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzè, “A unified high-
level petri net formalism for time-critical systems,” IEEE Transactions
On Software Engineering, vol. 17, no. 2, 1991, pp. 160–172.

[14] H.-M. Hanisch, K. Lautenbach, C. Simon, and J. Thieme, “Timestamp
Nets in Technical Applications,” in IEEE International Workshop on
Discrete Event Systems, San Diego, CA, 1998.

[15] C. Simon, “Developing Software Controllers with Petri Nets and a
Logic of Actions,” in IEEE International Conference on Robotics and
Automation, ICRA 2001, Seoul, Korea, 2001.

[16] K. Jensen, “High-Level Petri Nets,” Informatik-Fachberichte, vol. 66,
1983, pp. 166–180.

[17] L. Popova-Zeugmann, Time and Petri Nets. Berlin: Springer, 2013.
[18] C. E. Knoeppel, Installing Efficiency Methods. The Engineering

Magazine, 1915.
[19] T. Ohno, Toyota Production System. Milton Park, UK: Taylor &

Francis, 1988.
[20] BPMI, “BPMN 1.0 - Business Process Model and Notation,”

https://www.omg.org/spec/BPMN/ (letzter Zugriff 2020.09.20), 2004.
[21] OMG, “BPMN 2.0 - Business Process Model and Notation,”

http://www.bpmn.org/ (last accessed 2020.09.20), 2011.
[22] C. Simon, “Web-Based Simulation Of Production Schedules With High-

Level Petri Nets,” in 32rd International ECMS Conference on Mod-
elling and Simulation (ECMS 2018), L. Nolle, A. Burger, C. Tholen,
J. Werner, and J. Wellhausen, Eds. Wilhelmshaven, Germany: SCS
Europe, 2018, pp. 275–281.

36Copyright (c) IARIA, 2020. ISBN: 978-1-61208-831-0

SIMUL 2020 : The Twelfth International Conference on Advances in System Simulation

