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Abstract—We describe how to estimate a quantile when applying
a combination of stratified sampling and conditional Monte
Carlo, which are variance-reduction techniques for Monte Carlo
simulations. We establish a central limit theorem for the resulting
quantile estimator. We further prove that for any fixed stratifica-
tion allocation, the asymptotic variance of the quantile estimator
with a combination of stratified sampling and conditional Monte
Carlo is no greater than that for stratified sampling alone. We
explain how the methods may be used to efficiently perform a
safety analysis of a nuclear power plant.

Keywords–Monte Carlo; Variance Reduction; Risk Analysis;
Value-at-Risk.

I. INTRODUCTION

For a given constant 0 < p < 1, the p-quantile of a
continuous random variable Y is the constant ξ such that p
(resp., 1 − p) of the mass of the distribution of Y lies to the
left (resp., right) of ξ. An example is the median, which is the
0.5-quantile.

In many application areas, risk is measured by a p-quantile,
with p close to 0 or 1. For example, in finance, a quantile is
known as a value-at-risk, and there are banking regulations [1]
that specify required cash reserves in terms of a 0.99-quantile
of a loss distribution. In safety analyses of nuclear power plants
(NPPs), the U.S. Nuclear Regulatory Commission (NRC) [2]
requires that for a hypothesized event, such as a loss-of-coolant
accident, the 0.95-quantile of the peak cladding temperature
must lie below a given threshold.

When the random variable Y is the output of a compli-
cated stochastic model, analytically computing a quantile of
Y typically presents intractable challenges, so Monte Carlo
simulation is instead often applied [3]. Quantile estimation
via simple random sampling (SRS) has been well-studied;
see Sections 2.3–2.6 of [4]. But SRS can produce quantile
estimators with large statistical error, motivating the use of
variance-reduction techniques (VRTs) to obtain more statisti-
cally efficient estimators; see Chapter V of [5] and Chapter 4
of [6] for overviews of VRTs to estimate a mean. Quantile
estimation has also employed VRTs, including importance
sampling (IS) [7][8][9][10], control variates (CV) [11][12][10],
Latin hypercube sampling (LHS) [13][14], stratified sampling
(SS) [8][15][10], and conditional Monte Carlo (CMC) [16].
The use of VRTs can be especially important when each
simulation run takes substantial time to execute, limiting the
sample size that can be obtained.

In this paper, we consider applying a combination of
stratified sampling and conditional Monte Carlo, which we
denote by SS+CMC, to estimate a quantile. We give a central
limit theorem for the SS+CMC quantile estimator. Moreover,
we prove that the asymptotic variance of the SS+CMC quantile
estimator is no larger than that of the corresponding quantile
estimator with SS alone. Thus, SS+CMC is guaranteed to do
at least as well as SS for quantile estimation.

Stratified sampling plays a fundamental role in the so-
called risk-informed safety-margin characterization (RISMC)
for nuclear power plants [17][18]. Developed by an interna-
tional effort of the Nuclear Energy Agency, RISMC analyzes
a hypothesized accident of an NPP through Monte Carlo
simulation with a detailed computer code. The computer code
takes as input a random vector with specified joint distribu-
tion, where the random inputs may specify the timing, size,
and location of events during the postulated accident. The
progression of the accident is also modeled through an event
tree, consisting of intermediate events that determine how the
accident evolves, e.g., whether or not a safety relief valve is
stuck open. The intermediate events have known probabilities
of occurring, and a path through the event tree partitions the
sample space into scenarios. The probability of each scenario
is known, but the distribution of the output variable Y for a
scenario is not known, although we can generate observations
from the distribution by simulation with the computer code.
The framework fits exactly into applying stratified sampling
by using the scenarios as strata. Further incorporating CMC
leads to additional improvements in statistical efficiency. This
is critical because each code run entails numerically solving
differential equations, which is computationally expensive.

The rest of the paper unfolds as follows. Section II provides
a list of acronyms used in the paper. Section III reviews how
to apply SRS for quantile estimation. Section IV describes
previous work on estimating a quantile via stratified sampling.
In Section V, we combine SS with conditional Monte Carlo.
We provide concluding remarks in Section VI. Throughout the
paper, we give details on how the methods can be applied to
perform a RISMC safety analysis of a nuclear power plant.

II. LIST OF ACRONYMS

CDF cumulative distribution function
CLT central limit theorem
CMC conditional Monte Carlo
CV control variates
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EDF empirical distribution function
IS importance sampling
LHS Latin hypercube sampling
NPP nuclear power plant
NRC Nuclear Regulatory Commission
PCT peak cladding temperature
RISMC risk-informed safety-margin characterization
SBO station blackout
SRS simple random sampling
SS stratified sampling
VRT variance-reduction technique

III. BACKGROUND AND SIMPLE RANDOM SAMPLING

Let Y be a real-valued random variable with cumulative
distribution function (CDF) F , i.e., F (y) = P (Y ≤ y).
For a fixed real number p with 0 < p < 1, we define
ξ ≡ F−1(p) ≡ inf{y : F (y) ≥ p} as the p-quantile of F
(or equivalently, of Y ); see Fig. 1. We assume that F is not
analytically nor numerically tractable, but we have a computer
code that can generate independent and identically distributed
(i.i.d.) observations from F . The goal is to estimate ξ via
Monte Carlo simulation. The typical approach, and the one we
will follow, first estimates the CDF using simulation, and then
inverts it to obtain a quantile estimator. Throughout the paper,
we will use the following example to motivate and explain the
different methods we consider.

p

CDF F

ξ = F      p(   )1 y

y(   )

Figure 1. CDF F and p-quantile ξ.

Example 1. Consider a safety analysis of a nuclear power
plant, in which a detailed computer code is used to model
the progression of a hypothesized event, such as a loss-of-
coolant accident or a station blackout. The computer code
is run with random inputs having specified distributions, and
the code outputs a load L representing the peak cladding
temperature (PCT). The NRC [2] currently requires that the
0.95-quantile of L lies below a fixed capacity C = 2200◦F. But
the recent RISMC formulation [17][18] models the capacity
C as a random variable to account for important changes in
NPPs, e.g., aging components, extended operating licenses,
and power uprates (i.e., operating an NPP at a higher level
to produce more electricity). The papers [17][18] assume that
the capacity C (in ◦F) has a triangular(1800, 2200, 2600) dis-
tribution, and the computer code also generates an observation
of C each time it is run. The RISMC problem requires that
the probability that the load exceeds capacity is small, i.e.,
P (L ≥ C) ≤ α for some specified small α, say, α = 0.05.

We can formulate the requirement in terms of a quantile by
letting Y = C −L, and stipulating that the α-quantile of Y is
nonnegative, i.e., ξ ≥ 0.

We start by describing how to use simple random sampling
to estimate ξ; see Section 2.3 of [4] for an overview. We first
generate a sample of n i.i.d. observations Y1, Y2, . . . , Yn from
F . Then we estimate the CDF F via the empirical distribution
function (EDF) F̂n defined by

F̂n(y) =
1

n

n∑
i=1

I(Yi ≤ y),

where I(·) is the indicator function, which takes on the value
1 (resp., 0) when its argument is true (resp., false). Because
the true p-quantile is ξ = F−1(p), this suggests estimating it
by

ξ̂SRS(n) = F̂−1n (p), (1)

which we call the SRS p-quantile estimator. The SRS quan-
tile estimator can be refined through interpolation [13] or
smoothing techniques [19], but for simplicity, we only consider
ξ̂SRS(n).

We can equivalently compute ξ̂SRS(n) via order statistics.
Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) be the order statistics of the
sample Y1, Y2, . . . , Yn. Then ξ̂SRS(n) = Y(dnpe), where d·e is
the ceiling function; see Fig. 2.

Y (1) Y(2) Y(3) Y(   )n

EDF F  n

p

ξSRS(   )n =  F      p (   )1
n =  Y (3)

y

y(   )

Figure 2. EDF F̂n and the SRS p-quantile estimator ξ̂SRS(n).

The SRS quantile estimator ξ̂SRS(n) satisfies a central limit
theorem (CLT), for which we give the following heuristic
derivation. Let f denote the derivative (when it exists) of the
CDF F , and suppose that f(ξ) > 0. For large n, we have
that F̂n ≈ F , so it is plausible that ξ̂SRS(n) = F̂−1n (p) ≈
F−1(p) = ξ. Consequently,

F (ξ) ≈ F (ξ̂SRS(n)) ≈ F (ξ) + f(ξ)[ξ̂SRS(n)− ξ]
≈ F̂n(ξ) + f(ξ)[ξ̂SRS(n)− ξ],

where the second step uses a Taylor approximation, and the last
step follows because F̂n ≈ F . Rearranging terms and scaling
by
√
n then yields

√
n[ξ̂SRS(n)− ξ] ≈

√
n

f(ξ)
[F (ξ)− F̂n(ξ)]. (2)
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The ordinary CLT (e.g., Theorem 1.9.1A of [4]) ensures that
√
n[F (ξ)− F̂n(ξ)]⇒ N(0, ψ2

SRS) (3)

as n→∞, where ⇒ denotes convergence in distribution (see
Section 1.2.4 of [4]),

ψ2
SRS = Var[I(Y ≤ ξ)] = p(1− p), (4)

and N(a, b2) represents a normal random variable with mean
a and variance b2. Finally, dividing the left side of (3) by f(ξ)
gives the right side of (2), suggesting that ξ̂SRS(n) obeys the
CLT √

n[ξ̂SRS(n)− ξ]⇒ N(0, κ2SRS) (5)

as n→∞, where

κ2SRS = η2ψ2
SRS (6)

is the asymptotic variance in the CLT, and

η =
1

f(ξ)
(7)

is known as the quantile density. For a rigorous proof of the
CLT in (5), see, e.g., p. 77 of [4].

IV. STRATIFIED SAMPLING

Stratified sampling partitions the sample space into strata,
and then allocates a fixed proportion of the overall sample size
to each stratum. Section 4.3 of [6] provides an overview of
SS to estimate a mean, and [15] considers quantile estimation
combining SS with CV. Also, [8][10] combine SS with IS to
estimate a quantile.

Suppose there is an auxiliary random variable Z, which
could be generated in the process of generating the output
variable Y , and we will use Z as a stratification variable. One
possibility is Z = Y . Another is Z = h(X) when the output
variable Y = v(X), where h and v are real-valued functions
and X is some multidimensional random variable with known
joint distribution; here, the function h may be more analytically
tractable than v.

We partition the support R of Z into R = ∪ts=1Rs for
some fixed t ≥ 1, with Rs ∩ Rs′ = ∅ for s 6= s′. Assume
that we know the value of λ = (λ1, λ2, . . . , λt), where λs =
P (Z ∈ Rs) for s = 1, 2, . . . , t. We call each Rs (or s) a
stratum, which is also known as a scenario. Thus, for each
y ∈ <, the CDF F of Y satisfies

F (y) = P (Y ≤ y) =

t∑
s=1

P (Z ∈ Rs)P (Y ≤ y|Z ∈ Rs)

=

t∑
s=1

λsF[s](y) (8)

by the law of total probability, where

F[s](y) = P (Y ≤ y|Z ∈ Rs) (9)

is the conditional CDF of Y given Z ∈ Rs. In (8), the λs
are known, but not the F[s], which we will estimate via Monte
Carlo. Define a random variable Y[s] ∼ F[s], i.e., Y[s] has the
conditional distribution of Y given Z ∈ Rs. We thus estimate
F[s] by generating observations of Y[s], which we assume can
be done for each stratum s, and using an empirical distribution.

Example 1 (cont). Event trees play an important role in a
RISMC study, and Fig. 3 depicts an event tree from [17]
of a hypothesized station blackout (SBO) at a nuclear power
plant. The intermediate events E1, E2, E3, which have known

Scenario

1

3

4

2

Initiating
Event E E E

SBO 0.99938

6.2E-4

1.9E-3

0.9981
0.919

8.1E-2

1 2 3

Intermediate Events

Figure 3. Event tree of a hypothesized station blackout at a nuclear power
plant.

branching probabilities, as shown, determine how the accident
progresses. For example, the lower (resp., upper) branch of
E2 represents the event that a safety relief valve is stuck
open (resp., closes properly), which occurs with probability
0.0019 (resp., 0.9981). Paths from left to right through the
event tree partition the state space into scenarios, and let Z
denote a random chosen scenario. The support of Z is the set
R = {1, 2, 3, 4}, and we can partition R into t = 4 strata
Rs = {s}, s = 1, 2, 3, 4. We compute the probability λs of
each scenario by multiplying the branching probabilities along
its path, e.g., λ4 = 0.99938 × 0.0019. Each scenario s has
a computer code that generates an observation of a load L[s]

and a capacity C[s]. Thus, we define the output Y[s] ∼ F[s] as
Y[s] = C[s] − L[s] for scenario s.

To apply SS with an overall sample size n to estimate ξ,
we allocate a fraction γs to stratum s, where 0 < γs < 1 and∑t
s=1 γs = 1. One possibility is to take γs = λs for each s, but

we also allow other allocations. Let γ = (γ1, γ2, . . . , γt), and
ns = γsn be the sample size for stratum s, where we assume
that ns is integer-valued; if not, we set ns = bγsnc, where b·c
is the floor function. Let Y[s],1, Y[s],2, . . . , Y[s],ns

be a sample
of ns i.i.d. observations of Y[s]. Then, we can estimate F[s] via

F̂[s],n,γ(y) =
1

ns

ns∑
i=1

I(Y[s],i ≤ y)

for each y. By (8), we then obtain the SS estimator F̃n,γ of
the CDF F as

F̃n,γ(y) =

t∑
s=1

λsF̂[s],n,γ(y).

The SS quantile estimator is then ξ̂SS,γ(n) = F̃−1n,γ(p). When
there is only t = 1 stratum for SS with λ1 = γ1 = 1, the
SS quantile estimator ξ̂SS,γ(n) reduces to the SRS quantile
estimator ξ̂SRS(n).

The SS quantile estimator ξ̂SS,γ(n) satisfies a CLT
√
n[ξ̂SS,γ(n)− ξ]⇒ N(0, κ2SS,γ) (10)

as n→∞, where the asymptotic variance is

κ2SS,γ = η2ψ2
SS,γ , (11)
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η is the quantile density in (7),

ψ2
SS,γ =

t∑
s=1

λ2s
γs
ζ2SS,[s], (12)

ζ2SS,[s] = Var[I(Y[s] ≤ ξ)] = F[s](ξ)[1− F[s](ξ)]; (13)

see [15][8][10]. (The last two papers consider the combination
of importance sampling and SS for quantile estimation, but
SRS is a special case of IS, so they cover the setting of SS-
alone.)

The SS asymptotic variance κ2SS,γ in (11) is the product of
two terms. The first, η2, is the same as in the SRS asymptotic
variance κ2SRS in (6), and the value of η2 is unaffected by the
particular Monte Carlo method employed to estimate ξ. But the
second factor ψ2

SS,γ does depend on how ξ is estimated. The
choice of the stratification allocation γs, s = 1, 2, . . . , t, also
affects the asymptotic variance κ2SS,γ in the CLT (10) through
ψ2

SS,γ in (12).
One possible choice for γ is the proportional allocation,

in which γ = λ. As shown on p. 217 of [6], the proportional
allocation for any choice of t ≥ 2 strata R1, R2, . . . , Rt, is
guaranteed to reduce variance compared to SRS. To see why,
let S be a discrete random variable such that S = s if and only
if Z ∈ Rs, s = 1, 2, . . . , t, so P (S = s) = λs. (In Example 1
we have S = Z.) Thus, because ζ2SS,[s] = Var[I(Y ≤ ξ)|S =
s], it follows that when γ = λ, we have that

ψ2
SS,λ =

t∑
s=1

λsζ
2
SS,[s] = E[Var[I(Y ≤ ξ)|S]]

≤ E[Var[I(Y ≤ ξ)|S]] + Var[E[I(Y ≤ ξ)|S]]

= Var[I(Y ≤ ξ)] = ψ2
SRS,

where the inequality holds because of the nonnegativity of a
variance, the next step follows from a variance decomposition,
and the last equality holds by (4). Hence, (6) and (11) imply
the proportional allocation for SS leads to no larger asymptotic
variance for the quantile estimator than SRS; also see [15].

For a given set of t strata R1, R2, . . . , Rt, the optimal
allocation γ that minimizes the asymptotic variance κ2SS,γ of
the SS quantile estimator is γ∗ = (γ∗1 , γ

∗
2 , . . . , γ

∗
t ) with

γ∗s =
λsζSS,[s]∑t

s′=1 λs′ζSS,[s′]
, s = 1, 2, . . . , t;

see, e.g., [15] and p. 217 of [6]. The allocation γ∗ typically
cannot be implemented directly in practice because ζSS,[s] and
F[s](ξ), s = 1, 2, . . . , t, are unknown. The paper [15] provides
an adaptive two-stage approach to asymptotically achieve the
minimal SS asymptotic variance, where the first stage estimates
the optimal γ∗, which is then used for the sampling in the
second stage.

V. COMBINING SS WITH CONDITIONAL MONTE CARLO

Conditional Monte Carlo, which is also known as the
conditional-expectation method, reduces variance by analyti-
cally integrating out some of the variability; see Section V.4
of [5] for an overview of applying CMC to estimate a mean.
Recall that for SS, we assumed that Z was a stratification
variable with strata Rs for s = 1, 2, . . . , t. Now, we assume
that for each s, we have another auxiliary random variable

X[s]. We can then write the (conditional) CDF F[s] in (9) of
Y[s] as

F[s](y) = P (Y[s] ≤ y) = E[P (Y[s] ≤ y|X[s])] (14)

by conditioning on X[s]. Thus, assuming that

q[s](x, y) ≡ P (Y[s] ≤ y|X[s] = x) (15)
= E[I(Y[s] ≤ y)|X[s] = x] (16)

can be computed, analytically or numerically, then (14) and
(15) suggest that we can estimate F[s](y) by averaging copies
of q[s](X[s], y), which we note is only a function of the
conditioning variable X[s] and y as Y[s] has been integrated
out through the conditional probability.

Example 1 (cont). The initial RISMC studies [17][18] have
that the load L[s] and the capacity C[s] are independent random
variables, which we will also assume. The independence
assumption is reasonable from a modeling standpoint because
the load is determined by how the hypothesized accident pro-
gresses, whereas the capacity depends on material properties
of the components. Let G[s] denote the marginal CDF of the
capacity C[s] in scenario s, i.e., G[s](z) = P (C[s] ≤ z).
As noted before, [17][18] assume that G[s] is a triangular
distribution; the papers actually further assume that G[s] is the
same for all scenarios s, but we do not require that here. For
each scenario s, take the conditioning variable as X[s] = L[s],
and because the output is Y[s] = C[s]−L[s], we can write (15)
as

q[s](x, y) = P (C[s] − L[s] ≤ y|L[s] = x)

= P (C[s] ≤ L[s] + y|L[s] = x) = G[s](x+ y)

by the independence of L[s] and C[s]. In this case, q[s](x, y) is
only a function of the observed load L[s] = x and y because
the random capacity C[s] has been integrated out, replaced by
its marginal CDF G[s]. When G[s] is a triangular CDF, as
in [17][18], the function q[s] can be easily computed, as we
previously required.

To implement the combination SS+CMC to estimate ξ, let
X[s],i, i = 1, 2, . . . , ns, be i.i.d. copies of X[s], where ns =
γsn as before with SS allocation γs. Then, as suggested by
(14) and (15), our CMC estimator of the CDF F[s] is given by

F̌[s],n,γ(y) =
1

ns

ns∑
i=1

q[s](X[s],i, y).

Then, as in (8), we combine the F̌[s],n, s = 1, 2, . . . , t, to
obtain the SS+CMC estimator of the CDF F of Y as

F̌n,γ(y) =

t∑
s=1

λsF̌[s],n,γ(y).

We finally obtain the SS+CMC p-quantile estimator as
ξ̂SS+CMC,γ(n) = F̌−1n,γ(p), which satisfies the following result.

Theorem 1. If f(ξ) > 0, then
√
n[ξ̂SS+CMC,γ(n)− ξ]⇒ N(0, κ2SS+CMC,γ) (17)
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as n→∞ for any SS allocation γ, where

κ2SS+CMC,γ = η2ψ2
SS+CMC,γ , (18)

ψ2
SS+CMC,γ =

t∑
s=1

λ2s
γs
ζ2SS+CMC,[s], (19)

ζ2SS+CMC,[s] = Var[q[s](X[s], ξ)], (20)

and η is the quantile density in (7). Moreover, when SS and
SS+CMC use the same stratification allocation γ, we have that

κ2SS+CMC,γ ≤ κ2SS,γ , (21)

where κ2SS,γ in (11) is the asymptotic variance in the CLT (10)
for the SS quantile estimator.

Proof: By applying ideas from the proofs in [10], we can
formally show that the SS+CMC quantile estimator satisfies a
Bahadur representation [20], which then implies the CLT in
(17). To establish (21), we apply a variance decomposition to
(13) to obtain

ζ2SS,[s] = Var[I(Y[s] ≤ ξ)]
= Var[E[I(Y[s] ≤ ξ)|X[s]]] + E[Var[I(Y[s] ≤ ξ)|X[s]]]

≥ Var[E[I(Y[s] ≤ ξ)|X[s]]] = Var[q[s](X[s], ξ)]

= ζ2SS+CMC,[s]

by (16) and (20). Thus, (19) and (12) imply that ψ2
SS+CMC,γ ≤

ψ2
SS,γ , from which (21) follows by (11) and (18).

VI. CONCLUSION AND FUTURE WORK

We described how to estimate a quantile when applying
a combination SS+CMC of stratified sampling and condi-
tional Monte Carlo. We provided a central limit theorem
for the SS+CMC quantile estimator. We further proved that
the SS+CMC quantile estimator has asymptotic variance that
is no greater than that of the SS quantile estimator, when
both approaches use the same stratification allocation. We
also explained how SS+CMC can be employed to efficiently
perform a risk-informed safety-margin characterization of a
nuclear power plant.

A direction for future work is to develop confidence
intervals for ξ when applying SS+CMC. One approach is to
use a finite difference to consistently estimate the asymptotic
variance κ2SS+CMC,γ in (18) in the CLT (17), as is done in [10]
for other variance-reduction techniques. Another possibility
applies sectioning, an approach that is closely related to batch-
ing (also known as subsampling) and was originally proposed
in Section III.5a of [5] for SRS; [21] extends sectioning to IS
and CV.
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