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Abstract—Using a component-based software development, 
applications can be constructed from individual reusable 
software components providing particular functionalities. The 
testing of a particular component is very important not only 
individually, but in the context of its neighboring components 
as well. In the SimCo simulation tool, which we developed, it is 
possible to perform tests of the software components in a 
simulation environment. For this purpose, the neighboring 
components of the tested components can be replaced by their 
simulation models. In this paper, we describe an approach for 
the semi-automated generation of the simulation model of a 
software component based on the analysis of its interface and 
on the observation of its behavior among its neighboring 
components. 

Keywords-software component; simulation testing; simula-
tion model generation. 

I.  INTRODUCTION 
Component-based software development is a spreading 

trend in contemporary software engineering. The main idea 
of this approach lies in the utilization of isolated reusable 
parts of software, which provide functionality via services. 
These parts – called software components – can then 
cooperate and form an entire application. Each component 
has a defined interface, which is a set of services the 
component provides. The component may also require 
services of other components in order to work. A single 
component can be used in multiple applications and 
particular components in a single application can be provided 
by different developers [1]. This reinforces the need for the 
testing of software components and their interactions. 

The testing of software components should be ensured by 
their developers. However, it is also useful to test the fun-
ctionality, quality of services, and extra-functional properties 
of the component while it is interacting with other compo-
nents forming together an application. Such kind of testing 
has to be performed by programmers who did not create the 
components themselves, but use them to make up a new 
application. So, the source code, descriptions, and other 
resources may be unavailable to them. In an extreme case, 
only the public interfaces of the components may be known. 

During our research, we developed the SimCo simulation 
tool, which enables simulation testing of particular compo-

nents, sets of components, or entire applications directly – 
without creating additional models of the tested components 
[2][3][4]. When only a part of a component-based applica-
tion (i.e. a single component or a set of components) is 
tested, it is necessary to satisfy all dependencies of the tested 
components. More specifically, the tested components can 
require services of other components, which are not 
considered necessary for the testing and thus are not present 
in the simulation environment. In the SimCo simulation tool, 
these required components are replaced by their simulation 
models in order to satisfy the dependencies of the tested 
components. They have the same interfaces as the 
components they are replacing, but the original functionality 
can be substituted for example by lists of pre-calculated 
values or random numbers generators [5]. 

So far, the behavior of the simulation models of 
components for the SimCo simulation tool is created 
manually, which is a lengthy and error-prone process. In this 
paper, we describe an approach for semi-automated 
generation of the simulation models of components, whose 
implementation is at our disposal, but the source code is not. 
The approach is based on the analysis of the public interface 
of the component and on the observation of the behavior of 
the component among its neighboring components. The 
result of the approach is a generated skeleton of the 
simulation model of the component with partial functionality 
and clues, which can be used by a programmer for finishing 
of the functionality of the simulation model of the 
component. 

The remainder of this paper is structured as follows. 
Software components are described in Section II. In 
Section III, the simulation testing is discussed. Section IV 
describes the SimCo simulation tool. In Section V, the 
related work is discussed. The generation of simulated 
components demonstrated on a case study is described in 
Section VI. The future work is described in Section VII and 
the paper is concluded in Section VIII. 

II. SOFTWARE COMPONENTS 
Before we proceed with the description of our approach, 

we will briefly discuss the basics of the component-based 
software development. 
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A. Basic Notions 
Using the component-based software development, the 

applications are constructed from software components. A 
software component is a black box entity with a well defined 
public interface, but no observable inner state. So, the 
components mutually interact solely using their interfaces. 
They should be reusable and the author of an application can 
be different from the author(s) of the particular components. 
This general definition is common for most component 
models [1]. 

A component model describes how the particular 
software components look, behave, and interact. A 
component framework is then a specific implementation of a 
component model and there can be several different 
implementations of each component model [1]. The existing 
component models are generally incompatible, since they 
use different approaches to solving particular issues of the 
software components. 

B. OSGi 
An example of a widespread component model is the 

OSGi (Open Service Gateway initiative), which is contemp-
orary used in both industrial and academic spheres. There are 
several OSGi frameworks (i.e. implementations of the OSGi 
model), which are commonly used [6]. The OSGi component 
model is designed for Java programming language. It is 
dynamic in nature, which means that it enables to install, 
start, stop, and uninstall particular software components 
without the need to restart the OSGi framework itself [7]. 

A software component in the OSGi component model is 
referred as a bundle and has a form of a standard Java .jar 
file with additional component-model-related information 
(e.g., lists of services provided by the bundle and list of 
services required by the bundle). Each bundle can contain 
any number of classes. So, it can provide arbitrary complex 
functionality [6]. As the interface of the bundle, standard 
Java interfaces are used. So, the particular services provided 
by a bundle have the form of standard Java methods [6]. 

Since the OSGi component model is widespread and the 
transformation of one component model into another is 
difficult (see Section II.A), the SimCo simulation tool was 
developed solely for the OSGi [2]. However, the main ideas 
and approaches utilized in it can be used in other component 
models as well. 

III. SIMULATION TESTING 
Now, as we described the basics of the component-based 

software development, we will briefly discuss the simulation 
testing. 

A. Discrete-Event Simulation 
A discrete-event simulation is a widely used simulation 

technique. The simulation run is subdivided into a sequence 
of time-stamped events representing incremental changes of 
the simulation state. The simulation time between two 
succeeding events can be arbitrary long. Nevertheless, the 
simulation does not perform a real waiting for the specified 
time. Instead, the simulation time is set to the time stamp of 
the event, which is processed. So, the simulation time 

“jumps” from the time stamp of an event to the time stamp 
of the next one [8]. 

The events are handled by a calendar, which incorporates 
the list of events ordered by their time stamps. At the simula-
tion run start, the calendar removes the first event from the 
event list, sets the current simulation time on the time stamp 
of the event, and performs the action (i.e. a change to the 
simulation state) associated with the event. This action can 
(but does not have to) create one or more new events, which 
are added to the event list of the calendar on the positions 
corresponding to their time stamps. Then, the next event is 
removed from the event list and the entire process repeats 
until a stop condition is reached or the event list is empty [8]. 

The discrete-event simulation, which was briefly 
described in previous paragraphs, is used in the SimCo 
simulation tool [2]. 

B. Simulation Testing of Software Components 
Although the simulation testing can be used for various 

systems, for the needs of this paper, we will focus on the 
simulation testing of software components. There are two 
approaches that can be used. 

The first approach is to create a simulation model of the 
software component, which shall be tested. This model is 
then used in the simulation [9]. The advantage of this 
approach is that the simulation model of the software 
component is suited for the simulation. The disadvantage is 
the necessary creation of the model, which can be often a 
lengthy and error-prone manual process. Moreover, the 
model usually does not incorporate all aspects of the original 
software component, but only aspects, which are considered 
important for the simulation testing by the creator of the 
model. This can lead to an unintentional omission of 
features, which in fact can be important for testing. These 
disadvantages can be avoided or at least diminished by a full 
or a partial automation of the process of the creation of the 
component simulation model. 

The second approach is to use the software component in 
the simulation directly. The advantage of this approach is 
that there is no need for creation of the simulation model of 
the tested component and the component is tested directly. 
So, its responses to the stimuli induced during the testing are 
genuine. The main disadvantage is that the component is not 
suited to run in a simulation environment. Hence, the 
simulation environment must be able to allow running of the 
software component as it would run in a real application. It 
should also be noted that the problems connected to the 
creation of simulation models (see previous paragraph) are 
not fully avoided by the direct testing of the software 
component in a simulation environment. The simulation 
model of the tested component is not created, but it is often 
necessary to create simulation models of other components 
required by the tested component. Similarly to the first 
approach, the disadvantages related to the simulation models 
creation can be diminished by automation of the creation 
process. 

The simulation testing of the software components can be 
further divided according to the knowledge of the tested 
components. If their source code is known, it can be used for 
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preparation of the tests. This is so-called white box testing. If 
the source code in not known, the tests must be prepared 
using interfaces or other available specifications of the tested 
components. This is so-called black box testing [10]. 

IV. SIMCO SIMULATION TOOL 
The SimCo simulation tool, which we developed, enables 

to test the software components directly in the simulation 
environment. Its main features are described in the following 
sections. 

A. SimCo Features 
The SimCo is written using the Java programming 

language. It is based on the OSGi model [6] and, currently, it 
is running in the Equinox OSGi framework [11]. Hence, the 
software components, which can be tested within the SimCo, 
are limited to OSGi bundles. This restriction is not so hard, 
since the OSGi is quite widespread in various industry areas 
as well as in the academic sphere (see Section II.B).  

Within the SimCo simulation tool, it is possible to test a 
single component (i.e. an OSGi bundle), set of components, 
or an entire component-based application. The SimCo itself 
is constructed from the components (OSGi bundles) as well 
in order to enable its simple modifications and extensions 
[5].   

For the simulation testing, the SimCo utilizes the 
discrete-event simulation (see Section III.A) where the 
events correspond to the invocations of particular services of 
the tested components [4]. The initial events, which shall be 
performed during the simulation run, are imported to the 
event list from a testing scenario. This testing scenario is 
loaded from an XML file prior to the execution of the 
simulation testing [5]. 

B. SimCo Software Component Types 
There are four types of the software components in the 

SimCo simulation tool – the core components, the real tested 
components, the simulated components, and the intermediate 
components [5]. 

The core components provide the functionality of the 
SimCo itself. These software components ensure the running 
of the simulation. Furthermore, they provide all necessary 
supplementary functions such as logging, measuring, and 
storing of the observed parameters, visualization of the 
simulation, and so on. The most important core component is 
the Calendar, which interprets the events from its event 
list. More specifically, it invokes corresponding services of 
the software components and so ensures the advancement of 
the simulation in time [5]. 

The real tested components are the components which 
are tested in the SimCo simulation tool. These components 
can be created by various manufacturers. So, the source code 
of the components may not be available to us, which implies 
the black box testing (see Section III.B). Since the 
components are running in the simulation environment, there 
are several issues, such as discrepancy of the real and the 
simulation time, undesirable hidden network communication 
of the real tested components, and so on. These issues can be 
solved using various means including aspect oriented 

programming or changing of the bytecode of the tested 
components. For more information, see [4] and [5]. 

The simulated components are simulation models of 
components, which provide services required by the real 
tested components. They are not necessary when an entire 
component-based application is tested within the SimCo 
simulation tool. However, when only a single component or 
a limited set of components are tested, components providing 
some services required by the real tested components do not 
have to be present in the simulation environment. The reason 
is that these components are not considered important for the 
testing, for example because they were already tested before 
and/or the execution of their services is time-consuming. 
Nevertheless, it is necessary to satisfy the requirements of 
the real tested components. So, the required components, 
which are not present in the simulation environment, are 
replaced by their simulation models – the simulated 
components. The simulated components can be useful for the 
speedup of the simulation, because they do not have to 
perform the calculations of the original components they are 
mimicking. Instead, prerecorded values, table of return 
values, or random numbers generators can be used, 
depending on the situation [5]. At the same time, the 
simulated components must exhibit the same external 
behavior as the original components they are mimicking. For 
example, if the consequence of a service invocation on the 
original component is the invocation of a service on another 
component, this must be true for the simulated component as 
well. The simulated components also ensure the control of 
the simulation by the SimCo simulation tool. All invocations 
of the services of the simulated components are performed 
using the events and the calendar [5]. 

The intermediate components are used to ensure the 
control of the simulation by the SimCo simulation tool even 
between two real tested components. More specifically, an 
intermediate component is used as a proxy for a real tested 
component. It provides the same services and all service 
invocations on the real tested component are in fact handled 
by this proxy (see Figure 1). The intermediate component 
ensures that the service invocation on a real tested 
component is performed using the events and the calendar, 
similar to the simulated components (see previous   
paragraph) [5]. Moreover, it performs the invocation of the 
same service on the real tested component, for which it 
serves as a proxy. This is necessary in order to obtain the 
return value and/or trigger further actions (e.g., an invocation 
of a service on another component). 

 
Figure 1. An example of the SimCo component types 
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The simulated components and the intermediate 
components can also be used for the placing of probes 
observing selected properties of the real tested components. 
For example, it is possible to use the intermediate component 
to measure execution times of the services of the real tested 
component, for which the intermediate component acts as its 
proxy [5].  

An example of three component types (except the core 
components) of the SimCo simulation tool is depicted in 
Figure 1. 

V. RELATED WORK 
The generation of the simulation models of software 

components, whose implementation is at our disposal, but 
their source code is not, is not common and it is difficult to 
find description of similar approaches in the literature. 
However, it is related to the black box testing of software 
components, since the inspection of the component behavior 
is performed in both cases. The relevant techniques are 
mentioned in the following sections. 

A. Reverse Engineering 
Reverse engineering is a process of analyzing a system (a 

software component in our case) and creating the 
representation of the system in another form or at a higher 
level of abstraction [12]. Reverse engineering can be used 
even when the source code is known (i.e. during white box 
testing) for example for creation of UML (Unified Modeling 
Language) diagrams or control-flow graphs. For this 
purposes, the static or dynamic analysis can be used [12]. In 
situations when the source code is not known (i.e. during 
black box testing) the reverse engineering can be used for the 
extraction of the source code from the binary representation 
of the application [13]. In our case, the application is the 
software component (an OSGi bundle) and the binary 
representation is the bytecode of its .class files. 

There are several disadvantages of reverse engineering 
used for the obtaining of the source code. The names of the 
methods and parameters are lost, since they are irrelevant 
(and thus not present) in the binary representation. Similarly, 
the comments cannot be restored for the same reason [13]. 
So, it may be difficult for a human programmer to 
understand the obtained source code.  

Although the reverse engineering of the Java bytecode is 
possible and, using specialized tools, quite straightforward, 
all mentioned issues stand. Moreover, our intention is not to 
replicate the exact inner functioning of the components. The 
simulated components should exhibit the same external 
behavior as their original components, but their inner 
functioning can be significantly different (e.g., in order to 
reduce the computation time). So, even with a successful 
reverse engineering of the bytecode, the analysis and 
modifications of the obtained source code by a programmer 
is still necessary. Due to these issues, a significant amount of 
manual work may be required. 

B. Interface Probing 
Interface probing is a technique that utilizes the public 

interface of the software component for the examination of 

its behavior and its features. This technique can be readily 
utilized during the black box testing, since the source code is 
not necessary. Using the interface probing, the public 
interface with the services of the tested software components 
is identified first. Then, the input values for the services are 
generated, the particular services are invoked with the 
generated inputs, and the outputs of the services of the 
component are observed [13][14]. For this purpose, the 
component can be wrapped in an encasing object, which 
controls the input and output data flows [15]. This is similar 
to the intermediate components used by the SimCo 
simulation tool (see Section IV.B). 

The main disadvantage of the interface probing is the 
problematic generation of the input values. They can be 
created randomly or manually. In both cases, it is possible to 
omit values, which are in fact important for the uncovering 
of hidden features or a hidden behavior of the tested 
component and its services [13]. In order to reduce the 
problem, it is possible to use typical values, such as 0, -1, 1, 
minimal value, maximal value for an integer input or all 
possible values for a character input [13]. However, these 
examples are very general and can be useless (in the sense of 
the uncovering of a hidden behavior) for a specific service. 
So, it is necessary to use other typical and border input 
values for the given service, if possible. These values can be 
provided by a programmer based on textual or other 
description of the software component and its services, 
which can be (but does not have to) at the disposal. At the 
very least, the programmer can use the name of the service as 
a clue for the service’s probable functioning. 

C. Other Techniques 
Other common techniques include the generation of the 

graphical user interface for the software component, which 
enables instant access to the particular services of the 
component. This graphical user interface then enables quick 
ad hoc testing of the particular services of the component 
using various input values without the necessity to create a 
client application for the component [16].    

There are also more exotic approaches such as proposal 
for the extended component interface specification, which 
would enable easier black box testing [17] or the utilization 
of a genetic algorithm for the generation of the input data for 
the testing [18]. 

VI. SIMULATED COMPONENTS GENERATION 
As it was mentioned before, so far, the simulated 

components of the SimCo simulation tool are created 
manually. If the source code of the component, for which the 
simulated component is created, is known, the simulated 
component can be created using analysis of this source code. 
If the source code of the original component is not known 
(e.g., the component was created by another manufacturer), 
the situation is even worse, because we have only the public 
interface of the component and its bytecode (and the Javadoc 
or other documentation in some cases) at our disposal. In this 
case, it is difficult to analyze the behavior of the component. 

Therefore, we have developed a semi-automated 
approach for the generation of the simulated components. To 
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avoid confusion, the real component, for which the simulated 
component (i.e. its simulation model) will be generated, will 
be referenced only as the original component for short from 
now on. 

A. Approach Description 
The skeleton of the component (i.e. methods representing 

services of the component) can be generated easily using the 
analysis of the public interface of the original component. 
The basics of the behavior of the simulated component can 
be then generated using the analysis of the behavior of the 
original component while it is running among other real 
components.  

The approach does not require the knowledge of the 
source code of the original component, but there are some 
limitations. First, in the majority of the cases, the approach is 
unable to determine the complete behavior of the original 
component, but can provide clues for this behavior. These 
clues can be then used by the programmer during the 
finishing of the simulated component. Thus the “semi-
automated” attribute of the approach. Second, it is necessary 
to have the neighboring components of the original 
component available. These components require the services 
or are required by the services of the original component. 

B. Case Study: Traffic Crossroad Control 
The approach will be demonstrated using a case study – 

Traffic crossroad control. It represents a component-based 
application for the control of road traffic in a crossroad using 
traffic lights. It is expected to run on a specific hardware and 
operate a variety of hardware sensors and control units [4]. 
The components involving any direct contact with sensors 
and control units were replaced by (manually created) 
simulated components in order to enable running of the 
application on a standard desktop computer [2]. 

The Traffic crossroad control application consists of 
eight components (see Figure 2). The TrafficCross-
road component provides the information about the 
structure of the traffic crossroad. Moreover, its simulated 
version incorporates a nanoscopic road traffic simulation 
replacing the real traffic [4]. The OpticDetection and  

 
Figure 2. Software components of the Traffic crossroad control application 

int getQueueLength(String) 
boolean isVehicle(String) 
DetectorType getCurrentDetectorType() 
void setCurrentDetectorType(DetectorType) 

Figure 3. List of services of the SensorAccess component 

the InductionLoop components handle specific hard- 
ware sensors and provide measured data from these sensors. 
The simulated versions of these components utilize the data 
from the nanoscopic road traffic simulation of the Traf-
ficCrossroad component. The TrafficLightsCon-
troller component ensures the activation of particular 
traffic lights. The ControlPanel component is a user 
interface of the entire application. The TrafficControl-
Algorithm component incorporates an algorithm for the 
control of the traffic lights. This algorithm can (but does not 
have to) require data from the sensors mediated by the 
SensorAccess component. This component is also used 
by the StatisticsCollector component, which 
periodically collects the data from it and provides various 
traffic statistics accessible via the ControlPanel compo-
nent [4]. 

In the following sections, we will describe our approach 
for semi-automated generation of a simulated component for 
the SensorAccess component. 

C. Generation of Component’s Skeleton 
The skeleton of the simulated component is generated 

using the analysis of the public interface of the original 
component. For this purpose, a service of the OSGi can be 
used, since it provides functionality to determine the public 
interface (i.e. a Java interface) of a component (bundle) [19]. 
For the determination of the particular services (i.e. Java 
methods) of this interface, the Java reflection can be used 
[20]. This way, we obtain a list of services provided by the 
component including the types of their parameters and their 
return values. The information obtained for the Sensor-
Access component using this approach is depicted in 
Figure 3. 

Using the obtained list of services, the skeleton of the 
simulated component is generated. The skeleton of each 
simulated component is represented as one Java class with 
methods along with their parameters and return values 
corresponding to the particular services of the original 
component. The bodies of the generated methods are not 
completely empty, the logic necessary for adding of the 
events corresponding to the invocation of the services to the 
calendar are automatically added. The standard OSGi 
Activator class ensuring the connection of the generated 
simulated component to the particular components it requires 
[19] is automatically added to the simulated component as 
well. The generated skeleton of the simulated component 
with its services is depicted in Figure 4. 

D. Generation of Component’s Behavior 
The more difficult part of our approach is the generation 

of  the  component  behavior. For  this  purpose,  the  original  
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public class SimulatedSensorAccess implements 
    ISensorAccess { 
  private BundleContext bc; 
  private IOpticDetection od; 
  private IInductionLoop il; 
  private ICalendar calendar; 
   
  public SimulatedSensorAccess(BundleContext bc,  
      IOpticDetection od, IInductionLoop il,  
      ICalendar calendar) { 
    this.bc = bc; 
    this.od = od; 
    this.il = id; 
    this.calendar = calendar; 
  } 
  
  public int getQueueLength(String arg0) { 
    calendar.insertEvent(); 
    return 0; 
  } 
 
  public boolean isVehicle(String arg0) { 
    calendar.insertEvent(); 
    return false; 
  } 
 
  public DetectorType getCurrentDetectorType() { 
    calendar.insertEvent(); 
    return null; 
  } 
 
  public void setCurrentDetectorType( 
      DetectorType arg0) { 
    calendar.insertEvent(); 
  } 
} 

Figure 4. Skeleton of the simulated SensorAccess component 

component, for which the simulated component shall be 
created, is imported to the SimCo simulation tool along with 
other components, which are required by the services of the 
original component or require the services of the original 
component. It is also possible to import entire component-
based application, whose part the original component is. The 
components, which require the services of the original 
component, are not necessary, but can provide information 
about the parameters of the services of the original 
component. 

It is assumed that all the neighboring components of the 
original components are real, but they can also be simulated, 
assuming they exhibit the same behavior as the real 
components they are mimicking. Between all pairs of the 
neighboring real components, there are intermediate 
components designed to observe the invocations of the 
services. The behavior generation then works as follows. 

A tree data structure incorporating the original 
component and all components, which can invoke services of 
the original component, and all the services of these 
components is initiated. Each service of each component 
contains a list of possible invocations with various 
parameters. These invocations are automatically generated 
based on the type of their parameters, similarly to [13]. 

For the enum parameters, all possible values (including 
null) are generated, since there are usually only several 
values. For the char parameters, the basic 256 characters 

and several higher values are generated (in Java, the size of 
char type is 2 bytes). For the number parameters, a set of 
representative and border values are generated (e.g., -128, -
64, -16, -1, 0, 1, 16, 63, 127 can be generated for a byte 
parameter). It is not feasible to generate all possible values of 
the number parameters. For object parameters, only the 
null value is generated. If the service has multiple 
parameters, all combinations are generated. Of course, this 
can lead to the exponential increase of the number of 
generated invocations. Hence, the programmer can restrict 
the generated parameters to values, which he or she 
considers representative. Moreover, the programmer should 
provide values, which cannot be automatically generated, for 
example filled data objects, which are parameters of the 
invocations. The programmer can use Javadoc of the original 
component or other documentation for this purpose, if they 
are at the disposal. 

Once the structure is initiated, it is explored component 
by component, service by service, invocation by invocation. 
Each invocation from the tree data structure is performed on 
the corresponding component and it can have various 
consequences – an exception, a return value, a change of the 
inner state of the component, and a subsequent invocation of 
a service of another component. These consequences, with 
the exception of the change of inner state, which is 
unobservable from outside, are captured by the intermediate 
components (and also by the simulated components if they 
are present) and inserted to the tree data structure, but only if 
they are not already present in the structure and they are 
related to the components, which are present in the structure. 
Simultaneously, the flag indicating that a change of the 
structure occurred is set. If the invocation consequence is a 
subsequent invocation, and this invocation is not already 
present in the structure, the invocation is added to the 
structure as well and the flag is again set. The exploration of 
the structure repeats while this flag is set. The pseudocode of 
the filling and exploring of the tree structure is depicted in 
Figure 5. 

The iterative nature of the approach enables to explore 
multiple inner states of the components. As it was said 
before, the change of the inner state of a component is 
unobservable. However, the inner state of the component can 
be changed by invocation of its services (if the component 
can have different inner states at all). On the other hand, the 
inner state of the component can influence the behavior of its 
services – a services invoked with the same parameters can 
have different outcome due to a different inner state of the 
component. So, the repeating of the invocations, which were 
already performed, can bring new invocations and invocation 
consequences, which can be useful for a better exploration of 
the original component behavior. When no new invocation 
consequences are generated in the iteration, the process is 
stopped in order to avoid to be stuck in an infinite loop. 

Consider now the Traffic crossroad control case study 
and the generation of the simulated component for the 
SensorAccess component. This component is then the 
original component and the StatisticsCollector and 
the   TrafficControlAlgorithm  components  are   the 

145Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation



//Initialization of the tree data structure 
structure.addComponent(originalComponent); 
structure.addComponents( 
  simco.getInvokingComponents(originalComponent)); 
     
for (c: structure.components) { 
  c.services = simco.getServicesOfComponent(c); 
  for (s: c.services) { 
    //Generate parameters and read parameters from  
    //the user for the invocation 
    s.invocations =    
      simco.generateAndReadInvocations();   
  } 
} 
   
//Exploration of invocations and consequences 
structure.setChanged(true); 
while (structure.isChanged()) { 
  structure.setChanged(false); 
  for (c: structure.components) { 
    for (s: c.services) { 
      for (i: s.invocations) { 
        invocationConsequences =  
          simco.performServiceInvocation(c, s, i); 
        for (ic: invocationConsequences) { 
          //Only consequences, which are not 
          //already present 
          if (!i.consequences.contains(ic)) { 
            i.consequences.add(ic); 
            structure.setChanged(true); 
          } 
          if (ic.type == SUBSEQUENT_INVOCATION) { 
            sc = ic.subsequentComponent; 
            ss = ic.subsequentService; 
            si = ic.subsequentInvocation; 
               
            //Only for components contained in  
            //the structure and only invocations, 
            //which are not already present 
            if (structure.contains(sc) &&  
                !ss.contains(si)) { 
              structure.addInvocation(sc, ss, si); 
              structure.setChanged(true); 
            } 
          } 
        } 
      } 
    } 
  } 
} 

Figure 5. Pseudocode of the tree data structure exploration 

invoking components (see Figure 2). The user did not 
provide any parameters of the invocations. The filled 
explored tree data structure is then depicted in Figure 6. 
There, the components, services, invocations, and invocation 
consequences are marked with C, S, I, and IC, respectively. 
The value in the parentheses of I expresses the originator of 
the invocation – G for “generated at beginning”, U for 
“provided by user”, and Ax for “added automatically during 
the xth iteration”. The value in the parentheses of IC denotes 
the index of the iteration, in which the invocation 
consequence was added to the tree data structure (starting 
with 0). 

As can be seen in Figure 6, the invoking components add 
invocations of the services of the original component and 
provide String  parameters,  which would not be generated 

C: StatisticsCollector //Invoking component #1 
 S: Statistics collectStatistics() 
  I(G): collectStatistics() 
   IC(0): subsequent invocation  
    [SensorAccess.getQueueLength("E_01")] 
. . . 
   IC(0): subsequent invocation 
    [SensorAccess.getQueueLength("E_04")] 
   IC(0): return value [statistics] 
   IC(1): return value [statistics] 
 
C: TrafficControlAlgorithm //Invoking component #2 
 S: void updateTrafficLightsState() 
  I(G): updateTrafficLightsState() 
    IC(0): subsequent invocation  
     [SensorAcces.isVehicle("E_01")] 
. . . 
    IC(0): subsequent invocation  
     [SensorAcces.isVehicle("E_04")] 
 
C: SensorAccess //Original component 
 S: int getQueueLength(String) 
  I(G): getQueueLength(null) 
   IC(0): exception [NullPointerException] 
  I(A0): getQueueLength("E_01") 
   IC(0): subsequent invocation  
    [OpticDetection.getVehiclesCount("E_01")] 
   IC(0): return value [2] 
   IC(1): subsequent invocation  
    [InductionLoop.isVehicle("E_01")] 
   IC(1): return value [1] 
. . . 
  I(A0): getQueueLength("E_04") 
   IC(0): subsequent invocation  
     [OpticDetection.getVehiclesCount("E_04")] 
   IC(0): return value [0] 
   IC(1): subsequent invocation  
     [InductionLoop.isVehicle("E_04")] 
   IC(1): return value [0] 
 S: boolean isVehicle(String) 
  I(G): isVehicle(null) 
   IC(0): exception [NullPointerException] 
  I(A0): isVehicle("E_01") 
   IC(0): subseqeuent invocation  
    [OpticDetection.getVehiclesCount("E_01")] 
   IC(0): return value [true] 
   IC(1): subseqeuent invocation  
    [InductionLoop.isVehicle("E_01")] 
   IC(1): return value [true] 
. . . 
  I(A0): isVehicle("E_04") 
   IC(0): subseqeuent invocation  
    [OpticDetection.getVehiclesCount("E_04")] 
   IC(0): return value [false] 
   IC(1): subseqeuent invocation  
    [InductionLoop.isVehicle("E_04")] 
   IC(1): return value [false] 
 S: DetectorTypes getDetectorType() 
  I(G): getDetectorType() 
   IC(0): return value [DetectorTypes.OPTIC] 
   IC(1): return value [DetectorTypes.INDUCTION] 
 S: void setDetectorType(DetectorTypes) 
  I(G): setDetectorType(null) 
   IC(0): exception [NullPointerException] 
  I(G): setDetectorType(DetectorTypes.OPTIC) 
   IC(0): nothing observable 
  I(G): setDetectorType(DetectorTypes.INDUCTION) 
   IC(0): nothing observable 

Figure 6. Example of the filled explored tree data structure 
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if the invoking components were not present. These 
parameters (e.g., “E_01”) are the IDs of the traffic lanes, in 
which the sensors survey the state of road traffic. In this 
case, the IDs are taken from the TrafficCrossroad 
component, which provides information about the traffic 
crossroad, by the StatisticsCollector and Traf-
ficControlAlgorithm components. The invocations of 
the services of the TrafficCrossroad component are 
not present in the filled tree data structure, because the 
TrafficCrossroad is not present in the tree data 
structure, since it is not an invoking component of the 
original (i.e. SensorAccess) component. We know the 
origin of the IDs, only because we developed the Traffic 
crossroad control application. If this were not the case and 
the source code of the application were not available to us, 
the origin of the IDs would be hidden from us. Nevertheless, 
the IDs would still be there helping to probe the behavior of 
the original SensorAccess component. 

The overall statistics of the content of the filled tree data 
structure is summarized in Table I. The tree data structure is 
filled in three iterations of the outermost (while) cycle (see 
Figure 5). In the third iteration, there are no newly added 
invocations or invocation consequences. So, the algorithm 
ends. 

TABLE I. OVERALL STATISTICS OF THE FILLED TREE DATA STRUCTURE 

Feature Count 
Number of invocations generated at beginning 8 
Number of invocations provided by user 0 
Number of automatically added invocations in 1st iteration (A0) 8 
Number of automatically added invocations in 2nd iteration (A1) 0 
Number of automatically added invocations in 3rd iteration (A2) 0 
Number of generated consequences in 1st iteration (0) 31 
Number of generated consequences in 2nd iteration (1) 17 
Number of generated consequences in 3rd iteration (2) 0 
Number of iterations 3 

 
Using the part of the filled explored tree data structure 

containing data for the SensorAccess component and a 
set of rules, it is possible to generate limited bodies of the 
services of this component with clues for the programmer. 
The rules are following: 
1. If there is a single return value for each invocation, 

generate an if-else construction depending on the 
parameters of the invocation for the particular return 
values of the service. 

2. If there are multiple return values for a single 
invocation, generate an if-else construction depen-
ding on the parameters of the invocation for the return 
value of the service. All but the first return value for the 
same invocation put in the comments in the 
corresponding branch of the if-else construction. 

3. If there is a single return value for a service without 
parameters, generate return statement with this value. 

4. If there are multiple (different) return values for a 
service without parameters, this service can reflect state 
of the component (e.g., it is a getter). Generate an 
information comment for the programmer. Generate 

multiple return statements with all return values. All 
but the first return statements put in the comments. 

5. If there is a single subsequent invocation for each 
invocation and the parameters of the invocation 
correspond by type and value to the parameters of the 
subsequent invocation, generate a method call 
corresponding to the subsequent invocation using the 
formal parameters of the service. 

6. If there are multiple subsequent invocations of different 
services for a single invocation and the parameters of 
the invocation correspond by type and value to the 
parameters of the subsequent invocations, generate 
multiple methods calls corresponding to the particular 
subsequent invocations using the formal parameters of 
the service. 

7. If there is a single subsequent invocation for each 
invocation and the parameters of the invocation do not 
correspond by type or value to the parameters of the 
subsequent invocation, generate an if-else constru-
ction depending on the parameters of the invocation for 
the particular methods calls corresponding to the 
subsequent invocations. 

8. If there are multiple subsequent invocations of different 
services for a single invocation and the parameters of 
the invocation do not correspond by type or value to the 
parameters of the subsequent invocations, generate an 
if-else construction depending on the parameters of 
the invocation for the particular sets of the methods 
calls corresponding to the subsequent invocations. 

9. If there are multiple (different) subsequent invocations 
for a single invocation in multiple iterations and the 
parameters of the invocation correspond by type and 
value to the parameters of the subsequent invocations, 
the subsequent invocation can depend on the inner state 
of the component. Generate an information comment 
for the programmer. Generate an if-else constru-
ction depending on the parameters of the invocation for 
the methods calls corresponding to the particular 
subsequent invocations. All but the first method call for 
the same invocation put in the comments in the 
corresponding branch of the if-else construction. 

10. If there are multiple (different) subsequent invocations 
for a single invocation in multiple iterations and the 
parameters of the invocation do not correspond by type 
or value to the parameters of the subsequent 
invocations, the subsequent invocation can depend on 
the inner state of the component. Generate an 
information comment for the programmer. Generate 
multiple methods calls corresponding to the particular 
subsequent invocations. All but the first method call put 
in the comments. 

11. If there is a single exception for a single invocation, 
generate an if-else construction depending on the 
parameters of the invocation for the throwing of the 
corresponding exceptions. 
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12. If there are multiple (different) exceptions for a single 
invocation, generate if-else construction depending 
on the parameters of the invocation for the throwing of 
the corresponding exception. Additional exceptions for 
the same invocation put in comments in the 
corresponding branch of the if-else construction. 

13. If there are multiple exceptions or a single exception for 
a service without parameters, generate the throwing of 
the corresponding exceptions. Put them into the 
comments. 

The resulting generated bodies of the services of the 
simulated SensorAccess component are depicted in 
Figure 7. The handling of the service using the calendar was 
added already during the component skeleton generation (see 
Section VI.C). The particular parts of the generated bodies – 
invocation of services, return values, throwing of exceptions 
– are not directly usable. It is possible to compile the 
generated simulated component, but its behavior will not 
correspond to the behavior of the original component. 
However, the programmer can use the generated parts as 
clues for what the particular services should do. It is much 
easier for him or her to finish the functionality of the 
simulated component than when he or she should program 
the functionality of the simulated components from the 
scratch. This is the most important contribution of our semi-
automated approach. 

In Figure 7, it is indicated with the comments in the 
generated source code, which parts of the services bodies 
were generated using which rule. For the entire 
SensorAccess component, only the rules 1, 2, 4, 9, and 
11 were utilized. 

E. Approach Evaluation 
As it was demonstrated using the case study, the 

automatic part of our approach for the generation of the 
simulated components is working and provides clues of what 
the particular services of the component should do for the 
programmer. The programmer then finishes the functionality 
of the simulated component using these clues. 

However, it should be noted that in a more complicated 
case with services with multiple parameters, the generated 
bodies of the services can become quite long and difficultly 
understandable by the programmer. In such cases, the 
restrictions of the generated parameters provided by the 
programmer are important (see Section VI.D). This 
restriction was not used in the presented case study, since the 
number of parameters of the services was low and the 
generated bodies of the services are easily readable. 

The programmer also did not provide any parameters 
values for the services invocations. Despite of this, the 
invoking software components provided the String 
parameters, which enable a better exploration of the behavior 
of the services of the original component (see Section VI.D). 
Nevertheless, this depends solely on the nature of the 
component-based application. In many cases, the invoking 
components do not have to provide useful parameters. Then, 
the possibility to add the parameters of the services 
invocations by the programmer becomes more important. 

public int getQueueLength(String arg0) { 
  calendar.insertEvent(); 
   
  //Rule 11 
  if (arg0 == null) { 
    throw new NullPointerException(); 
  } 
   
  //Rule 9 
  if (arg0.equals("E_01")) 
    od.getVehiclesCount("E_01"); 
    //il.isVehicle("E_01"); 
. . . 
  else if (arg0.equals("E_04")) 
    od.getVehiclesCount("E_04"); 
    //il.isVehicle("E_04"); 
 
  //Rule 2 
  if (arg0.equals("E_01")) 
    return 2; 
    //return 1; 
. . . 
  else if (arg0.equals("E_04")) 
    return 0; 
  else  
    return 0; 
} 
 
public boolean isVehicle(String arg0) { 
  calendar.insertEvent(); 
 
  //Rule 11 
  if (arg0 == null) { 
    throw new NullPointerException(); 
  } 
 
  //Rule 9 
  if (arg0.equals("E_01")) 
    od.getVehiclesCount("E_01"); 
    //il.isVehicle("E_01"); 
. . . 
  else if (arg0.equals("E_04")) 
    od.getVehiclesCount("E_04"); 
    //il.isVehicle("E_04"); 
 
  //Rule 1 
  if (arg0.equals("E_01")) 
    return true; 
. . . 
  else if (arg0.equals("E_04")) 
    return false; 
  else 
    return false; 
} 
 
public DetectorType getCurrentDetectorType() { 
  calendar.insertEvent(); 
 
  //Rule 4 
  return DetectorTypes.OPTIC; 
  //return DetectorTypes.INDUCTION; 
} 
 
public void setCurrentDetectorType(DetectorType 
arg0) { 
  calendar.insertEvent(); 
 

  //Rule 11 
  if (arg0 == null)  
    throw new NullPointerException(); 
} 

Figure 7. Generated services bodies of the SensorAccess component 
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VII. FUTURE WORK 
In our future work, we will focus on improving our 

approach in several ways. 

A. Better Exploration of the Tree Data Structure 
First of all, we will focus on a better exploration of the 

tree data structure, from which the simulated components are 
generated. This includes ordering of the particular 
invocations in order to explore more different inner states of 
the components. This can theoretically lead to acquiring of a 
higher number of subsequent invocations. 

We also want to employ analysis of the names of the 
services/methods. This can be useful for example for 
determining whether a pair of services serves as a getter and 
a setter of a property of the component. 

B. Expansion of the Set of Rules 
The rules described in Section VI.D can be also 

expanded by other rules in order to provide more and/or 
better clues in the generated bodies of the services of the 
simulated component. The generation of the clues can be 
also refined to be clearer for the programmer. For example, 
an array or a table with values accessed using indices can be 
used instead of large if-else constructions. 

VIII. CONCLUSION 
In this paper, we described an approach for the semi-

automated generation of a simulated component, which is 
used as a replacement of a real component during simulation 
testing of other real software components. The approach is 
based on the observation of the original component behavior 
while it is interacting with other real components, which 
require or are required by its services.  

The resulting generated simulated component incorpo-
rates all services of the original component and parts of their 
bodies, which provide clues for the programmer. The 
programmer can then use these clues for the finishing of the 
behavior of the services of the simulated component. The 
approach was designed for the OSGi component model, but 
the ideas behind it can be utilized also in other component 
models. The approach is demonstrated using a case study. 
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