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Abstract—Dynamic driving simulators have become a key tech-
nology to support the development and optimization process
of modern vehicle systems both in academic research and in
the automotive industry. However, the validity of the results
obtained in simulator tests depends significantly on the ade-
quate reproduction of the simulated vehicle movements and the
associated immersion of the driver. Therefore, specific motion
platform control strategies, so-called Motion Cueing Algorithms
(MCA), are used to replicate the acting accelerations and angular
velocities within the physical limitations of the driving simulator
best possible. In this paper, we present a novel filter-based control
approach for this task, using a hybrid kinematics motion system
as an application example. Based on introduced quality criteria,
an objective comparison of the proposed control strategy and
a real-time capable Model Predictive Control (MPC) algorithm
is performed using various standard driving scenarios. These
include longitudinal as well as lateral dynamic maneuvers in
order to estimate the overall improvements of both Motion
Cueing Algorithms for interactive driving simulation.

Keywords–Driving Simulation; Human-in-the-Loop; Motion
Cueing; Dynamic Motion Platform Control; Objective Quality
Criteria.

I. INTRODUCTION

Driven by topics, such as e-mobility and autonomous
driving, in recent years there has been a continuous trend
towards interconnectivity and multifunctionality of vehicle
components, as well as Advanced Driver Assistance Systems
(ADAS). As a consequence, automobile manufacturers and
developers have to deal with increased product complexities
and simultaneously decreased development periods to ensure
their competitiveness in the automotive industry. To overcome
those new technological challenges, the use of interactive
driving simulators represents an indispensable tool to transfer
the conventional development process, based on physical pro-
totypes and on-road tests, to model-based test procedures. Such
virtual prototyping methods using driving simulators provide
the benefit of time and cost savings, as well as safe and
reproducible test environments with a high level of flexibility at
the same time. For example, varying weather and lighting con-
ditions can be directly adapted to the test requirements in the
simulated environment, which supports i.a. the development
and optimization of modern headlamp systems significantly
[1]. Furthermore, interactive driving simulation enables to
access human-centered aspects, such as demonstration and
marketing, driver training and behavior studies [2][3].

Disregarding from the particular analysis purpose, the
validity of the results obtained in a virtual test drive is
closely linked to the degree of immersion. Interactive driving
simulation can therefore be characterized as a Human- and
Hardware-in-the-Loop (HHiL) application whose transferabil-
ity to real driving situations can only be guaranteed if a
realistic driving impression is created. Hence, it is necessary to

provide the human perception system with all required motion
information, so-called Motion Cues. In addition to the acoustic
and visual stimuli, also the vestibular Motion Cues, more
precisely the acting translational accelerations and angular
velocities of the simulated vehicle, must be generated using
the motion system of the dynamic driving simulator. For this
reason, specific Motion Cueing Algorithms are applied in order
to create a driving experience that is as realistic as possible
within the physical limitations of the motion system.

The most common approach for this task is the Classical
Washout Algorithm, which was first described by Schmidt and
Conrad as a motion platform control algorithm for piloted
flight simulators [4]. As illustrated in Figure 1, this MCA basi-
cally consists of a sequence of frequency divisions in order to
generate suitable position and orientation reference signals for
the simulator motion system. The high-frequency components
of the scaled translational accelerations and angular velocities
of the vehicle dynamics model are therefore separated using
appropriate high-pass filters. Afterwards, these extracted com-
ponents are directly integrated to a corresponding position and
orientation of the driving simulator. Since the basic idea of this
algorithm is to return the motion system to its neutral position
after it has performed the high-frequency movements, a further
high-pass filtering of the integrated signals is conducted.
This is known as the washout effect, according to which the
algorithm is named. Due to the typically small workspace,
an analog integration of the low-frequency accelerations and
angular velocities would lead the motion system very fast
to its physical limits and thus cannot be performed. Hence,
sustained accelerations are simulated via the tilt coordination
technique, which makes use of the gravitational force to
replicate these accelerations by an equivalent rotation of the
driving simulator. The corresponding rotation rate is usually
limited to the perception threshold of the human vestibular
system in this process, so that the rotational motion will not
be realized by the driver inside the simulator.

This simple control strategy has been extensively stud-
ied and improved since its first publication, typically using
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Figure 1. Scheme of the Classical Washout Algorithm [4].
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hexapod-based motion systems [5][6]. As a result of this
research, the filter-based MCA evolved into the standard ap-
proach in interactive driving simulation that offers major bene-
fits in terms of transparency and traceability. Each parameter in
the Classical Washout Algorithm has a clear physical meaning
and a unique association to a single degree of freedom, which
simplifies the tuning significantly. However, this basic idea of
treating the translational accelerations and angular velocities
independently results in the fact that this approach cannot be
applied to every type of motion system. Otherwise, conflicting
vestibular stimuli are generated under certain circumstances,
e.g., if there exist interdependencies between translational and
rotational degrees of freedom of the motion system like it
is introduced in the next section with the ATMOS driving
simulator.

In the present work, we propose a novel filter-based Motion
Cueing Algorithm that enables a dynamic position washout to
any point within the simulator workspace without considerably
affecting the high-frequency motion rendering. This key fea-
ture is motivated by the considered motion system, but can also
be applied to other systems, which offers general advantages
for interactive driving simulation. The resulting control quality
is evaluated by means of defined objective quality criteria,
which take into account both measured and perceived quanti-
ties, including models of the human perceptual system. Based
on this valuation metric, the developed filter-based MCA is
compared online to a Model Predictive Control approach using
established driving scenarios from the automotive industry, as
well as everyday driving maneuvers.

The rest of this paper is structured as follows: Section
II briefly describes the considered motion system and its
specific features that have to be taken into account to ensure a
realistic driving impression. In Section III, the developed filter-
based control strategy is presented in detail. Subsequently, the
objective valuation metric and the examined driving scenarios
are introduced in Section IV. Sections V and VI finally discuss
the obtained results and give concluding remarks.

II. ATMOS DYNAMIC DRIVING SIMULATOR

Figure 2 shows the Atlas Motion System (ATMOS) driving
simulator that is operated at the Heinz Nixdorf Institute in
Paderborn as a reconfigurable development platform for pri-
marily lighting-based ADAS. As illustrated, this simulator is
equipped with a real vehicle chassis including all its control
actuators, a seamless circular projection with 270 degree
viewing angle, a 5.1 multichannel audio system, as well as a
unique five-degree-of-freedom motion system to guarantee full
immersion of the driver in the virtual environment. Moreover,
the acting accelerations and angular velocities are recorded
using an Inertial Measurement Unit (IMU) that is installed
close to the driver’s head position in order to rate the quality
of the applied Motion Cueing strategy.

Different from conventional hexapods [7], the motion
system of the ATMOS driving simulator is designed as a hybrid
kinematics system, which is composed of two mechanically
coupled components that can be actuated independently. To
illustrate the functionality, Figure 3 shows an exploded view
based on the multibody model of the system. The shaker
system below the vehicle chassis is equipped with three
crankshaft drives to perform vertical translational movements,
as well as to rotate the driver around the roll and pitch axis.
Thus, the shaker replicates the simulated vehicle movements

Figure 2. ATMOS Dynamic Driving Simulator.

relative to the road surface with exception of yaw movements
and can further be used to increase the effect of the tilt
coordination by expanding the rotational workspace of the
motion system. In addition to the shaker, the motion platform
performs movements along curved axes in lateral and lon-
gitudinal direction via actuated cross-undercarriages that are
driven on V-shaped tracks. Because of these tilted tracks, each
translational movement of the motion platform leads simulta-
neously to an additional rotation around the corresponding axes
and a vertical displacement of the platform center point. As
a direct consequence of these coupled kinematics, performing
pure translational movements of the motion platform is not
possible. This has to be considered in the design of the control
algorithm in order to avoid conflicting sensory information, so-
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Figure 3. Exploded View of the Simulator Multibody Model.
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called False Cues, which typically lead to the undesired effect
of Simulator Sickness for the driver [8].

Due to the mentioned features of the ATMOS driving
simulator, an extension of the conventional filter-based MCA
is required since the implementation of the Classical Washout
Algorithm according to Figure 1 does not result in the desired
quality of the interactive driving simulation.

III. DEVELOPED WASHOUT ALGORITHM

As described in Section I, the general idea of the Classical
Washout Algorithm is based on an independent consideration
of the systems degrees of freedom, which is due to the fact
that the MCA was developed for application on a conventional
hexapod. Because of this, the algorithm cannot be transferred
to the ATMOS driving simulator introduced in the previous
section, as there is a connection between translation and
rotation because of the underlying kinematics of the motion
system. For this reason, we subsequently present an extension
of the classical approach that includes the relevant kinematic
effects and enables a sufficient control quality.

A. Dynamic Position Washout
In case of the regarded driving simulator, each longitudinal

and lateral movement of the motion platform generates a
forced tilting around the corresponding roll and pitch axis.
These rotations should ideally be used to emulate sustained
accelerations using the tilt coordination technique. Otherwise,
the tilt coordination has to be performed only by the shaker,
which limits the maximum possible inclination to the small
shaker workspace. In contrast to the classical algorithm, a
dynamic position washout is therefore required that enables
the motion platform to drift into a defined end position
within its workspace after it has performed the high-frequency
movements. By determining this end position according to the
associated inclination, low-frequency accelerations can also
be simulated via the motion platform. For this purpose, the
high-pass (hp) and washout (wo) filters of the high-frequency
longitudinal and lateral acceleration paths are supplemented
by further first order low-pass filters with variable gains K, as
shown in Figure 4 using the example of longitudinal accelera-
tion ax. The non-intuitive idea of this extension can be clarified
by the application of the final value theorem of the Laplace
transform. Therefore, let ax be a sustained acceleration input
from the vehicle dynamics simulation, which can be assumed
to be approximately constant, since the magnitude does not
significantly change. For the integrated simulator position x
applies then with increasing time t:

lim
t→∞

x (t) = lim
s→0

s ·X (s)

= lim
s→0

s · Thps+K

Thps+ 1
· 1

s2
· T 2

wos
2

T 2
wos

2 + 2DTwos+ 1
· ax
s

= K · T 2
wo · ax

(1)

This yields a resulting simulator position x that depends on
the gain K, the time constant Two of the washout filter as well
as the amplitude of the acting acceleration ax. If this position
is now required to have a defined value xtc, the necessary gain
K can be determined corresponding to (1) as

K =
xtc

T 2
wo · ax

. (2)

ax x
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Figure 4. Extended Longitudinal High-Frequency Acceleration Path.

Analogously, the initial value theorem of the Laplace
transform can be used to show that the extension by the
variable gain low-pass filter, as shown in Figure 4, does not
negatively affect the reproduction of high-frequency acceler-
ation components. Like in the Classical Washout Algorithm,
the dynamics of the drift into the end position xtc can be
influenced by the parameters of the washout filter, which is
an additional design freedom in the parameterization of the
developed algorithm.

The described extension is also implemented for the lateral
high-frequency acceleration path, so that a washout in the
defined position ytc according to (2) is realized and thus
sustained lateral stimuli are produced by a corresponding roll
rotation of the motion platform.

B. Tilt Coordination Distribution
Due to the hybrid kinematics motion system, as well as the

presented dynamic position washout, the tilt coordination tech-
nique can be performed either using the motion platform (mp),
the shaker (sh) or a combination of both systems. The latter
significantly increases the workspace and thus the maximum
low-frequency acceleration amplitudes that can be generated.
Consequently, a distribution strategy has to be specified, which
enables a suitable coordination of both components. For this
reason, an adaptation of the low-frequency longitudinal and
lateral acceleration paths is conducted according to Figure 5.
As shown with the example of the longitudinal acceleration,
a first order low-pass (lp) filter extracts the sustained accel-
eration components from the reference signal ax, which are
subsequently converted to the corresponding tilt coordination
pitch angle θtc. In doing so, the associated rotation rate is
limited to the well-established value of 0.1 rad/s, in order that
the tilt coordination is not detected by the human driver [9]. In
contrast to conventional hexapods, this inclination is divided
among the subsystems of the motion system by introducing
a distribution coefficient α ∈ R with 0 ≤ α ≤ 1. This
results in the inclinations for the shaker θsh and for the motion
platform θmp that are necessary to replicate the low-frequency
accelerations by the gravitational force. Based on the kine-
matic relations of the motion platform, an equivalent platform
position xtc, which corresponds to the required inclination, is

ax xtc

1

Tlps+1

Tilt Coordination
& Rate Limit

α

1− α

θtc

θmp

θsh

Position
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Figure 5. Extended Longitudinal Low-Frequency Acceleration Path.
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subsequently determined. This position equivalent then serves
as input for calculating the variable gain K according to (2) so
that the coupling between translational and rotational degrees
of freedom is taken into account. Equally, this process is
implemented for the lateral low-frequency acceleration path.

C. Resulting Algorithm Structure and Parameterization

The combination of dynamic position washout and tilt
coordination distribution leads to the overall structure of the
developed washout algorithm illustrated in Figure 6. Based on
the idea of the Classical Washout Algorithm, this filter-based
control strategy enables the generation of suitable control
signals in the form of position and orientation commands
for the motion system of the ATMOS driving simulator. The
necessary estimation of the corresponding filter parameters
and distribution coefficients was performed by numerical op-
timization using a defined driving maneuver. Here, the rural
road drive, which will be introduced in the next section,
was chosen since it represents a good compromise between
moderate driving situations and extreme maneuvers at the
limits of driving dynamics. Table I provides an overview of
the resulting parameters.

Although the developed algorithm is motivated by the
specific features of the motion system, in particular the concept
of a dynamic position washout offers great potential for appli-
cation in alternative control approaches. Thus, an integration
in the context of lane-based algorithms is feasible, which use
vehicle position information on the road to laterally preposition
the motion system and therefore use the available workspace
more effectively [6][10].

TABLE I. APPLIED ALGORITHM PARAMETERS.

1st Order 1st Order 2nd Order Distribution
Scaling HP Filter LP Filter WO Filter Coefficient
kx = 0.4 Thp = 0.95 Tlp = 0.95 Two = 0.49, αx = 0.65

D = 0.7
ky = 0.4 Thp = 0.6 Tlp = 0.6 Two = 0.44, αy = 0.6

D = 1.0
kz = 1.0 Thp = 0.4 – Two = 0.45, –

D = 1.0

1st Order 1st Order 1st Order Distribution
Scaling HP Filter LP Filter WO Filter Coefficient
kϕ = 1.0 Thp = 1.2 – Two = 0.8 –
kθ = 1.0 Thp = 0.3 – Two = 0.2 –
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Figure 6. Overall Structure of the Developed Washout Algorithm.

IV. COMPARISON OF THE CONTROL STRATEGIES

The scientific objective in this contribution deals with the
comparison of the filter-based MCA presented in Section III
with an optimization-based approach using the concept of
Model Predictive Control. This real-time capable predictive
controller results from previous research and is described in
detail in [11]. For that reason, only the basic idea of the
algorithm is briefly discussed in this section. In addition,
the applied quality criteria as well as the examined driving
scenarios are introduced afterwards.

A. Model Predictive Control Approach
According to the general concept of the MPC paradigm, an

optimal control problem is numerically solved over a receding
time horizon at each calculation cycle. Subsequently, only the
first element of the computed control variable is applied to the
process and the procedure is iterated. The application of this
technique in terms of a Motion Cueing Algorithm leads to the
structure shown in Figure 7. Based on the current system state
x ∈ R15, which contains the angles, the angular velocities
and the angular accelerations of all five actuators, the output
vector y =

[
aT ωT

]T ∈ R5 is estimated within the prediction
horizon N , depending on the reference angles of each actuator
u ∈ R5. The MPC determines suitable system inputs so
that the predicted outputs best possible match the vector of
the reference accelerations and angular velocities r ∈ R5N

from the vehicle dynamics simulation. In this approach, the
accuracy of the control algorithm depends significantly on
the availability of an adequate process model to predict the
future system behavior. In case of the presented controller,
the prediction model includes a linear model of the actuator
dynamics, as well as the nonlinear kinematic relations of the
motion system. This ensures that the relevant characteristics of
the considered motion system described in Section II and its
effects on the driver in the simulator are taken into account in
the optimization process. At the same time, it is guaranteed
that the determined actuating variables can be realized by
the motion system, since its physical limits are included as
constraints in the optimization problem. In that context, a
first order approximation of the nonlinear system behavior at
runtime presents a key feature of the developed predictive
controller to meet the real-time requirements, which is the
primary challenge in optimization-based MCA.

28Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-756-6

SIMUL 2019 : The Eleventh International Conference on Advances in System Simulation



Driver
Input Constraints

Vehicle Dynamics
Simulation

Model Predictive
Motion Cueing

Algorithm
Motion System

Driving Simulatorr u y

x

Figure 7. Scheme of the MPC-Based Control Algorithm.

B. Objective Quality Criteria
In order to compare both Motion Cueing strategies on the

basis of an objective valuation metric, suitable quality criteria
must be specified. Therefore, according to [12] and [13], we
introduce performance indicators λ1 and λ2 that are defined
as

λ1 =
1

N

N∑
j=0

√(
eax,j
ax,norm

)2

+

(
eay,j

ay,norm

)2

+

(
eaz,j
az,norm

)2

+
1

N

N∑
j=0

√(
eωx,j
ωx,norm

)2

+

(
eωy,j

ωy,norm

)2

(3)

and

λ2 =
1

N

N∑
j=0

√(
eâx,j
ax,norm

)2

+

(
eây,j

ay,norm

)2

+

(
eâz,j
az,norm

)2

+
1

N

N∑
j=0

√(
eω̂x,j
ωx,norm

)2

+

(
eω̂y,j

ωy,norm

)2

(4)

with

eai = ai,Ref − ai|i=x,y,z and eωi = ωi,Ref − ωi|i=x,y
eâi = âi,Ref − âi|i=x,y,z and eω̂i = ω̂i,Ref − ω̂i|i=x,y.

(5)

Here, (3) provides a measure of the physical deviations
between the scaled reference accelerations ai,Ref and angular
velocities ωi,Ref from the vehicle dynamics simulation and the
measured quantities in the driving simulator for the considered
degrees of freedom. λ1 therefore returns the averaged normal-
ized control error over the number of measured values N . The
normalization is necessary to obtain dimensionless quantities
that allow a simultaneous consideration of accelerations and
angular velocities in a common scale. According to [14],
the human perception thresholds for movements are used as
corresponding normalization factors ai,norm and ωi,norm. In
addition, the indicator λ2 according to (4) yields a measure
for the perceived control quality, which can differ from the
physical deviations due to the frequency-dependent dynamic
behavior of the human vestibular organs, as well as perception
thresholds. This causes, for example, that control errors in
detectable frequency ranges are perceived more disturbing than
deviations in undetectable ranges. To take these effects into ac-
count, well-established models of the vestibular system, more
precisely the otoliths and semicircular canals, are included as
they are shown in Figure 8. These usually contain mechanical
analogous models of the respective organs, which lead to the
illustrated transfer functions with the inputs ai and ωi [15][16],
as they are widely used in driving simulation applications [9].

ai āi âi
Koto·

1 · (TLs+ 1)
(T1s+ 1) (T2s+ 1)

ωi ω̄i ω̂i
Kscc·

s (TLs+ 1)
·

Tas

Tas+ 1(T1s+ 1) (T2s+ 1)

Otoliths Model

Semicircular Canals Model

Figure 8. Applied Models of the Human Vestibular System.

By a series connection of the transfer functions with nonlinear
dead zones, the threshold values ai,thres and ωi,thres of the
human perception are integrated with respect to the following
relationship [5]:

âi =

{
0 if |āi| ≤ ai,thres
āi − sgn (āi) · ai,thres if |āi| > ai,thres

ω̂i =

{
0 if |ω̄i| ≤ ωi,thres
ω̄i − sgn (ω̄i) · ωi,thres if |ω̄i| > ωi,thres

(6)

Consequently, the closer the performance indicators λ1 and
λ2 are to the origin, the better is the reproduction of the
simulated vehicle movements, whereby the value zero indicates
a perfect motion rendering. However, especially with regard
to λ1, this is only a theoretical value that cannot be obtained
by any driving simulator, since it would require an almost
unlimited workspace.

C. Driving Scenarios
For the purpose of obtaining a representative comparison of

the two control strategies, a selection of nine driving scenarios
was defined. These contain standardized maneuvers, which are
commonly used for development and optimization applications
in the automotive industry, like:

• Acceleration from standstill
• Braking from driving straight forward

(DIN ISO 70028)
• Lane change (DIN ISO 3888-1)
• Step steering (DIN ISO 7401)
• Braking from steady-state circular course drive

(DIN ISO 7975)

As the listed maneuvers are mainly used to identify and
analyze the driving dynamics of a vehicle, they do not rep-
resent usual driving situations. For this reason, also moderate
scenarios are examined in the evaluation:

• Turning at a junction
• Drive on a rural road
• Drive through a roundabout
• Drive through a highway interchange

Vehicle dynamics simulations of all nine maneuvers were
performed and the relevant accelerations and angular velocities
were recorded. Subsequently, these data were used as identical
reference signals for both MCA to ensure a consistent basis
for evaluation described in the next section.
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V. RESULTS AND DISCUSSION

Subsequently, the results of the comparison of the two
Motion Cueing strategies are presented and the impacts on the
interactive driving simulation are discussed. For that purpose,
both control algorithms were implemented on the ATMOS
driving simulator. Measurement data of the translational ac-
celerations and the angular velocities taken with the installed
IMU at the driver’s head position serve as inputs for the quality
criteria presented in Section IV. For reasons of clarity, only
measured data of the maneuver “turning at a junction” are
analyzed in detail (see Figures 9, 10, 11). All further driving
scenarios are summarized in Figure 12.

Figure 9 shows the resulting longitudinal acceleration and
pitch velocity tracking. It becomes clear that both the pro-
posed washout algorithm and the optimization-based approach
yield an adequate reproduction of the longitudinal acceleration
from the vehicle dynamics simulation. However, the measured
accelerations show a larger time delay in comparison to the
reference signal when using the washout algorithm due to the
phase shift of the implemented filters. The corresponding pitch
velocity contains in both cases low-frequency disturbances that
can be explained by the tilt coordination, since the sustained
acceleration can only be reproduced by an equivalent rotation
of the motion system. Using the washout algorithm, these
errors are significantly higher, so it can be expected that
the resulting driving experience will be negatively affected.
In contrast, the predictive MCA uses the available model
knowledge to limit the overall rotation rate error to the value
of 0.1 rad/s. Equivalent results can be derived from Figure 10,
which illustrates the lateral acceleration and the corresponding
roll velocity. Also in this case, the acceleration reference from
the vehicle dynamics simulation is tracked very well with both
algorithms. There are again time delays to the reference signal
that are larger when using the washout algorithm, due to the
nature of the implemented filters. The roll velocity error is also
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larger than that of the MPC, even if the difference is smaller
than in case of the pitch velocity. Thus, as a consequence
for the interactive driving simulation, the resulting driving
experience can be expected to be more realistic using the
predictive control strategy, since smaller rotation rate errors
are more difficult to detect for the human perception system.
The vertical acceleration measured in the regarded driving
scenario is illustrated in Figure 11. Here, it is noticeable that
undesired vertical displacements occur due to the coupled
degrees of freedom of the motion system, which cannot be
compensated by any of the two approaches. However, these
unpreventable errors are significantly lower and mostly below
the perception threshold of the otoliths in the use of the
predictive MCA, which can be explained by a more efficient
coordination of the shaker and the motion platform. Regarding
the examined driving maneuver, the application of the quality
criteria introduced in the previous section results in the per-
formance indicators λ1,WO = 1.74 and λ2,WO = 0.92 for the
washout algorithm and λ1,MPC = 1.20 and λ2,WO = 0.53
for the predictive controller. This confirms the impression that
the MPC-based algorithm achieves a higher control quality,
which is primarily explained by the lower angular velocity and
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vertical acceleration errors caused by the specific kinematics
of the ATMOS driving simulator.

Figure 12 combines the evaluation of all nine test maneu-
vers in a common radar chart. The analysis of this graphic
clearly shows the advantages of the optimization-based MCA
in comparison to the washout algorithm, since smaller perfor-
mance indicators are achieved in each scenario. It is noticeable
that the perceived control quality, expressed by the indicator
λ2, yields small values close to zero when the MPC is used
and therefore a good subjective driving impression can be
expected. As already discussed in detail for driving maneuver
“turning at a junction”, these results can be explained with
the angular velocity and vertical acceleration errors due to the
coupled degrees of freedom, because of which an adequate
reproduction of the simulated vehicles Motion Cues is a
challenging task. Here, it is a great advantage of the MPC that
the specific simulator kinematics are directly considered via
existing model knowledge in the optimization algorithm. This
allows undesired interactions to be taken into account in the
planning of the motion trajectory and optimally compensated
according to the current driving situation, which is a major
benefit for interactive driving simulation.

VI. CONCLUSION AND FUTURE WORK

In this paper, the development of a novel filter-based
Motion Cueing Algorithm was presented. Motivated by the
regarded hybrid kinematics motion system, the proposed al-
gorithm features a dynamic position washout to any point
within the simulator workspace, as well as a tilt coordination
distribution strategy in order to make full use of the motion
capabilities. Furthermore, this MCA was compared to a MPC-
based algorithm by means of defined quality criteria and
standard driving scenarios from the automotive industry. The
objective evaluation of both Motion Cueing strategies proved
a satisfactory control quality. However, due to the integration
of model knowledge, the predictive MCA exhibits less control
errors in angular velocities and vertical acceleration. For this
reason, it is assumed that the subjective driving impression
is more realistic when using the MPC, which is why this
approach offers great potential for interactive driving sim-
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Figure 12. Evaluation of the Analyzed Test Maneuvers.

ulation. On the other hand, the filter-based MCA has the
advantages of simple implementation, good traceability and
low computational effort, which relativizes the worse control
quality in comparison to the optimization-based algorithm.

The future work will deal with the subjective validation of
our observations. In this context, appropriate subject studies
will be conducted in order to rate the resulting degree of
immersion by human drivers. Besides, current research con-
centrates on the prediction of the future driver behavior and
the associated reference trajectory for the model predictive
MCA. Since the human driving behavior is predictable within
certain limitations, a virtual driver model is applied to estimate
the driver inputs within the time-limited prediction horizon at
runtime.
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