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Abstract—In waste processing technology, the recent Corona Elec-
trostatic Separation (CES) method is used to separate conductive
from non-conductive particles in recycling streams. This paper
proposes an innovative simulation approach based on non-smooth
dynamics. In this context, a differential-variational formulation
is used to implement a scalable and efficient time integrator
that allows the large-scale simulation of trajectories of particles
with different properties under the effect of particle-particle
interactions and frictional contacts. Issues related to performance
optimization, fast collision detection and parallelization of the
code are discussed.
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I. I NTRODUCTION
Numerical simulation of waste processing devices is be-

coming a key factor in the improvement of material recycling:
this work focuses on the simulation of the CES processing
technology. Such a technology uses electrostatic forces to
separate conductor materials from insulating materials within
a continuous granular flow.

Particles with a varying degree of materials, such as plastic
or copper, are produced by a preprocessing stage where Printed
Circuits Boards (PCB) are shred and crushed, then they are
dropped on the rotating drum of the ECS device, where corona
charging is used to establish a negative charge on particles
when passing between two high-voltage electrodes [1].

Research on numerical methods for simulating this class
of problems is relatively recent [2][3].

Simulating this type of devices proved to be quite chal-
lenging in the past, because it requires the simulation of a
so calleddense granular flow, that is a collection of many
particles interacting with the surrounding ones. It is known that
only few special cases of granular flows can be simplified into
macroscopic models, and in literature there are some example
of homogenizations that can lead to simpler Finite Element
Analysis (FEA), expecially with spherical particles; but,the
case at hand is not one of these. In granular flows each par-
ticle, with arbitrary shape and mass properties, exploits three
dimensional displacements and rotations, hence six degrees of
freedoms are introduced per each particle. If one considersthat
few seconds of simulation of a waste processing device like
our CES can involve hundreds of thousands, if not millions,
of particles, this instantly gives an idea of how challenging
the problem is from a numerical point of view. On top of this,
the fact that particles touch each other, introduces a major
complication that cannot be solved with classical tools of

ordinary differential equations and that leads to the complex
field of non-smooth dynamics.

This motivated our research on a custom software tool that
can simulate the CES, and similar separation processes, by
means of an efficient solution scheme based on Differential
Variational Inequalities (DVI).

Results show that we can obtain reliable simulations with
large timesteps and by running a single computer for few min-
utes. Also, the software tool that we developed can simulate
motors, moving parts and other auxiliary devices that might
interact with the granular flow.

This article starts with an introductory section about the
CES process, then it presents the mathematical background of
the DVI simulation algorithm, it discusses how to overcome the
difficulty of massive collision detection in granular flows,and
finally discusses the computation of electrostatic forces and
the software implementation. The last section shows examples
of results that can be achieved with this type of simulations.

II. T HE ELECTROSTATIC SEPARATION PROCESS

The CES is a waste processing device that separates
conductor materials from insulating materials within a granular
flow of fine particles. An example, from our labs, is shown in
Figure 1.

The granular flow receives a discharge of electricity, which
gives high surface charge to the plastic particles, causingthem
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Figure 1: A CES processing device.
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to be attracted to the rotor surface until they are brushed down
into a proper bin, below the drum. On the other hand, metal
particles do not remain charged, because their charge rapidly
decreases as they touch the rotor, so they fall into the farthest
bin. In case a particle is made of a mixture of materials, it
drops in intermediate bins. Metal particles are charged only
by electrostatic induction, and this causes a slight attraction
effect towards the static electrode of opposite sign.

The efficiency of the process is affected by non-controllable
parameters, such as particle shape and size. The quality of the
separation can be influenced by controllable parameters like
electrode voltage and position, drum speed, splitters position,
and feed rate.

III. T HE DVI FORMULATION
Granular flows are complex dynamical phenomena where

a large number of particles interact with each other and with
the surrounding environment. The fact that interactions are of
discontinuous nature, for example because of hard contacts,
introduce a relevant difficulty in the time integration of the
system.

Most literature deals with this class of problems by means
of the so-called Discrete Element Method (DEM), an approach
that regularizes the non-smooth contact phenomena by in-
troducing regularized smooth functions [4]. This means that
hard contacts between particles in DEM are approximated
as spring-dashpot systems, whose stiff and nonlinear nature
requires very short timesteps for the integration of the resulting
Ordinary Differential Equations (ODE) [5]. If large timesteps
are used in DEM, the explicit ODE time integration may lead
to divergence.

In search of a faster and more robust way for simulating
granular flows, we developed [6] a time stepping method based
on the recent theory of DVI. Such an approach is able to
handle up to millions of contacts between particles; it directly
captures the discontinuous nature of contacts with set-valued
functions, it does not require short integration time stepsand
it has stability properties that are similar to an implicit method
for differential equations.

First researches on a special type of DVI, related to contact
problems, can be traced back to the Measure Differential
Inclusion theory (MDI) developed in [7][8].

In the DVI framework, the right hand side of a differential
expression is a set-valued function [9], so it is an inclusion, as
a generalization of classical ODEs that have simple equalities.
This is useful in mechanics, since non-smooth pehenomena
can be described by means of set-valued functions such as the
Signorini contact law or the Coulomb friction. Note that no
smooth regularization of discontinuities are needed.

One can discretize DVIs in time, even with large timesteps,
obtaining a Variational Inequality (VI) problem for each time-
step [10], since reaction forces must satisfy set inclusions
rather than algebraic equations.

A DVI is defined as the problem of finding the functionx
on [0, T ]:

dx

dt
= f(t,x,u) (1)

u ∈ SOL (K, F (t,x(t), ·)) (2)

where the state of the system is defined byx, andSOL(K, F )
in the solution of the VI problem:

u ∈ K : 〈F (u),y − u〉 y ∈ K (3)
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Figure 2: Contact point reference.

given a closed and convexK ∈ R
n set, and given a continuous

F (u) : K → R
n.

For a problem of particle dynamics, for instance, the state
is x = {qT ,vT }T , with positionsq and velocitiesv, andu
is the set of reaction forces, that must satisfy a VI. For more
informations on the DVI theory, see [11]–[15].

In our context of particle dynamics, the granular material
is composed of many small particles or large bodies in contact.
The system state is defined by the vector of generalized coordi-
natesq ∈ R

mq and the vector of generalized speedsv ∈ R
mv

of the particles. Rotation of each particle is represented with
an unit quaternionǫ ∈ H1 The mass matrixM(q) ∈ R

mv×mv

includes all the masses and inertia tensors of the particles.
Aside from contacts, in granular flow simulations, particles

might be affected by field forces such as gravity, aerodynamic
forces, etc. In the case of the CES device described here,
also forces caused by electrostatic interactions are added. All
these forces will be denotedfe(q,v, t) in the following.
The total force fieldf t(q,v, t) ∈ R

mv includes also the
gyroscopic forcesf c(q,v); we remark that for the class of
problems at hand, gyroscopic forces could be omitted without
compromising the results, in search of a more stable numerical
integration (because in free falling slender particles, gyroscopic
forces often lead to sharp changes in spin directions, thus
leading to potential numerical stiffness).

Bilateral constraints are useful to model hinges and joints
in devices. In our CES model, for instance, this class of
constraints is used to model the revolute joints of the rotating
drum, and the constraints for the movable splitting planes.
Bilateral joints are introduced via a setGB of scalar constraint
equations:

Ψi(~q, t) = 0, i ∈ GB. (4)

We introduce∇qΨ
i =

[
∂Ψi/∂~q

]T
and∇ΨiT = ∇qΨ

iTΓ(q),
to express the constraint (4) at the velocity level after differ-
entiation:

dΨi(~q, t)

dt
= ∇ΨiT v +

∂Ψi

∂t
= 0, i ∈ GB. (5)

The term ∂Ψi

∂t
is needed only for time-dependent constraints.

This is the case, in our CES model, of the motor that imposes
a constant angular velocity to the rotating drum.

For the i-th contact between two bodiesA andB, let ni

be the normal at the contact point, directed toward the exterior
of A, as in Figure 2. Letui and wi be two vectors in the
contact plane such thatni,ui,wi ∈ R

3 are orthogonal vectors,
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and letΦi represent a signed contact distance, assumed to be
differentiable at least in vicinity of the contact.

The contact force has a normal componentF i,N =
γ̂i,nni, that must satisfy the Signorini contact rulêγi,n ≥
0 ⊥ Φi(·) ≥ 0, and a tangential componentF i,T =
γ̂i,uui + γ̂i,wwi, caused by friction, along two tangential
directions ui,wi, that can represent either the sticking or
sliding friction. Within the Amontons-Coulomb theory [16]
of dry friction, that we consider adequate for the case of
inter-particle friction, the ratio between the normal and the
tangential force is limited by friction coefficientµi.

Frictional unilateral contacts define a setGA. For each
contacti ∈ GA, we introduce the tangent space generators, that
can be derived as tangent constraint Jacobians:Di

γu
, Di

γw
.

We can express the friction model using the maximum
dissipation principle, thus leading to a nonlinear program
(γ̂i,u, γ̂i,w) = argmin vT (Dγu

γ̂i,u +Dγw
γ̂i,w) subject to

constraint
√

γ̂2
i,u + γ̂2

i,w ≤ µγ̂i,n, or equivalently by intro-
ducing a multiplierλv and writing the Fritz John optimality
conditions for such nonlinear program:

∇γu,γw
vT (Dγu

γ̂i,u +Dγw
γ̂i,w)+

−λi
v∇γu,γw

(
µiγ̂i,n −

√
γ̂2
i,u + γ̂2

i,w

)
= 0 (6)

µiγ̂i,n −
√
γ̂2
i,u + γ̂2

i,w ≥ 0, ⊥ λi
v ≥ 0. (7)

Finally, one can recognize that the following differential
model with equilibrium constraints, which expresses the full
model of the system including force fields, inertial forces,
contacts and bilateral constraints, is a DVI:

i ∈ GB : Ψi(q, t) = 0
i ∈ GA : γ̂i

n ≥ 0 ⊥ Φi(q) ≥ 0
∇γu,γw

vT (Dγu
γ̂i,u +Dγw

γ̂i,w)

−λi
v∇γu,γw

(
µiγ̂i,n −

√
γ̂2
i,u + γ̂2

i,w

)
= 0

µiγ̂i,n −
√
γ̂2
i,u + γ̂2

i,w ≥ 0, ⊥ λi
v ≥ 0

q̇ = Γ(q)v

M(q)
dv

dt
=

∑

i∈GA

(
γ̂i,nD

i
γn

+ γ̂i,uD
i
γu

+ γ̂i,wD
i
γw

)
+

+
∑

i∈GB

γ̂i
B∇Ψi + f t(t, q,v)

(8)
The DVI model can be discretized in time, using a timestep

h. To this end we setγ = hγ̂, we use an exponential map
Λ(·) for incremental update of quaternions during the time
integration [17][18], and we get:

i ∈ GB :
1

h
Ψi(~q(l)) +∇ΨiT~v(l+1) +

∂Ψi

∂t
= 0

i ∈ GA : γi,n ≥ 0 ⊥ 1
h
Φi(~q(l)) +∇ΦiT~v(l+1) ≥ 0

∇γu,γw
vT (Dγu

γi,u +Dγw
γi,w)

−λi
v∇

(
µiγi,n −

√
γi,u2 + γi,w2

)
= 0

µiγi,n −
√
γi,u2 + γi,w2 ≥ 0,⊥λi

v ≥ 0
q(l+1) = Λ(q(l),v(l+1), h)

M (l)v(l+1) =
∑

i∈GA

(
γi,nD

i
γn

+ γi,uD
i
γu

+ γi,wD
i
γw

)
+

+
∑

i∈GB

γi
B∇Ψi + hf t(t, q,v) +M (l)v(l)

(9)

 

Figure 3: Simulation of the granular flow. Note the different shapes of particles.
This example, although simple, leads to half a million of unknown reaction
forces in frictional contacts, on average. At each time step,those unknown
forces must be solved as a VI problem.

The previous problem is a mixed nonlinear complemen-
tarity problem, sub-case of VIs: most results for existenceof
solutions require monotonicity of the mapping defining the
complementarity problem, that also implies convexity of the
solution set of the nonlinear complementarity problem [19].
A relaxation of the original problem, that leads to a convex
problem whose solution is guaranteed, has been proposed in
[20] and it is used in our software.

Once cast to a convex problem, this can be formulated as
a second-order Cone Complementarity Problem (CCP), that is
also a special type of VI and is also a conically-constrained
quadratic optimization problem. As a convex optimization
problem, it can be solved by a modification of the Spectral
Projected Gradient (SPG) method for the solution of convex-
constrained optimization problems, developed by [21]. In the
original SPG scheme, the projection operator performs the pro-
jection on boxed constraints, whereas we perform projection
on the friction cones.

The formulation of (9) can describe only inelastic colli-
sions; but a simple modification can also introduce a restitution
coefficient.

We remark that the contact model is based on few param-
eters (friction coefficient, optionally also restitution coefficient
or compliance and damping). Although limited in number
of parameters, this simplicity pays back in terms of high
computational efficiency and ease of use.

IV. COLLISION DETECTION
One of the biggest bottlenecks in granular flow simulations

is the computation of the collision points between pairs of par-
ticles, and between particles and the surrounding environment.
There are two main sources of difficulties: one is related to
finding the pairs of potential contacting bodies, and the other
is computing the geometric location of the contact point(s)
between those pairs.

The first difficulty is addressed by the so-calledbroad-
phasecollision detection stage. Such algorithm consists in pre-
filtering the particles in order to detect only the small portion
of pairs that potentially could collide, hence avoiding a brute
force O(n2) test for all pairs - clearly inpracticable even for
few thousands of particles. Our broadphase stage leveragesthe
Bullet3D open-source library [22].
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The second difficulty is related to the fact that there are
many types of collision shapes, as shown in Figure 3, and
contact points must be created for pairs in this second phase,
callednarrow phase. Ideally on would like to use polihedrons,
spheres, cylinders, boxes etc., as well as compounds of those
primitives, but then, algorithms for all possible combination
between those types must be implemented. A solution could
be to use algorithms of the GJK family [23] that requires
only a single member function for each class of primitive,
i.e., the computation of the support point. This is the default
narrow-phase algorithm for the Bullet3D library, however we
experienced that the GJK algorithm suffers a noticeable lack of
precision when working with primitives whose size is largely
different, which is exactly the case of the small particles
that come into touch with the rotating cylinder. To overcome
this problem, we implemented a closed form solution for
computing contacts between spheres and cylinders (interesting
enough, GJK is not affected by this issue for the sphere-vs-
box case). This works properly; but if one desires particles
that are non-spherical, for instance conical, this would require
the development of other closed form algorithms for cone-vs-
cylinder, cone-vs-cone, etc. To avoid this increase in coding
complexity, and yet resolve the issue of low precision in
GJK, we decided to model the collision shape of irregular
particles by using cluster of spheres, as in Figure 4. This is
an approximation of the real shapes (which are known only
at a statistical level anyway), but it performs well in termsof
algorithmic robustness and precision.

The ability of simulating particles with non-spherical
shapes is important because, as discussed by Lu et al. [3],
the shape of the particle can affect the global outcome of the
separation process; for example, spherical particles tendto fall
farther than thin and slender particles.

 

 

 

 

 

Figure 4: Concept of spherical decomposition.

We experienced that the idea of using cluster of spheres as
collision shapes can fit well into parallel computing architec-
tures of the Grpahical Processing Unit (GPU) type, as shown
in [24].

V. FORCES FIELDS
At each simulation timestep, the force fields acting on each

particle must be updated.
In this model, forces are different for metal and non-metal

particles [1]. In case of metals, for thej-th particle, forces
acting on the particle are: electric forcefel,j , aerodynamic
drag forcefa,j and gravity forcefg,j , plus it can be affected to
the contact forces described in the previous paragraphs. Hence,
in the DVI of (8), one has:

f t,j(q,v, t) = f c,j + fel,j + fa,j + fg,j

On the other hand, forces acting on particles made of non-
metal materials are: electric image forcef im,j , aerodynamic
drag forcefa,j , and gravity forcefg,j , plus the contact forces
if any. In this case it holds:

f t,j(q,v, t) = f c,j + f im,j + fa,j + fg,j

An analytical model has been used for computing the elec-
tric field E(x, y, z) in the space between the two electrodes; to
this end we used the formulas expressed in [2]. The resulting
electric field is depicted in Figure 5.

 
 
Figure 5: Analytic electric field model, used in run-time computations.

We remark that such analytic model is approximate, and it
does not consider the three-dimensional effect of decayingat
the sides of the cylinder. For comparison, we performed alsoa
PDE simulation of the electric field using a 3D FEA software,
as in Figure 6, and the result is close to the analytical model,
at least for the zone of interest.

 

Figure 6: Reference force field, computed with PDE in off-line.

For the sake of brevity, we do not report the formulas for
the aereodinamycal drag and for the gravity force, and we
focus on forces caused by the electrostatic field. We make
the simplifying assumptions that the metal particles discharge
instantly as soon as they touch the grounded cylinder, and that
charging of the non-metal particles happens instantly as soon
they enter the volume in front of the cylinder.
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We introduce the vacuum permeabilityǫ0, the relative
permeabilityǫr, the average radius of the particler. Following
[2], the force caused by the electric field acting on metallic
particles is:

fel,j = 0.832QmetalE(x, y, z) (10)

where the chargeQmetal is

Qmetal =
2

3
π3ǫ0ǫrr

2E (11)

The non-metal particles are subject to the electric image force:

f im,j =
Q2

non−metal

4πǫ0ǫr(2r)2
(12)

Qnon−metal = 3πǫ0(2r)
2E

ǫr
ǫr + 2

(13)

We generate shapes with different densities and different
sizes r and different values ofǫ0 according to a random
distribution generator, for instance one can generate flowswith
30% of copper particles and 60% of plastic particles, with
sizing given by probability distributions. For cases of particles
made of microscopic clusters of not-separated materials, we
simply apply a weighted average of the forces described above.

VI. SOFTWARE IMPLEMENTATION
The simulation software is implemented in C++ language

and uses our Chrono::Engine C++ simulation libraries [25],
which implement the DVI method.

To avoid the burden of defining coordinates, sizes and
shapes of the collision surfaces, as well motors and joints
of the CES machine, we developed a custom add-in in C#
language for the SolidWorks software. The add-in allows the
designer to model the system with the GUI, as in Figure 7;
then one can export the environment into a file that is load
and parsed by the simulator before running the simulation.
On the other hand, the generation of the particle flow and the
simulation loop is controlled directly by C++ statements inthe
stand-alone simulator, as in Figure 8.

 
 

 

  
Figure 7: Model of the CES device in the SolidWork parametric CAD. Note
that the surfaces that can affect collision detection have been marked as red.

 

Figure 8: Model of the CES device during the simulation in the OpenGL view
of our Chrono::Engine software.

Post-processing of the data is performed via ad-hoc Matlab
programs, although the simulator also offers an interactive
OpenGL view that can be used to quickly evaluate the results
of simulation tests. For the final simulations we use timesteps
of 0.001 s, and the number of iterations for the solution of the
CCP problem has been limited to 100.

VII. R ESULTS

Simulations can be run for different speeds of the drum,
for different flow rates, and for different mixtures and size
distributions of particles. At each simulation run, particle
trajectories are processed by sorting their end point in virtual
bins; by splitting the horizontal X direction in evenly spaced
bins and by counting the particles that end into such bins, one
can build statistical distributions of the output flow, as shown
in Figure 9. This can be used to simulate different scenariosof
operation of the CES device, and it can be used also to design
new versions of the device that could process more material
without incurring into inefficiency.

For instance, results in Figures 10 show how the distri-
bution of the outcome, for the same material, increases in
variance as the flow rate increases. The reason is that for high

 Figure 9: Output distribution showing the separation of metal and plastic
particles.
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flow rate the granular packing starts to be denser, as particles
are more likely to be in contact each other, even in stacked
layers over the drum, and this introduces more randomness in
the process.

VIII. C ONCLUSION AND FUTURE WORK
We implemented a custom software, based on our

Chrono::Engine simulation middleware, that can perform sim-
ulations of granular flows of particles in waste-processing
devices. In detail, a CES device has been studied with this
tool. The simulation method, being based on an original
DVI formulation, permits large timesteps without incurring
in numerical instability. Special optimizations have beenused
in the collision detection algorithms in order to reduce the
computational overhead. A custom add-in for the SolidWorks
software has been used in order to simplify the workflow, as
the user can export collision shapes from the user interfaceof
the CAD.

Future development will address experimental validation
and other types of waste processing machines such as the Eddy
Current Separator (ECS).

 
 

  

 
 

Figure 10: Output distribution of falling particles, for different flow rates.
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