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Abstract—A computational model of a multilayered amperometric
biosensor is presented in this paper. Models of biosensors usually
simplifies the electrochemistry of biosensors considering that all
electrochemical reactions have infinite rates. While in most cases
such approximations are tolerable, at lower electrode potentials
these models would not be accurate enough. The model proposed
in this paper models the electrochemistry occurring during the
biosensor operation more accurately, using the Butler-Volmer
equation. Computational experiments showed that models with
the Butler-Volmer equation may be valuable tools aiding the
analysis of the electrochemistry of amperometric biosensors.
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I. INTRODUCTION

A biosensor is an electronic measuring device designed for
measuring a concentration of some specific substance (analyte)
in a solution. Device specificity for a particular substance is
achieved by some biological material, usually an enzyme [1],
[2], [3]. An amperometric biosensor assesses concentration of
the analyte through measurement of a current on a working
electrode [4], [5]. Biosensors are widely used in various
applications that require fast quantitative analysis [6], [7], [8],
[9], [10].

Manufacturing of a novel biosensor may be very expensive,
as it may require a lot of experiments in a laboratory. It is wise
to conduct computational experiments prior to physical ones.
In order to do that, a mathematical model of the biosensor
should be built [11], [12]. Mathematical models of biosensors
are built for a few decades already [13], [14], [15].

The biosensor modelled in this paper was modelled pre-
viously in two papers. A model in paper [16] assumes rate
of an electrochemical reaction as infinite and concentration of
an electrochemical reaction reactant on the electrode surface
as permanently reduced to zero. An experiment was conducted
and another model of the same type of biosensor was presented
recently in our paper [17]. A model in paper [17] is augmented
with equations representing oxidation of the mediator by oxy-
gen when an experiment is conducted in the aerobic conditions.
Computational experiments showed that in the case when

N-methylphenazonium methyl sulfate is used as a mediator
the mediator oxidation by oxygen may be neglected [17].
The model presented in [17] considers that the rate of an
electrochemical reaction as infinite too.

This paper is an extension of our research [17]. This
time the model targets electrochemical questions. The model
of biosensor presented in this paper considers the fact that
the rate of the electrochemical reaction is not infinite. The
rate of electrochemical reaction is modelled using the Butler-
Volmer equation [18]. The model is not superior with respect
to models presented in [16] and [17] but rather it is a helpful
tool enabling us to analyse the electrochemical aspect of
the amperometric biosensor. We demonstrate that at certain
situations the assumption of infinite electrochemical reaction
rate may not be a suitable approach.

Behaviour of the biosensor was numerically analysed at
various values of input parameters of the model. Influence of
an electrode potential, as well as of a standard rate constant
on the biosensor response were investigated.

II. MATHEMATICAL MODEL

A. Reaction Scheme

The following reactions take place during operation of this
amperometric biosensor [19], [20], [21],

GDHox + glucose
k1

GGGGGGAGDHred + gluconolactone (1a)

GDHred + PMSox
k2

GGGGGGAGDHox + PMSred (1b)

PMSred GGGGBFGGGG PMSox + 2e− (1c)

where GDH is glucose dehydrogenase and PMS is N-
methylphenazonium methyl sulfate.

Further in this paper we use an abstract notation of the
chemical species. Glucose is called the substrate S and glu-
conolactone is called the product P. Eox is GDHox, Ered is
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GDHred, Mox denotes PMSox and Mred denotes PMSred.

Eox + S
k1

GGGGGGAEred + P (2a)

Ered +Mox

k2
GGGGGGAEox +Mred (2b)

Mred GGGGBFGGGGMox + 2e− (2c)

B. Biosensor Principal Structure

The biosensor is comprised of three layers (compartments).
Mediums of these layers are made of different materials and
so are diffusion properties of species in these layers. The
mathematical model includes these three layers plus additional
layer which is called the diffusion layer. The diffusion layer
is part of a solution in which concentrations of species are
different compared to the bulk solution. We use the Nernst
model of a diffusion layer. By the definition of this model,
the diffusion front is stopped by the convection at a certain
distance from the electrode and this distance is equal to the
thickness of the diffusion layer [22], [23].

Starting from the electrode surface, layers of the biosensor
go in the following order: the enzyme layer, the PVA layer, the
terylene membrane layer and the diffusion layer. Thicknesses
of these layers are defined d1, d2, d3 and d4, respectively.
Distances between the electrode surface and boundaries of
biosensor layers are denoted as a1, a2, a3 and a4 (see Fig-
ure 1).

Figure 1. The principal structure of the biosensor.

Enzyme molecules are present in enzyme layer only. As a
result biochemical reactions take place in the enzyme layer
only. Diffusion of species take place in all four layers of
the biosensor. However, enzyme molecules are large and
considered as immobile (not influenced by diffusion).

C. Governing Equations

In our model governing equations consist of two parts:
kinetics and diffusion. Kinetics is defined according to the law

of mass action [24], [15] and diffusion is defined according to
the Fick’s second law [18] (0 < x < a1, t > 0):

∂eox
∂t

= −k1eoxs1 + k2eredmox,1, (3)

∂ered
∂t

= k1eoxs1 − k2eredmox,1, (4)

∂s1
∂t

= DS,1
∂2s1
∂x2

− k1eoxs1, (5)

∂mox,1

∂t
= DMox,1

∂2mox,1

∂x2
− k2eredmox,1, (6)

∂mred,1

∂t
= DMred,1

∂2mred,1

∂x2
+ k2eredmox,1, (7)

where x is the distance from the electrode surface, t is time
from the beginning of an experiment, eox(x, t) and ered(x, t)
are concentrations of the oxidized (Eox) and the reduced (Ered)
enzyme molecules, respectively; s1(x, t) is a concentration of
the substrate in the enzyme layer; mox,1(x, t) and mred,1(x, t)
are concentrations of the oxidized (Mox) and the reduced
(Mred) forms of the mediator in the enzyme layer and DS,1,
DMox,1, DMred,1 are diffusion coefficients of the corresponding
species defined by subscripts. Last numeric subscripts in
definitions of concentrations and diffusion coefficients show
the number of the biosensor layer, i.e., 1 is the enzyme
layer. Equations corresponding to enzyme concentrations, lack
diffusion term as enzyme molecules are considered immobile.
There is no equation corresponding to the product P, because
its concentration does not influence other processes defined by
the model.

Governing equations in other three layers are simpler as
there are diffusion terms only in these equations (ai−1 < x <
ai, t > 0, i = 2, 3, 4):

∂si
∂t

= DS,i
∂2si
∂x2

, (8)

∂mox,i

∂t
= DMox,i

∂2mox,i

∂x2
, (9)

∂mred,i

∂t
= DMred,i

∂2mred,i

∂x2
, (10)

where i = 2 corresponds to the PVA layer, i = 3 corresponds
to the terylene membrane layer and i = 4 corresponds to the
diffusion layer.

D. Initial Conditions

We model the case when the biosensor is immersed into
a solution which lacks the substrate and the mediator prior
to experiment. We assume that experiment starts when the
substrate and the mediator appear in the bulk solution. This
is defined by the initial conditions (t = 0),

ered(x, 0) = 0, eox(x, 0) = e0, 0 < x < a1, (11)
si(x, 0) = 0, ai−1 ≤ x ≤ ai, i = 1, 2, 3, (12)
mox,i(x, 0) = 0, ai−1 ≤ x ≤ ai, i = 1, 2, 3, (13)
mred,i(x, 0) = 0, ai−1 ≤ x ≤ ai, i = 1, 2, 3, (14)
s4(x, 0) = mox,4(x, 0) = 0, a3 ≤ x < a4, (15)
mred,4(x, 0) = 0, a3 ≤ x ≤ a4, (16)
s4(a4, 0) = s0, mox,4(a4, 0) = m0, (17)
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where e0 is the total concentration of the enzyme (e0 =
eox(x, t) + ered(x, t),∀x, t : x ∈ (0, a1) , t > 0), s0 is the
substrate concentration and m0 is the concentration of the
oxidized form of the mediator in the bulk solution.

E. Matching Conditions

Species have different diffusion coefficients in different
layers of the biosensor, thus matching conditions have to be
defined (t > 0, i = 1, 2, 3) [22], [23],

DS,i
∂si
∂x

∣∣∣∣
x=ai

= DS,i+1
∂si+1

∂x

∣∣∣∣
x=ai

, (18)

si(ai, t) = si+1(ai, t), (19)

DMox,i
∂mox,i

∂x

∣∣∣∣
x=ai

= DMox,i+1
∂mox,i+1

∂x

∣∣∣∣
x=ai

, (20)

mox,i(ai, t) = mox,i+1(ai, t), (21)

DMred,i
∂mred,i

∂x

∣∣∣∣
x=ai

= DMox,i+1
∂mred,i+1

∂x

∣∣∣∣
x=ai

, (22)

mred,i(ai, t) = mred,i+1(ai, t), (23)

where i = 1 corresponds to the boundary between the enzyme
layer and the PVA layer, i = 2 corresponds to the boundary
between the PVA layer and the terylene membrane layer,
whereas i = 3 corresponds to the boundary between the
terylene membrane layer and the diffusion layer.

The matching conditions define that fluxes of the species
exiting the layer are equal to the fluxes entering the neigh-
bouring layer of the biosensor. Additionally, concentrations of
species on the surface of one layer are assumed to be equal to
concentrations on the surface of the neighbouring layer.

F. Boundary Conditions

Concentrations of the species in the bulk solution are kept
constant (t > 0),

s4(a4, t) = s0, (24)
mox,4(a4, t) = m0, (25)
mred,4(a4, t) = 0. (26)

Mred is the reactant of the electrochemical reaction (2c) while
Mox is the product. Stoichiometry of the reaction (2c) suggests
that the amount of Mred consumed is equal to the amount of
Mox produced. Thus, the flux of Mred on the electrode surface
is equal to the flux of Mox, but in the opposite direction. Also,
according to the Faraday’s Law the flux is proportional to
the current. These relations are expressed by the following
boundary condition (t > 0),

AneFDMred,1
∂mred,1

∂x

∣∣∣∣
x=0

=

−AneFDMox,1
∂mox,1

∂x

∣∣∣∣
x=0

= i(t). (27)

The flux of the substrate on the electrode is equal to zero, as
the substrate does not take part in any electrochemical reaction
(t > 0),

DS,1
∂s1
∂x

∣∣∣∣
x=0

= 0. (28)

G. Biosensor Response

The measured current is usually assumed as the response
of an amperometric biosensor in physical experiments. At
pH = 5–9 the electrochemical reaction (2c) is reversible. Two
electrons are transferred during the charge transfer [21]. The
biosensor current i(t) at time t was expressed by the Butler-
Volmer equation [18], [25],

(29)i(t) = AneFk
0
[
Mred(0, t)e

(1−α)nef(E−E0)

−Mox(0, t)e
−αnef(E−E0)

]
,

where i(t) is the faradaic current generated by the electrochem-
ical reaction (2c), A is the electrode surface, ne is the number
of electrons involved in a charge transfer at the electrode
surface, k0 is the standard rate constant, E0 is the standard po-
tential, α is the transfer coefficient, E is the electrode potential,
f = F/RT ; F is the Faraday constant, F = 96 486C/mol, R
is the gas constant, R = 8.314 J mol−1 K−1, T is the absolute
temperature.

We assume that the system approaches a steady state as
t→∞,

ist = lim
t→∞

i(t), (30)

where ist is the steady-state biosensor current.

III. NUMERICAL SIMULATION

There is no known analytical solution for the problem (3)–
(29). Therefore, the problem was solved numerically, using
the finite difference technique [26], [27]. An implicit finite
difference scheme was built on a uniform discrete grid with
50 points in the space direction for each modelled layer
corresponding to a certain time moment. The simulator has
been programmed by the authors in C++ programming lan-
guage [28].

In the numerical simulation, the biosensor response time
was assumed as the time when the change of the biosensor
current remains very small during a relatively long term. A
special dimensionless decay rate, ε, was used,

tr = min
i(t)>0

{
t :

t

i(t)

∣∣∣∣di(t)dt

∣∣∣∣ < ε

}
, i(tr) ≈ ist, (31)

where tr is the biosensor response time. The decay rate value
ε = 10−2 was used in the calculations.

In all numerical experiments the following values were kept
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constant if not stated otherwise [17], [29], [30], [31], [21]:

d1 = 5× 10−6 m, d2 = 1× 10−6 m,
d3 = 1.2× 10−5 m, d4 = 1.5× 10−4 m,
DS,1 = DMox,1 = DMred,1 = 1.5× 10−10 m2/s,
DS,2 = DMox,2 = DMred,2 = 4.2× 10−10 m2/s,
DS,3 = DMox,3 = DMred,3 = 3.75× 10−10 m2/s,
DS,4 = 6.77× 10−10 m2/s,
DMox,4 = DMred,4 = 4.57× 10−10 m2/s,
e0 = 1× 10−3 mol/m3, m0 = 5× 10−2 mol/m3,

s0 = 4.98mol/m3, k1 = 8.1× 102 m3 mol−1 s−1,
k2 = 6.7× 104 m3 mol−1 s−1, ne = 2,

k0 = 10−5 m/s, α = 0.5,

A = 4.5× 10−6 m2, T = 293K.

(32)

IV. RESULTS AND DISCUSSION

A. Model Validation

Experimental calibration curve was compared with simu-
lated calibration curves. Results are depicted in Figure 2.
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Figure 2. The dependence of the steady-state current on the substrate
concentration during physical experiment (1), simulated with the infinite
rate of electrochemical reaction (2), simulated at certain electrode potential
(E − E0): 0.1V (3), 0.05V (4), 0.02V (5), 0.01V (6).

Physical experiments were carried out at potentiostatic
conditions, the potential of the working electrode E was
set at 0.4V vs. Ag/AgCl [17]. Standard potential E0 of
redox pair Mred/Mox is −0.005V vs. Ag/AgCl [32], thus
(E −E0) = 0.405V. In this case the forward electrochemical
reaction becomes very fast and the rate of it may be modelled
as infinite [17]. The model from paper [17] at anaerobic condi-
tions was used to simulate the biosensor operation with infinite
electrochemical reaction rate as depicted by the curve 2.

Using the finite difference technique with the model (3)-
(29) becomes impractical at high potential values because
modelling very high electrochemical reaction rate requires very
small step in time which tremendously increases demand for
a computational power. However the model (3)-(29) allows
the modelling of lower potentials. Biosensor operation was
modelled at potential values (E − E0) from 0.01V to 0.1V.
As one can observe from Figure 2 the biosensor response is
higher at higher potential values which is consistent with the

chemical logic. The model cannot be directly validated with
the experimental data but it is evident from Figure 2 that with
the higher potential, biosensor response approaches the one
observed experimentally.

One more interesting dependence may be observed from
Figure 2, the lower the potential, the shorter the range of
substrate concentrations in which biosensor may operate. The
biosensor is almost entirely insensitive to the change in sub-
strate concentration when the potential is the lowest (0.02V
and 0.01V). This possibly indicates that the charge transfer is
the slowest (limiting) process in this situation.

B. Biosensor Response vs. Electrode Potential

It is important to understand the dependence of the biosen-
sor response on the electrode potential. Thus this dependence
was more thoroughly investigated at three different substrate
concentrations. Results are depicted in Figure 3.
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Figure 3. The dependence of the steady-state current on the electrode
potential (E − E0) at different substrate concentrations s0: 0.5mol/m3 (1),
5mol/m3 (2), 50mol/m3 (3).

At low substrate concentration (curve 1) the biosensor
response dependence on the electrode potential is little pro-
nounced. This indicates that in this case the charge transfer
is not a limiting process. At higher substrate concentrations
(curves 2 and 3), the biosensor response shows stronger depen-
dence on the electrode potential. At these two concentrations
charge transfer is possibly a limiting process at lower part of
investigated potential range because in this part of the range
the curves 2 and 3 coincide. At higher potentials biosensor
shows dependence on both the electrode potential and substrate
concentration.

C. Biosensor Response vs. Standard Rate Constant

Standard rate constant k0 is the constant defining the
kinetics of electrochemical reaction (2c). This constant shows
whether electrochemical reaction reaches equilibrium fast or
slow. The value of the constant may range from 10−11 m/s for
very slugish kinetics to 0.1m/s for very fast electron-transfer
processes [18]. It is important to investigate how standard
rate constant of Mred/Mox redox couple affects the biosensor
response. This dependence was investigated at several values
of substrate concentration. Results are depicted in Figure 4.
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Figure 4. The dependence of the steady-state current on the standard rate
constant at different substrate concentrations s0: 0.5mol/m3 (1), 5mol/m3

(2), 50mol/m3 (3); E − E0 = 0.1V.

Slugish electron-transfer is not desirable in amperometric
biosensor because in such a case the electrochemical reac-
tion may be the slowest (limiting) process and solely deter-
mine the biosensor response. This is possibly the case when
k0 ∈ [10−8 m/s..10−7 m/s] because the biosensor response is
not dependent on the substrate concentration even though it
is varied by two orders of magnitude (see Figure 4). The
biosensor response is dependent on the substrate concentra-
tion in the range [10−7 m/s..10−6 m/s] when concentration is
relatively low. Biosensor is not responsive to the change in
substrate concentration at higher concentrations though. When
k0 ∈ [10−6 m/s..10−5 m/s] the charge transfer is not limiting
process, biosensor response is different at all three values of
substrate concentration.

Results show that from this point of view the mediator for
the biosensor was chosen very successfully as the standard
rate constant for the redox couple Mred/Mox is quite high
(k0 = 10−5 m/s) [30].

V. CONCLUSION

The Butler-Volmer equation may be used in mathematical
models of amperometric biosensors. Models with the Butler-
Volmer equation may provide valuable information about
biosensor behaviour at different values of electrochemical pa-
rameters. However numerical simulation using finite difference
technique is impractical in cases when electrode potential is
high. In such cases models assuming infinite rate of electro-
chemical reaction should be used.

The models of amperometric biosensors with the Butler-
Volmer equation may be useful in the design phase of a biosen-
sor by providing information about the minimum electrode
potential at which biosensor may be successfully operated.
Also such models may provide insight into which species may
be used as mediators prior to the biosensor manufacture.
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