
A Comparison of Some Simple and Complex Surrogate Models:
Make Everything as Simple as Possible?

Wim De Mulder
and Geert Molenberghs

and Geert Verbeke
Leuven Biostatistics and

Statistical Bioinformatics Centre
KU Leuven and Hasselt University, Belgium

Email: wim.demulder@cs.kuleuven.be,
geert.molenberghs@uhasselt.be,
geert.verbeke@med.kuleuven.be

Bernhard Rengs
and Thomas Fent

Wittgenstein Centre (IIASA, VID/ÖAW, WU)
VID/ÖAW

Vienna, Austria
Email: bernhard.rengs@oeaw.ac.at,

thomas.fent@oeaw.ac.at

Abstract—In this paper, we compare three surrogate models on
a highly irregular, yet real-world data set. The three methods
strongly vary in mathematical sophistication and computational
complexity. First, inverse distance weighting, a very intuitive
method whose single parameter can be readily determined via
basic, albeit nonlinear, optimization. Secondly, radial basis func-
tion networks, for which some parameters can be determined via
simple matrix algebra, although determination of other parame-
ters require cluster analysis and nonlinear optimization. Thirdly,
Gaussian process emulation, a statistical technique having a
technical mathematical formulation and where specification of pa-
rameter values rely on complex and time-consuming optimization.
It comes as a complete surprise that inverse distance weighting
performs best on our complex data set. Our work encourages
to moderate the extreme optimism about and overly use of very
advanced methods. The commonplace a priori assumption that
simple, intuitive methods underperform on complex data sets is
not always justified, and such methods still have their place in the
current era of highly advanced computational and mathematical
models.

Keywords–Gaussian process emulation; Radial basis function
networks; Inverse distance weighting; Agent-based models; Cluster
analysis.

I. INTRODUCTION

Ideally, any model of a real-world phenomenon explains
observed data very well, has a rigorous mathematical formu-
lation and is practically useful in the sense that it is computa-
tionally cheap to run it as many times as desired on a sequence
of given inputs. However, as any researcher is aware of, these
widely acclaimed properties are often conflicting by their very
nature. As just one example, complex biological phenomena
such as cancer can often be accurately represented using
mathematically sound signaling network models in which the
model equations contain parameters that are mechanistically
descriptive of direct or indirect interactions in the system [1].
Yet this comes at the price of computational intractability,
as the combinatorial explosion in the number of possible
network models, which defines the solution space, makes
model inference problems of this type NP-hard [2]. Thus, the
repeated application of such computer models, for example by
running the model under different parameter settings to find
the parameter values that ensure the closest fit to empirical

data, is practically limited to much fewer runs than accurate
empirical analysis or other research objectives require.

One popular solution adopted by researchers who have to
apply computationally expensive computer models for varying
values of a certain variable (typically a variable in input or
parameter space) is to approximate the complex model by a
simpler, fast-running surrogate model [3]. Surrogate models
are a particular instance of approximation methods that mimic
the behavior of the simulation model while being computa-
tionally cheaper to evaluate. They are typically constructed by
applying the expensive model to a limited number of values
of the variable of interest, and then using the obtained input-
output pairs, known as the training data set, to find a suitable
fast-running approximation.

Agent-based models, which are briefly reviewed in Section
II-E, often belong to the class of computationally expensive
methods as they require the repeated simulation of nonlinear
interactions between basic entities, and this during consecutive
time steps, until a stable state is reached. Consequently, a
researcher will often rely on surrogate techniques in appli-
cations where the agent-based model is to be applied to a very
large number of input points. In this work, we compare the
performance of three well-established surrogate techniques that
have been developed in the literature, namely inverse distance
weighting, radial basis function networks and Gaussian process
emulation. These methods are very different in nature, e.g.,
Gaussian process emulation is a statistical technique that also
provides a measure for the uncertainty in the approximation,
while inverse distance weighting and radial basis function
networks have been developed by nonstatisticians. However,
in the context of this paper we will especially emphasize
their disparity from another perspective, namely in terms of
their complexity. The term complexity is used here to cover
conceptual complexity as well as computational complexity
related both to optimization of the parameters of the surrogate
model and to the calculation of the output of the surrogate
technique for a given input point. We elaborate on this term
below. If we imagine all surrogate models lying on a spectrum
defined in terms of complexity, then, loosely speaking, Gaus-
sian process emulation and inverse distance weighting are at
opposite ends while radial basis function networks have their

26Copyright (c) IARIA, 2016. ISBN: 978-1-61208-501-2

SIMUL 2016 : The Eighth International Conference on Advances in System Simulation

place somewhere in the middle. Their very different positions
in this spectrum makes it an interesting research question of
how this exactly translates into performance.

The various methods that play a role in our work are re-
viewed in Section II. First, the three above surrogate techniques
mentioned above. Second, agent-based models, which are used
as the case study system to be approximated by the considered
surrogate methods. Finally, cluster analysis, a dimensionality
reduction technique that is essential in our implementations of
Gaussian process emulation and radial basis function networks,
due to the fact that our data set to train these models is
very large. The training data set is described in Section III-A.
Section III describes implementation details of the surrogate
models, as well as of the cluster analysis that was applied to
our training data set. Results are presented in Section IV and
an extensive discussion follows in Section V. The final section
concludes and suggests some future research questions.

II. RELATED METHODOLOGY

This section describes the various methods that play a role
in this paper.

A. Gaussian process emulation
Gaussian process (GP) emulation provides an approxima-

tion, called the emulator, to a mapping ν : Rn → Rm. The
rationale behind the development of GP emulation was to
provide fast-running approximations to slow-running computer
models, such that tasks requiring many executions of ν (e.g.,
calibration) can be performed with respect to the emulator
rather than by relying on ν, thereby ensuring that the con-
sidered task ends within a reasonable time. For our case study
below it holds that m = 1.
The steps in constructing an emulator are as follows. In
the first step, it is assumed that nothing is known about ν.
The value ν(x) for any x is then modeled via a Gaussian
distribution with mean m(x) =

∑q
i=1 βi hi(x), where βi are

unknown coefficients and where hi represent linear regression
functions. The covariance between ν(x) and ν(x′), with x
and x′ being arbitrary input vectors in Rn, is modeled as
Cov

(
ν(x), ν(x′) |σ2

)
= σ2 c(x,x′), where σ2 denotes a

constant variance parameter and where c(x,x′) denotes a
function that models the correlation between ν(x) and ν(x′).
We adopt the most common choice for c:

c(x,x′) = exp
[
−
∑
i

(
(xi − x′i)/δi

)2]
(1)

with xi and x′i as the ith component of x and x′, respectively,
and where the δi represent parameters that can be optimized
via maximum likelihood [4]. In plain words, before the training
data set is taken into account it is assumed that ν(x) can
be well approximated as a linear combination of user-chosen
regression functions hi and that a Gaussian distribution is a
good model to represent the uncertainty in this approximation.
In the second step, training data (x1, ν(x1)), . . . , (xn, ν(xn))
are taken into account. The information encapsulated in the
training data set is used to improve the initial approximation
as well as the model for the uncertainty in this approximation.
This is done via a Bayesian analysis. It can be shown that
this results in adjusting the Gaussian distributions to Student’s
t-distributions [5]. The mean of the Student’s t-distribution in x

is then considered the best approximation to ν(x). Therefore,
we refer to this mean as ν̂(x). It is given by

ν̂(x) = m(x) + UT (x)A−1([ν(x1), . . . , ν(xn)]
T −Hβ)

with

β = (β1, . . . , βq)
T

H =

h1(x1) . . . hq(x1)

. . .

h1(xn) . . . hq(xn)

and where U(x) contains the correlations, as given by (1),
between x and each of the training data points xi, and where
A is the correlation matrix, containing the correlations between
xi and xj for i, j = 1, . . . , n. It is worth paying some attention
to the role of U(x). The ith element of this vector is c(xi,x).
From (1) it follows that the closer x to xi in input space, the
larger c(xi,x). Therefore, the vector U(x) is a weight vector,
meaning that the closer x to xi, the higher the influence of
the ith training data point in determining the approximation to
ν(x).
The formula for ν̂(x) above shows that the Bayesian analysis
adds a correction term to the prior mean m(x) by taking into
account the information encapsulated in the training data set.
A crucial entity in the correction term is A−1, the inverse of
the correlation matrix. We found that the inversion operation
for our very large training data set, described in Section III-A
below, is computationally intractable. We resolved this by
dividing the training data set into smaller subsets using cluster
analysis (a method briefly reviewed in Section II-D) and then
training an emulator for each small subset. Approximations
generated by these emulators can then be combined into a
final, unique approximation as outlined in Section III-C.
Values for the βi and for σ2 can be determined by optimization
principles in Hilbert space, and analytical formulae are given
in [5] and [6]. For a more detailed account on GP emulation
we also refer to the cited works.

GP emulation is an advanced method, having a very sound
mathematical basis, where Bayesian statistics, Hilbert space
methods and approximation theory all play a role [7]. A
thorough understanding thus requires knowledge of several ad-
vanced mathematical concepts. As so often happens, the con-
ceptual complexity translates into computational intractability.
In particular, optimizing the parameters δi, βi and σ2 can be
very time-consuming. For example, each parameter δi corre-
sponds to one input component and the presence of even a few
input components often makes this multidimensional nonlinear
optimization task computationally very hard. A final aspect
of complexity is the computational complexity of evaluating
ν̂(x), which is dominated by the evaluation of the correction
term, resulting in an overall computational complexity of
O(n3).

B. Radial basis function networks

A radial basis function network (RBFN) relies on so-called
basis functions φj that are radially symmetric around a chosen
center µj ∈ Rn. A common choice for φj is

φj(x) = exp

(
−
(
||x− µj ||

ρ

)τ)
(2)

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-501-2

SIMUL 2016 : The Eighth International Conference on Advances in System Simulation

where ρ > 0, τ > 0 are parameters and where ||.|| represents
the Euclidean norm. The parameter ρ is often called the width
of the basis function and determining a value for it amounts
to finding a compromise between locality and smoothness of
ν̂(x) given by (3) below [8].
The points µj are called the centers of the basis functions
and are typically determined by one of the heuristic methods
described in [9]. One popular way, which we take here, is
to use cluster analysis to determine the number of centers r
and to specify a value for µ1, . . . ,µr, as outlined in Section
II-D. These centers have an intuitive interpretation: they can be
considered prototypical elements of the different parts of the
input space. That is to say, cluster analysis divides the input
space into smaller regions, ideally such that ν has a distinctive
behavior in each region, and the distance from a given input
point x to the jth region is calculated as ||x− µj ||.
The value of ν in any x is then approximated as a shifted
linear combination of the outputs of the basis functions:

ν̂(x) = γ +

r∑
j=1

wjφj(x) (3)

where γ and w = [w1, . . . , wr]
T are parameters that are typi-

cally determined as a least-squares solution to the minimization
problem min

∑n
i=1(ν(xi)−ν̂(xi))2, as described in [9]. Notice

that the centers µj are obtained via unsupervised learning,
while the other parameters involve supervised learning.
From a conceptual point of view, an RBFN is an artificial
neural network where the centers µj play the role of the
nodes of the hidden layer [8]. The activation of the jth hidden
node is determined by φj(x) and the closer an input x to µj ,
the more the jth hidden node is triggered. The output layer
then combines the activations of all hidden nodes into one
final value that is used as the approximation to ν(x). This is
illustrated in Figure 1 where several output components are
allowed.

Informally speaking, the complexity of RBFN is lower than
that of GP emulation. A good conceptual understanding does
not require more than a basic knowledge of artificial neural
networks and of approximation theory. While an understanding
of artificial neural networks helps to internalize a visual rep-
resentation of a RBFN, some insight in approximation theory,
e.g., polynomial approximation and Fourier series, is needed
to appreciate that a complex, but reasonable, function can
often be approximated in terms of simpler functions, provided
that certain conditions are fulfilled. As for the computational
complexity of optimizing the parameters, three stages are
involved. First, centers are determined using, e.g., k-means.
While the general version of k-means is NP-hard, there are
numerous approximation algorithms, some of which run in
time polynomial in n and r [10]. The second optimization
task concerns optimizing a nonlinear function to determine
ρ and τ . As only two parameters are involved, this task can
often be completed in a very reasonable time. Some researchers
prefer to associate a different ρ with each φj , resulting in the
much harder task of optimizing a nonlinear function depending
on r + 1 variables. Alternatively, there are researchers who
simply assign a heuristic value to ρ, e.g., ρ = dmax/

√
2r,

with dmax being the maximum distance between all pairs of
centers [11]. Finally, determining γ and w comes at almost no
computational cost, as they are the solution of a least-squares
problem which is essentially obtained by inverting a matrix,

Figure 1. RBFN as artificial neural network [12]

and this matrix is only of dimension (r + 1) × (r + 1), i.e.,
only quadratic in the number of clusters. Since the essence
of cluster analysis is dimensionality reduction, r is typically
much smaller than n. It is seen from (3) that the computational
complexity of evaluating ν̂(x) is only O(r2).

C. Inverse distance weighting
Inverse distance weighting (IDW) is an approximation

method in a metric space setting, originally developed by
Shepard in the context of spatial analysis and geographic
information systems [13]. Although the method is very simple,
it is still used nowadays, for example to estimate spatial
rainfall distribution, where the unknown spatial rainfall data
is approximated from the known data of sites that are adjacent
to the unknown site (see, e.g., [14] and [15]).
IDW approximates the unknown value of ν in a given point x
as:

ν̂(x) =

n∑
i=1

wi(x)∑n
j=1 wj(x)

ν(xi) if d(x,xi) 6= 0 ∀i (4)

= ν(xi) otherwise (5)

with

wi(x) =
1

d(x,xi)α

where d is any metric and where α is a constant larger than
zero.

The above formulation shows that IDW is very intuitive:
obtain an approximation for the output in x as a weighted
average of known outputs ν(xi), and give more weight to
outputs that have been mapped from training data input points
that are closer to x. No advanced mathematical principle is
involved. Optimization can be avoided by simply choosing
α = 1. Alternatively, α can be determined as the solution
to the same minimization problem as in RBFN, namely
min

∑n
i=1(ν(xi) − ν̂(xi))2. Although this is a nonlinear op-

timization task, there is only one parameter, α, involved. The
computational complexity of evaluating ν̂(x) is O(n2), which
is higher than that of a RBFN, but provided that the number of
training data points is not extremely large, this evaluation can
be done very fast as only simple multiplications and additions
are involved.

D. Cluster analysis
Cluster analysis is the unsupervised partitioning of a data

set into groups, also called clusters, such that data elements
which are members of the same group have a higher similarity

28Copyright (c) IARIA, 2016. ISBN: 978-1-61208-501-2

SIMUL 2016 : The Eighth International Conference on Advances in System Simulation

Figure 2. Illustration of k-means with k = 3 [18]

than data elements which are members of different groups [16].
Similarity is typically expressed in terms of a user-defined
distance measure, such as the commonly used Euclidean
distance. Arguably the best known clustering algorithm is
k-means [17], an iterative algorithm that not only determines
clusters but also centers (sometimes called centroids) for
the obtained clusters. Given the number of clusters, k, and
a data set D = {x1, . . . ,xn}, the algorithm chooses the
clusters Ci(i = 1, . . . , k) such that

∑k
i=1

∑
x∈Ci

||x− µi||2 is
minimal, where µi is the center of the ith cluster. The clusters
Ci are simply subsets of the given data set with Ci ∩ Cj = ∅
if i 6= j and ∪ni=1Ci = D. Each center µi readily follows
from the construction of the clusters, as it is the average of all
points belonging to Ci. An illustration is provided in Figure 2.
We have used k-means for two purposes. First, due to the very
large size of our training data set and the related instabilities
in inverting the correlation matrix, direct application of GP
emulation turned out to be infeasible. Thus we applied cluster
analysis, thereby creating smaller training data sets, each of
them being a subset of the original training data set. A separate
emulator was then trained with each of these small data sets.
Second, the number of clusters that was determined with
k-means gave at once the number of basis functions in our
RBFN, i.e. the parameter r in (3), and the cluster centers were
used as the centers of the basis functions, i.e., the parameters
µ1, . . . ,µr in (2). The result of the performed cluster analysis
is outlined in Section III-B.

E. Agent-based models
An agent-based model (ABM) is a computational model

that simulates the behavior and interactions of autonomous
agents. A key feature is that population level phenomena
are studied by explicitly modeling the interactions of the
individuals in these populations [19][20]. The systems that
emerge from such interactions are often complex and might
show regularities that were not expected by researchers in
the field who solely relied on their background knowledge
about the characteristics of the lower-level entities to make
predictions about the higher-level phenomena. ABMs are es-
pecially popular among sociologists who model social life as
interactions among adaptive agents who influence one another
in response to the influence they receive [21].

In previous work, we developed an agent-based model to

consumption needs

Agent
household budget
intended fertility

parity

disposable budget ≥
consumption of additional child

&
intended fertility > parity

disposable budgetfamiliy policies

fertility

additional
child

increase parity

yes

yes

�me = �me + 1

age = age + 1

no

no

Figure 3. The decision making process in a household

analyze the effectiveness of family policies under different as-
sumptions regarding the social structure of a society [22]. The
agents represent the female partner in a household. They are
heterogeneous with respect to age, household budget, parity,
and intended fertility. A network of mutual links connects the
agents to a small subset of the population to exchange fertility
preferences. Figure 3 illustrates the decision making process
in a household. The agents are endowed with a certain budget
of time and money which they allocate to satisfy their own
and their children’s needs. We assume that the agent’s and
their children’s consumption levels depend on the household
budget but increase less than linearly with household budget.
Thus, wealthier households have a higher savings rate. If the
household’s intended fertility exceeds the actual parity and the
disposable budget suffices to cover the consumption needs of
another child, the household is subject to the appropriate age-
specific fertility. Hence the household is exposed to having
an additional child depending on the outcome of a random
process. If an additional child is born, other agents may update
their intended fertility.

We considered two components of family policies: 1. the
policymaker provides a fixed amount of money or monetary
equivalent per child to each household and 2. a monetary or
non-monetary benefit proportional to the household income is
transferred to the household. Any policy mix greater than zero
supports the household in covering the dependent children’s
consumption needs.

The output at the aggregate level that is produced by the
ABM consists of the cohort fertility, the intended fertility, and
the fertility gap. The inputs include the level of fixed and
income-dependent family allowances, denoted by bf and bv ,
and parameters that determine the social structure of a society,
such as a measure for the agents’ level of homophily α, and
the strength of positive and negative social influence, denoted
by pr3 and pr4 resp. The results of the application of our ABM
and the related sociological findings can be found in the cited
work. The purpose of this paper is to generate a training data
set by application of the ABM to selected input points and
then using this data set to empirically compare GP emulation,
RBFN and IDW. The training data set we created is described

29Copyright (c) IARIA, 2016. ISBN: 978-1-61208-501-2

SIMUL 2016 : The Eighth International Conference on Advances in System Simulation

in the next section.

III. IMPLEMENTATION

We describe our data set and the implementation details of
the methods that are compared to each other.

A. Data set
The input variables of our ABM are given equidistant

values from the input domain and the ABM is applied to
generate the corresponding outputs. As input domain, we
considered the variables bf , bv, α, pr3 and p4, a selection of
the larger amount of variables that were used in the ABM.
These five variables were found to have the greatest influence
on the outcomes. On the output side, we restrict attention to
one variable, namely cohort fertility. The ABM was applied to
10,732 vectors in the input domain, which gives a very large
training data set. A test data set containing 500 input–output
pairs was generated to compare the performance of the three
methods under study.

B. Cluster analysis
In clustering the training data set containing 10,732 data

points we performed trial and error to determine a suitable
number of clusters. A highly desired objective is that the
clusters are kept relatively small, since an emulator is to be
trained for each cluster and numerical instabilities arise when
the number of training data points that are used in constructing
an emulator becomes large, as explained in Section II-A. In
previous work [23], we found that numerical instabilities can
be avoided by constraining the result of k-means such that
the largest cluster has no more than about 500 training data
points. The main characteristics of a suitable set of clusters that
was obtained in this previous work are as follows: 34 clusters,
largest cluster size equal to 500, smallest cluster size equal to
15.

C. Description of the implemented methods
We implemented 8 methods instantiated from the domains

of IDW, GP emulation and RBFN.
The first two methods are based on GP emulation and

cluster analysis. As outlined above, a GP emulator was trained
for each of the 34 clusters, each containing a part of the full
training data set. The first method, hereafter referred to as
GP-closest, computes an approximation to ν(x) by finding
the cluster that is closest to x and taking the output of the
corresponding emulator in x as the sought-after value. The
distance between a point and a cluster is hereby taken as the
Euclidean distance between that point and the center of the
given cluster. The second GP emulation method, which we
call GP-average, determines the approximation as a weighted
average of the outputs of all emulators in the given input point.
Each weight is taken as an inverse measure of the distance
between the given input point and the specified cluster. That
is, we use the formulation of IDW, given by (4)-(5), choosing
α = 1 in (6), and where ν(xi) is replaced by the output of the
emulator corresponding to the ith cluster.

The next five methods are RBFNs, with different values for
the parameters ρ and τ in (2). The chosen values are displayed
in Table I. To make reference to a specific method convenient,
we labeled these methods RBFN-1,. . . , RBFN-5.

The 8th and last method is a simple IDW, as given by
(4)-(5).

TABLE I. PARAMETER VALUES FOR THE DIFFERENT RBFNS.

Method ρ τ
RBFN-1 1 2
RBFN-2 1 1
RBFN-3 1 0.5
RBFN-4 2 2
RBFN-5 4 2

IV. RESULTS

We now discuss the measure that is used to evaluate our
results and we analyze the outputs of this measure.

A. Evaluation measure
Given a test input point x with corresponding true output

ν(x) and an approximation ν̂(x) produced by one of the
methods described in the previous section, we evaluate the
quality of the approximation as the relative difference between
ν(x) and ν̂(x), as follows:

RD(x) =
∣∣∣ ν̂(x)− ν(x)
1/2(ν̂(x) + ν(x))

∣∣∣
The average relative difference for a particular method, de-
noted ARD, is then the average of RD(x) over all 500 test
points.

B. Results and analysis
The ARD is calculated for each of the methods described

in Section III-C and results are shown in Table II.
Let us first restrict attention to the RBFN methods. The

results show that the choice of parameter values is of crucial
importance for the performance. The ARD varies from 0.165
for RBFN-1 to 0.235 for RBFN-3. The fact that the best
result is obtained for RBFN-1 where τ = 2 supports the
common practice to set τ at this value in applications. On
the other hand, the parameter ρ should be part of the learning
process, as results for τ = 2 widely vary, from 0.165 to 0.227.
However, the price to be paid for the resulting substantial rise
in performance is high, as the determination of a suitable ρ
amounts to a nonlinear optimization task.

Turning attention to a global comparison, a remarkable
observation is that all ARDs are high, with at least a 14.6%
difference, on average, between the approximations and the
true outputs. Since the ARD is high for all considered methods
and since these methods come from very different domains,
varying in mathematical and computational complexity, it
is conceivable that the training data set is highly complex,
displaying many irregularities. This makes it even more in-
teresting to compare the methods, as empirical comparisons
are too often based on either artificially created data sets
or real-world data sets that are well understood and not
exceedingly complex. A multidimensional and exceptionally
complex, but still real-world, data set as ours is useful to
evaluate performance in a less typical situation than those
appearing in the mainstream literature and to check the limits
of surrogate modeling techniques.

However, the most striking observation is that IDW, by
far the simplest of the considered techniques, is also by far
the best method. The difference of the ARD of IDW and
that of the second best performing, RBFN-4, is substantial.
This is not only surprising because of the simplicity of IDW,

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-501-2

SIMUL 2016 : The Eighth International Conference on Advances in System Simulation

but also because the training data set is very complex. One
would expect an irregular data set to call for more advanced
techniques.

TABLE II. PERFORMANCE OF THE IMPLEMENTED METHODS ON THE TEST
DATA SET.

Method ARD
GP-closest 0.212
GP-average 0.293
RBFN-1 0.165
RBFN-2 0.197
RBFN-3 0.235
RBFN-4 0.190
RBFN-5 0.227
IDW 0.146

V. DISCUSSION

Above, we have compared three surrogate models on
a highly complex, irregular real-world data set. The three
methods strongly vary in mathematical sophistication and
computational complexity. IDW is a very simple and intuitive
method, requiring only limited optimization efforts, and the
resulting approximation function can be quickly evaluated on a
given input point. RBFNs require to choose basis functions and
to determine suitable centers for these functions. The centers of
the basis functions are typically obtained by applying k-means,
an algorithm that in many practical applications turns out to
converge very fast. If this is not the case, one may decide to
rely on one of the approximation algorithms that have been
developed that run in polynomial time. Determination of the
parameters ρ and τ associated to the basis functions require
nonlinear optimization. Although nonlinear optimization is
known to be computationally hard, the fact that only two
parameters are involved ensures that this task can typically
still be fulfilled in a very reasonable time. Some researchers
prefer to increase flexibility by associating a different ρ to
each basis function, which drastically increases computational
complexity. At the other extreme, it is also possible to assign
ρ a fixed, heuristic value. The remaining parameters to be
optimized in RBFNs are the weights in the linear combination
of the basis functions, which can be determined quickly via
the inversion of a matrix of, for most applications, small
dimensions. GP emulation is a statistical technique and has
a deep and refined mathematical foundation. Optimization is
typically very complex and time-consuming: determination
of the parameters δi calls for nonlinear optimization of a
likelihood function, while the posterior mean of the generated
Student’s t-distribution, to be used as approximation for the
output in a given input point, requires inverting a correlation
matrix having dimensions that are quadratic in the number of
training data points.
If we vaguely define the overall complexity of a method
as the sum of its conceptual complexity, the computational
complexity of optimizing the parameters involved and the com-
putational complexity of calculating the approximate output for
a given input point, the above discussion shows that the arrow
of increasing complexity runs along IDW, RBFN and GP .

One is inclined to assume that the most advanced method
will perform best. In fact, it has become commonplace among
researchers to select a method from the set of advanced approx-
imation or machine learning techniques whenever confronted
with a complex data set (as an illustration, we refer to [24] and

[25]). Furthermore, when experimentally comparing machine
learning algorithms, it is typically advanced methods that are
given a role in this process, leaving out simple techniques
under the a priori assumption that these will underperform
anyway (see, e.g., [26] and [27]). And new machine learning
algorithms appearing in the literature are almost always a
sophistication of an already sophisticated algorithm (examples
are [28] and [29]). That is, most advanced and best are used
almost interchangeably.

To many researchers it will thus come as a complete
surprise that a very simple method like IDW performed better
than two much more advanced approximation methods on our
complex training data set generated by an ABM.

VI. CONCLUSION AND FUTURE WORK

Although it might be objected that the three considered
surrogate models were applied to only one data set, our answer
is that the purpose of our work is obviously not to demonstrate
that simpler methods are better than more advanced ones.
Rather, we have shown that there are complex problems for
which simple methods work better than much more advanced
techniques.

Therefore, our work is meant as a cautionary note that the
meaning of the term best approximation method is still that it
performs best on a given application. Although intuition says
that a more advanced technique will often deliver better results,
there is no strict guarantee that this will be the case for a spe-
cific problem at hand. Indeed, methods having a sophisticated
mathematical foundation always rely on assumptions about the
given training data set and the function to be approximated.
It is all too often ignored that these assumptions might not
hold in practice or too quickly assumed that deviations from
mathematical assumptions are small enough, and that the
considered method will still perform properly.

Our findings should not be seen as a discouragement to
apply advanced methods. Rather, we interpret our results as
an invitation to always evaluate a very simple method on a
given data set alongside one or more advanced techniques.
This comes at almost no cost, as simple methods like IDW can
be easily implemented and are computationally very cheap.
It is also important to notice that IDW does not make any
assumption about the given data set, thus applying it in a
setting where it is strictly speaking not applicable (as is often
the case for advanced methods) is not an issue. When such sim-
ple methods do perform better than other, more sophisticated
methods, their return on investment is therefore incredibly
high. As often attributed to Einstein: ”everything should be
made as simple as possible . . . ” This is, of course, not to
say that advanced methods are useless. In many situations a
more complex problem cannot be handled by simple intuition
and then a more advanced method should be applied. Or, as
Einstein continues, ”. . . but not simpler”.

Possible future research questions include:

• Can we improve the RBFNs by associating a different
ρ with each basis function to the extent that these
RBFNs become better than IDW?

• What specific characteristics of the data set are re-
sponsible for the fact that IDW performs better than
GP emulation and RBFN?

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-501-2

SIMUL 2016 : The Eighth International Conference on Advances in System Simulation

• Are the obtained results sensitive to the number of
clusters?

REFERENCES

[1] E. Molinelli et al., “Perturbation biology: inferring signaling networks
in cellular systems,” PLoS Computational Biology, vol. 9, 2013.

[2] V. Chandrasekaran, N. Sebro, and P. Harsha, “Complexity of inference
in graphical models ,” in Proceedings of the 24th Conference on
Uncertainty in Artificial Intelligence, 2008.

[3] S. Koziel and L. Leifsson, Eds., Surrogate-based modeling and opti-
mization. Springer, 2013.

[4] I. Andrianakis and P. G. Challenor, “The effect of the nugget on Gaus-
sian process emulators of computer models,” Computational Statistics
and Data Analysis, vol. 56, 2012, pp. 4215–4228.

[5] A. O’Hagan, “Bayesian analysis of computer code outputs: A tutorial,”
Reliability Engineering & System Safety, vol. 91, 2006, pp. 1290–1300.

[6] J. Oakley and A. O’Hagan, “Bayesian inference for the uncertainty
distribution of computer model outputs,” Biometrika, vol. 89, 2002, pp.
769–784.

[7] W. De Mulder, G. Molenberghs, and G. Verbeke, “A mathematical
review of the standard Gaussian process emulator,” Submitted to:
International Statistical Review.

[8] N. Benoudjit and M. Verleysen, “On the kernel widths in radial-basis
function networks,” Neural Processing Letters, vol. 18, 2003, pp. 139–
154.

[9] C. Bishop, Ed., Neural networks for pattern recognition. Clarendon
Press, 1996.

[10] M. Song and S. Rajasekaran, “Fast k-means algorithms with constant
approximation,” in Lecture Notes in Computer Science. Springer-
Verlag, 2005.

[11] S. Haykin, Ed., Neural networks: a comprehensive foundation.
Prentice-Hall, 1999.

[12] C. McCormick, “Radial basis function network (RBFN) tutorial,”
http://mccormickml.com/2013/08/15/radial-basis-function-network-
rbfn-tutorial/, 2013.

[13] D. Shepard, “A two-dimensional interpolation function for irregularly-
spaced data,” in Proceedings of the 1968 ACM National Conference.

[14] P. Goovaerts, “Geostatistical approaches for incorporating elevation into
the spatial interpolation of rainfall,” Journal of Hydrology, vol. 228,
2000, pp. 113–129.

[15] F. Chen and C. Liu, “Estimation of the spatial rainfall distribution using
inverse distance weighting (IDW) in the middle of Taiwan,” Paddy and
Water Environment, vol. 10, 2012, pp. 209–222.

[16] A. Jain, M. Murty, and P. Flynn, “Data clustering: a review,” ACM
Computing Surveys, vol. 31, 1999, pp. 264–323.

[17] A. Jain and R. Dubes, Eds., Algorithms for clustering data. Prentice
Hall College Div, 1988.

[18] M. Pacula, “K-means clustering example,”
http://blog.mpacula.com/2011/04/27/k-means-clustering-example-
python/.

[19] N. Gilbert, Ed., Agent-based models: quantitative applications in the
social sciences. SAGE Publications, Inc, 2007.

[20] F. C. Billari, T. Fent, A. Prskawetz, and J. Scheffran, Eds., Agent–Based
Compuational Modelling: Applications in Demography, Social, Eco-
nomic, and Environmental Sciences, ser. Contributions to Economics.
Springer, 2006.

[21] M. Macy and R. Willer, “From factors to factors: computational
sociology and agent-based modeling,” Annual Review of Sociology,
vol. 28, 2002, pp. 143–166.

[22] T. Fent, B. Aparicio Diaz, and A. Prskawetz, “Family policies in the
context of low fertility and social structure,” Demographic Research,
vol. 29, 2013, pp. 963–998.

[23] W. De Mulder, B. Rengs, G. Molenberghs, T. Fent, and G. Verbeke,
“Statistical emulation applied to a very large data set generated by
an agent-based model,” in Proceedings of the Seventh International
Conference on Advances in System Simulation.

[24] A. Khazaee, A. Ebrahimzadeh, and A. Babajani-Feremi, “Application
of advanced machine learning methods on resting-state fMRI network
for identification of mild cognitive impairment and Alzheimers disease,”
Brain Imaging and Behavior, 2015, pp. 1–19.

[25] J. Behmann, A. Mahlein, T. Rumpf, and L. Plümer, “A review of
advanced machine learning methods for the detection of biotic stress
in precision crop protection,” Precision Agriculture, vol. 16, 2015, pp.
239–260.

[26] N. Williams, S. Zander, and G. Armitage, “A preliminary performance
comparison of five learning algorithms for practical IP traffic flow
classification,” ACM SIGCOMM Computer Communication Review,
vol. 36, 2006, pp. 7–15.

[27] A. Morton, E. Marzban, G. Giannoulis, A. Patel, R. Aparasu, and
I. Kakadiaris, “A comparison of supervised machine learning techniques
for predicting short-term in-hospital length of stay among diabetic
patients,” in 13th International Conference on Machine Learning and
Applications.

[28] I. Rojas et al., “A new radial basis function networks structure:
application to time series prediction,” in Proceedings of the International
Joint Conference on Neural Networks, 2000, pp. 449–454.

[29] X. Hong and S. Billings, “Dual-orthogonal radial basis function net-
works for nonlinear time series prediction,” Neural Networks, vol. 11,
1998, pp. 479–493.

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-501-2

SIMUL 2016 : The Eighth International Conference on Advances in System Simulation

