
Semi-automated Generation of Simulated Software Components for Simulation
Testing

Tomas Potuzak
Department of Computer Science and Engineering

Faculty of Applied Sciences, University of West Bohemia
Univerzitni 8, 306 14, Plzen, Czech Republic

e-mail: tpotuzak@kiv.zcu.cz

Richard Lipka
Department of Computer Science and Engineering/

NTIS – European Center of Excellence
Faculty of Applied Sciences, University of West Bohemia

Univerzitni 8, 306 14, Plzen, Czech Republic
e-mail: lipka@kiv.zcu.cz

Abstract—Using a component-based software development,
applications can be constructed from individual reusable
software components providing particular functionalities. The
testing of a particular component is very important not only
individually, but in the context of its neighboring components
as well. In the SimCo simulation tool, which we developed, it is
possible to perform tests of the software components in a
simulation environment. For this purpose, the neighboring
components of the tested components can be replaced by their
simulation models. In this paper, we describe an approach for
the semi-automated generation of the simulation model of a
software component based on the analysis of its interface and
on the observation of its behavior among its neighboring
components.

Keywords-software component; simulation testing; simula-
tion model generation.

I. INTRODUCTION
Component-based software development is a spreading

trend in contemporary software engineering. The main idea
of this approach lies in the utilization of isolated reusable
parts of software, which provide functionality via services.
These parts – called software components – can then
cooperate and form an entire application. Each component
has a defined interface, which is a set of services the
component provides. The component may also require
services of other components in order to work. A single
component can be used in multiple applications and
particular components in a single application can be provided
by different developers [1]. This reinforces the need for the
testing of software components and their interactions.

The testing of software components should be ensured by
their developers. However, it is also useful to test the fun-
ctionality, quality of services, and extra-functional properties
of the component while it is interacting with other compo-
nents forming together an application. Such kind of testing
has to be performed by programmers who did not create the
components themselves, but use them to make up a new
application. So, the source code, descriptions, and other
resources may be unavailable to them. In an extreme case,
only the public interfaces of the components may be known.

During our research, we developed the SimCo simulation
tool, which enables simulation testing of particular compo-

nents, sets of components, or entire applications directly –
without creating additional models of the tested components
[2][3][4]. When only a part of a component-based applica-
tion (i.e. a single component or a set of components) is
tested, it is necessary to satisfy all dependencies of the tested
components. More specifically, the tested components can
require services of other components, which are not
considered necessary for the testing and thus are not present
in the simulation environment. In the SimCo simulation tool,
these required components are replaced by their simulation
models in order to satisfy the dependencies of the tested
components. They have the same interfaces as the
components they are replacing, but the original functionality
can be substituted for example by lists of pre-calculated
values or random numbers generators [5].

So far, the behavior of the simulation models of
components for the SimCo simulation tool is created
manually, which is a lengthy and error-prone process. In this
paper, we describe an approach for semi-automated
generation of the simulation models of components, whose
implementation is at our disposal, but the source code is not.
The approach is based on the analysis of the public interface
of the component and on the observation of the behavior of
the component among its neighboring components. The
result of the approach is a generated skeleton of the
simulation model of the component with partial functionality
and clues, which can be used by a programmer for finishing
of the functionality of the simulation model of the
component.

The remainder of this paper is structured as follows.
Software components are described in Section II. In
Section III, the simulation testing is discussed. Section IV
describes the SimCo simulation tool. In Section V, the
related work is discussed. The generation of simulated
components demonstrated on a case study is described in
Section VI. The future work is described in Section VII and
the paper is concluded in Section VIII.

II. SOFTWARE COMPONENTS
Before we proceed with the description of our approach,

we will briefly discuss the basics of the component-based
software development.

140Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

A. Basic Notions
Using the component-based software development, the

applications are constructed from software components. A
software component is a black box entity with a well defined
public interface, but no observable inner state. So, the
components mutually interact solely using their interfaces.
They should be reusable and the author of an application can
be different from the author(s) of the particular components.
This general definition is common for most component
models [1].

A component model describes how the particular
software components look, behave, and interact. A
component framework is then a specific implementation of a
component model and there can be several different
implementations of each component model [1]. The existing
component models are generally incompatible, since they
use different approaches to solving particular issues of the
software components.

B. OSGi
An example of a widespread component model is the

OSGi (Open Service Gateway initiative), which is contemp-
orary used in both industrial and academic spheres. There are
several OSGi frameworks (i.e. implementations of the OSGi
model), which are commonly used [6]. The OSGi component
model is designed for Java programming language. It is
dynamic in nature, which means that it enables to install,
start, stop, and uninstall particular software components
without the need to restart the OSGi framework itself [7].

A software component in the OSGi component model is
referred as a bundle and has a form of a standard Java .jar
file with additional component-model-related information
(e.g., lists of services provided by the bundle and list of
services required by the bundle). Each bundle can contain
any number of classes. So, it can provide arbitrary complex
functionality [6]. As the interface of the bundle, standard
Java interfaces are used. So, the particular services provided
by a bundle have the form of standard Java methods [6].

Since the OSGi component model is widespread and the
transformation of one component model into another is
difficult (see Section II.A), the SimCo simulation tool was
developed solely for the OSGi [2]. However, the main ideas
and approaches utilized in it can be used in other component
models as well.

III. SIMULATION TESTING
Now, as we described the basics of the component-based

software development, we will briefly discuss the simulation
testing.

A. Discrete-Event Simulation
A discrete-event simulation is a widely used simulation

technique. The simulation run is subdivided into a sequence
of time-stamped events representing incremental changes of
the simulation state. The simulation time between two
succeeding events can be arbitrary long. Nevertheless, the
simulation does not perform a real waiting for the specified
time. Instead, the simulation time is set to the time stamp of
the event, which is processed. So, the simulation time

“jumps” from the time stamp of an event to the time stamp
of the next one [8].

The events are handled by a calendar, which incorporates
the list of events ordered by their time stamps. At the simula-
tion run start, the calendar removes the first event from the
event list, sets the current simulation time on the time stamp
of the event, and performs the action (i.e. a change to the
simulation state) associated with the event. This action can
(but does not have to) create one or more new events, which
are added to the event list of the calendar on the positions
corresponding to their time stamps. Then, the next event is
removed from the event list and the entire process repeats
until a stop condition is reached or the event list is empty [8].

The discrete-event simulation, which was briefly
described in previous paragraphs, is used in the SimCo
simulation tool [2].

B. Simulation Testing of Software Components
Although the simulation testing can be used for various

systems, for the needs of this paper, we will focus on the
simulation testing of software components. There are two
approaches that can be used.

The first approach is to create a simulation model of the
software component, which shall be tested. This model is
then used in the simulation [9]. The advantage of this
approach is that the simulation model of the software
component is suited for the simulation. The disadvantage is
the necessary creation of the model, which can be often a
lengthy and error-prone manual process. Moreover, the
model usually does not incorporate all aspects of the original
software component, but only aspects, which are considered
important for the simulation testing by the creator of the
model. This can lead to an unintentional omission of
features, which in fact can be important for testing. These
disadvantages can be avoided or at least diminished by a full
or a partial automation of the process of the creation of the
component simulation model.

The second approach is to use the software component in
the simulation directly. The advantage of this approach is
that there is no need for creation of the simulation model of
the tested component and the component is tested directly.
So, its responses to the stimuli induced during the testing are
genuine. The main disadvantage is that the component is not
suited to run in a simulation environment. Hence, the
simulation environment must be able to allow running of the
software component as it would run in a real application. It
should also be noted that the problems connected to the
creation of simulation models (see previous paragraph) are
not fully avoided by the direct testing of the software
component in a simulation environment. The simulation
model of the tested component is not created, but it is often
necessary to create simulation models of other components
required by the tested component. Similarly to the first
approach, the disadvantages related to the simulation models
creation can be diminished by automation of the creation
process.

The simulation testing of the software components can be
further divided according to the knowledge of the tested
components. If their source code is known, it can be used for

141Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

preparation of the tests. This is so-called white box testing. If
the source code in not known, the tests must be prepared
using interfaces or other available specifications of the tested
components. This is so-called black box testing [10].

IV. SIMCO SIMULATION TOOL
The SimCo simulation tool, which we developed, enables

to test the software components directly in the simulation
environment. Its main features are described in the following
sections.

A. SimCo Features
The SimCo is written using the Java programming

language. It is based on the OSGi model [6] and, currently, it
is running in the Equinox OSGi framework [11]. Hence, the
software components, which can be tested within the SimCo,
are limited to OSGi bundles. This restriction is not so hard,
since the OSGi is quite widespread in various industry areas
as well as in the academic sphere (see Section II.B).

Within the SimCo simulation tool, it is possible to test a
single component (i.e. an OSGi bundle), set of components,
or an entire component-based application. The SimCo itself
is constructed from the components (OSGi bundles) as well
in order to enable its simple modifications and extensions
[5].

For the simulation testing, the SimCo utilizes the
discrete-event simulation (see Section III.A) where the
events correspond to the invocations of particular services of
the tested components [4]. The initial events, which shall be
performed during the simulation run, are imported to the
event list from a testing scenario. This testing scenario is
loaded from an XML file prior to the execution of the
simulation testing [5].

B. SimCo Software Component Types
There are four types of the software components in the

SimCo simulation tool – the core components, the real tested
components, the simulated components, and the intermediate
components [5].

The core components provide the functionality of the
SimCo itself. These software components ensure the running
of the simulation. Furthermore, they provide all necessary
supplementary functions such as logging, measuring, and
storing of the observed parameters, visualization of the
simulation, and so on. The most important core component is
the Calendar, which interprets the events from its event
list. More specifically, it invokes corresponding services of
the software components and so ensures the advancement of
the simulation in time [5].

The real tested components are the components which
are tested in the SimCo simulation tool. These components
can be created by various manufacturers. So, the source code
of the components may not be available to us, which implies
the black box testing (see Section III.B). Since the
components are running in the simulation environment, there
are several issues, such as discrepancy of the real and the
simulation time, undesirable hidden network communication
of the real tested components, and so on. These issues can be
solved using various means including aspect oriented

programming or changing of the bytecode of the tested
components. For more information, see [4] and [5].

The simulated components are simulation models of
components, which provide services required by the real
tested components. They are not necessary when an entire
component-based application is tested within the SimCo
simulation tool. However, when only a single component or
a limited set of components are tested, components providing
some services required by the real tested components do not
have to be present in the simulation environment. The reason
is that these components are not considered important for the
testing, for example because they were already tested before
and/or the execution of their services is time-consuming.
Nevertheless, it is necessary to satisfy the requirements of
the real tested components. So, the required components,
which are not present in the simulation environment, are
replaced by their simulation models – the simulated
components. The simulated components can be useful for the
speedup of the simulation, because they do not have to
perform the calculations of the original components they are
mimicking. Instead, prerecorded values, table of return
values, or random numbers generators can be used,
depending on the situation [5]. At the same time, the
simulated components must exhibit the same external
behavior as the original components they are mimicking. For
example, if the consequence of a service invocation on the
original component is the invocation of a service on another
component, this must be true for the simulated component as
well. The simulated components also ensure the control of
the simulation by the SimCo simulation tool. All invocations
of the services of the simulated components are performed
using the events and the calendar [5].

The intermediate components are used to ensure the
control of the simulation by the SimCo simulation tool even
between two real tested components. More specifically, an
intermediate component is used as a proxy for a real tested
component. It provides the same services and all service
invocations on the real tested component are in fact handled
by this proxy (see Figure 1). The intermediate component
ensures that the service invocation on a real tested
component is performed using the events and the calendar,
similar to the simulated components (see previous
paragraph) [5]. Moreover, it performs the invocation of the
same service on the real tested component, for which it
serves as a proxy. This is necessary in order to obtain the
return value and/or trigger further actions (e.g., an invocation
of a service on another component).

Figure 1. An example of the SimCo component types

142Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

The simulated components and the intermediate
components can also be used for the placing of probes
observing selected properties of the real tested components.
For example, it is possible to use the intermediate component
to measure execution times of the services of the real tested
component, for which the intermediate component acts as its
proxy [5].

An example of three component types (except the core
components) of the SimCo simulation tool is depicted in
Figure 1.

V. RELATED WORK
The generation of the simulation models of software

components, whose implementation is at our disposal, but
their source code is not, is not common and it is difficult to
find description of similar approaches in the literature.
However, it is related to the black box testing of software
components, since the inspection of the component behavior
is performed in both cases. The relevant techniques are
mentioned in the following sections.

A. Reverse Engineering
Reverse engineering is a process of analyzing a system (a

software component in our case) and creating the
representation of the system in another form or at a higher
level of abstraction [12]. Reverse engineering can be used
even when the source code is known (i.e. during white box
testing) for example for creation of UML (Unified Modeling
Language) diagrams or control-flow graphs. For this
purposes, the static or dynamic analysis can be used [12]. In
situations when the source code is not known (i.e. during
black box testing) the reverse engineering can be used for the
extraction of the source code from the binary representation
of the application [13]. In our case, the application is the
software component (an OSGi bundle) and the binary
representation is the bytecode of its .class files.

There are several disadvantages of reverse engineering
used for the obtaining of the source code. The names of the
methods and parameters are lost, since they are irrelevant
(and thus not present) in the binary representation. Similarly,
the comments cannot be restored for the same reason [13].
So, it may be difficult for a human programmer to
understand the obtained source code.

Although the reverse engineering of the Java bytecode is
possible and, using specialized tools, quite straightforward,
all mentioned issues stand. Moreover, our intention is not to
replicate the exact inner functioning of the components. The
simulated components should exhibit the same external
behavior as their original components, but their inner
functioning can be significantly different (e.g., in order to
reduce the computation time). So, even with a successful
reverse engineering of the bytecode, the analysis and
modifications of the obtained source code by a programmer
is still necessary. Due to these issues, a significant amount of
manual work may be required.

B. Interface Probing
Interface probing is a technique that utilizes the public

interface of the software component for the examination of

its behavior and its features. This technique can be readily
utilized during the black box testing, since the source code is
not necessary. Using the interface probing, the public
interface with the services of the tested software components
is identified first. Then, the input values for the services are
generated, the particular services are invoked with the
generated inputs, and the outputs of the services of the
component are observed [13][14]. For this purpose, the
component can be wrapped in an encasing object, which
controls the input and output data flows [15]. This is similar
to the intermediate components used by the SimCo
simulation tool (see Section IV.B).

The main disadvantage of the interface probing is the
problematic generation of the input values. They can be
created randomly or manually. In both cases, it is possible to
omit values, which are in fact important for the uncovering
of hidden features or a hidden behavior of the tested
component and its services [13]. In order to reduce the
problem, it is possible to use typical values, such as 0, -1, 1,
minimal value, maximal value for an integer input or all
possible values for a character input [13]. However, these
examples are very general and can be useless (in the sense of
the uncovering of a hidden behavior) for a specific service.
So, it is necessary to use other typical and border input
values for the given service, if possible. These values can be
provided by a programmer based on textual or other
description of the software component and its services,
which can be (but does not have to) at the disposal. At the
very least, the programmer can use the name of the service as
a clue for the service’s probable functioning.

C. Other Techniques
Other common techniques include the generation of the

graphical user interface for the software component, which
enables instant access to the particular services of the
component. This graphical user interface then enables quick
ad hoc testing of the particular services of the component
using various input values without the necessity to create a
client application for the component [16].

There are also more exotic approaches such as proposal
for the extended component interface specification, which
would enable easier black box testing [17] or the utilization
of a genetic algorithm for the generation of the input data for
the testing [18].

VI. SIMULATED COMPONENTS GENERATION
As it was mentioned before, so far, the simulated

components of the SimCo simulation tool are created
manually. If the source code of the component, for which the
simulated component is created, is known, the simulated
component can be created using analysis of this source code.
If the source code of the original component is not known
(e.g., the component was created by another manufacturer),
the situation is even worse, because we have only the public
interface of the component and its bytecode (and the Javadoc
or other documentation in some cases) at our disposal. In this
case, it is difficult to analyze the behavior of the component.

Therefore, we have developed a semi-automated
approach for the generation of the simulated components. To

143Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

avoid confusion, the real component, for which the simulated
component (i.e. its simulation model) will be generated, will
be referenced only as the original component for short from
now on.

A. Approach Description
The skeleton of the component (i.e. methods representing

services of the component) can be generated easily using the
analysis of the public interface of the original component.
The basics of the behavior of the simulated component can
be then generated using the analysis of the behavior of the
original component while it is running among other real
components.

The approach does not require the knowledge of the
source code of the original component, but there are some
limitations. First, in the majority of the cases, the approach is
unable to determine the complete behavior of the original
component, but can provide clues for this behavior. These
clues can be then used by the programmer during the
finishing of the simulated component. Thus the “semi-
automated” attribute of the approach. Second, it is necessary
to have the neighboring components of the original
component available. These components require the services
or are required by the services of the original component.

B. Case Study: Traffic Crossroad Control
The approach will be demonstrated using a case study –

Traffic crossroad control. It represents a component-based
application for the control of road traffic in a crossroad using
traffic lights. It is expected to run on a specific hardware and
operate a variety of hardware sensors and control units [4].
The components involving any direct contact with sensors
and control units were replaced by (manually created)
simulated components in order to enable running of the
application on a standard desktop computer [2].

The Traffic crossroad control application consists of
eight components (see Figure 2). The TrafficCross-
road component provides the information about the
structure of the traffic crossroad. Moreover, its simulated
version incorporates a nanoscopic road traffic simulation
replacing the real traffic [4]. The OpticDetection and

Figure 2. Software components of the Traffic crossroad control application

int getQueueLength(String)
boolean isVehicle(String)
DetectorType getCurrentDetectorType()
void setCurrentDetectorType(DetectorType)

Figure 3. List of services of the SensorAccess component

the InductionLoop components handle specific hard-
ware sensors and provide measured data from these sensors.
The simulated versions of these components utilize the data
from the nanoscopic road traffic simulation of the Traf-
ficCrossroad component. The TrafficLightsCon-
troller component ensures the activation of particular
traffic lights. The ControlPanel component is a user
interface of the entire application. The TrafficControl-
Algorithm component incorporates an algorithm for the
control of the traffic lights. This algorithm can (but does not
have to) require data from the sensors mediated by the
SensorAccess component. This component is also used
by the StatisticsCollector component, which
periodically collects the data from it and provides various
traffic statistics accessible via the ControlPanel compo-
nent [4].

In the following sections, we will describe our approach
for semi-automated generation of a simulated component for
the SensorAccess component.

C. Generation of Component’s Skeleton
The skeleton of the simulated component is generated

using the analysis of the public interface of the original
component. For this purpose, a service of the OSGi can be
used, since it provides functionality to determine the public
interface (i.e. a Java interface) of a component (bundle) [19].
For the determination of the particular services (i.e. Java
methods) of this interface, the Java reflection can be used
[20]. This way, we obtain a list of services provided by the
component including the types of their parameters and their
return values. The information obtained for the Sensor-
Access component using this approach is depicted in
Figure 3.

Using the obtained list of services, the skeleton of the
simulated component is generated. The skeleton of each
simulated component is represented as one Java class with
methods along with their parameters and return values
corresponding to the particular services of the original
component. The bodies of the generated methods are not
completely empty, the logic necessary for adding of the
events corresponding to the invocation of the services to the
calendar are automatically added. The standard OSGi
Activator class ensuring the connection of the generated
simulated component to the particular components it requires
[19] is automatically added to the simulated component as
well. The generated skeleton of the simulated component
with its services is depicted in Figure 4.

D. Generation of Component’s Behavior
The more difficult part of our approach is the generation

of the component behavior. For this purpose, the original

144Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

public class SimulatedSensorAccess implements
 ISensorAccess {
 private BundleContext bc;
 private IOpticDetection od;
 private IInductionLoop il;
 private ICalendar calendar;

 public SimulatedSensorAccess(BundleContext bc,
 IOpticDetection od, IInductionLoop il,
 ICalendar calendar) {
 this.bc = bc;
 this.od = od;
 this.il = id;
 this.calendar = calendar;
 }

 public int getQueueLength(String arg0) {
 calendar.insertEvent();
 return 0;
 }

 public boolean isVehicle(String arg0) {
 calendar.insertEvent();
 return false;
 }

 public DetectorType getCurrentDetectorType() {
 calendar.insertEvent();
 return null;
 }

 public void setCurrentDetectorType(
 DetectorType arg0) {
 calendar.insertEvent();
 }
}

Figure 4. Skeleton of the simulated SensorAccess component

component, for which the simulated component shall be
created, is imported to the SimCo simulation tool along with
other components, which are required by the services of the
original component or require the services of the original
component. It is also possible to import entire component-
based application, whose part the original component is. The
components, which require the services of the original
component, are not necessary, but can provide information
about the parameters of the services of the original
component.

It is assumed that all the neighboring components of the
original components are real, but they can also be simulated,
assuming they exhibit the same behavior as the real
components they are mimicking. Between all pairs of the
neighboring real components, there are intermediate
components designed to observe the invocations of the
services. The behavior generation then works as follows.

A tree data structure incorporating the original
component and all components, which can invoke services of
the original component, and all the services of these
components is initiated. Each service of each component
contains a list of possible invocations with various
parameters. These invocations are automatically generated
based on the type of their parameters, similarly to [13].

For the enum parameters, all possible values (including
null) are generated, since there are usually only several
values. For the char parameters, the basic 256 characters

and several higher values are generated (in Java, the size of
char type is 2 bytes). For the number parameters, a set of
representative and border values are generated (e.g., -128, -
64, -16, -1, 0, 1, 16, 63, 127 can be generated for a byte
parameter). It is not feasible to generate all possible values of
the number parameters. For object parameters, only the
null value is generated. If the service has multiple
parameters, all combinations are generated. Of course, this
can lead to the exponential increase of the number of
generated invocations. Hence, the programmer can restrict
the generated parameters to values, which he or she
considers representative. Moreover, the programmer should
provide values, which cannot be automatically generated, for
example filled data objects, which are parameters of the
invocations. The programmer can use Javadoc of the original
component or other documentation for this purpose, if they
are at the disposal.

Once the structure is initiated, it is explored component
by component, service by service, invocation by invocation.
Each invocation from the tree data structure is performed on
the corresponding component and it can have various
consequences – an exception, a return value, a change of the
inner state of the component, and a subsequent invocation of
a service of another component. These consequences, with
the exception of the change of inner state, which is
unobservable from outside, are captured by the intermediate
components (and also by the simulated components if they
are present) and inserted to the tree data structure, but only if
they are not already present in the structure and they are
related to the components, which are present in the structure.
Simultaneously, the flag indicating that a change of the
structure occurred is set. If the invocation consequence is a
subsequent invocation, and this invocation is not already
present in the structure, the invocation is added to the
structure as well and the flag is again set. The exploration of
the structure repeats while this flag is set. The pseudocode of
the filling and exploring of the tree structure is depicted in
Figure 5.

The iterative nature of the approach enables to explore
multiple inner states of the components. As it was said
before, the change of the inner state of a component is
unobservable. However, the inner state of the component can
be changed by invocation of its services (if the component
can have different inner states at all). On the other hand, the
inner state of the component can influence the behavior of its
services – a services invoked with the same parameters can
have different outcome due to a different inner state of the
component. So, the repeating of the invocations, which were
already performed, can bring new invocations and invocation
consequences, which can be useful for a better exploration of
the original component behavior. When no new invocation
consequences are generated in the iteration, the process is
stopped in order to avoid to be stuck in an infinite loop.

Consider now the Traffic crossroad control case study
and the generation of the simulated component for the
SensorAccess component. This component is then the
original component and the StatisticsCollector and
the TrafficControlAlgorithm components are the

145Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

//Initialization of the tree data structure
structure.addComponent(originalComponent);
structure.addComponents(
 simco.getInvokingComponents(originalComponent));

for (c: structure.components) {
 c.services = simco.getServicesOfComponent(c);
 for (s: c.services) {
 //Generate parameters and read parameters from
 //the user for the invocation
 s.invocations =
 simco.generateAndReadInvocations();
 }
}

//Exploration of invocations and consequences
structure.setChanged(true);
while (structure.isChanged()) {
 structure.setChanged(false);
 for (c: structure.components) {
 for (s: c.services) {
 for (i: s.invocations) {
 invocationConsequences =
 simco.performServiceInvocation(c, s, i);
 for (ic: invocationConsequences) {
 //Only consequences, which are not
 //already present
 if (!i.consequences.contains(ic)) {
 i.consequences.add(ic);
 structure.setChanged(true);
 }
 if (ic.type == SUBSEQUENT_INVOCATION) {
 sc = ic.subsequentComponent;
 ss = ic.subsequentService;
 si = ic.subsequentInvocation;

 //Only for components contained in
 //the structure and only invocations,
 //which are not already present
 if (structure.contains(sc) &&
 !ss.contains(si)) {
 structure.addInvocation(sc, ss, si);
 structure.setChanged(true);
 }
 }
 }
 }
 }
 }
}

Figure 5. Pseudocode of the tree data structure exploration

invoking components (see Figure 2). The user did not
provide any parameters of the invocations. The filled
explored tree data structure is then depicted in Figure 6.
There, the components, services, invocations, and invocation
consequences are marked with C, S, I, and IC, respectively.
The value in the parentheses of I expresses the originator of
the invocation – G for “generated at beginning”, U for
“provided by user”, and Ax for “added automatically during
the xth iteration”. The value in the parentheses of IC denotes
the index of the iteration, in which the invocation
consequence was added to the tree data structure (starting
with 0).

As can be seen in Figure 6, the invoking components add
invocations of the services of the original component and
provide String parameters, which would not be generated

C: StatisticsCollector //Invoking component #1
 S: Statistics collectStatistics()
 I(G): collectStatistics()
 IC(0): subsequent invocation
 [SensorAccess.getQueueLength("E_01")]
. . .
 IC(0): subsequent invocation
 [SensorAccess.getQueueLength("E_04")]
 IC(0): return value [statistics]
 IC(1): return value [statistics]

C: TrafficControlAlgorithm //Invoking component #2
 S: void updateTrafficLightsState()
 I(G): updateTrafficLightsState()
 IC(0): subsequent invocation
 [SensorAcces.isVehicle("E_01")]
. . .
 IC(0): subsequent invocation
 [SensorAcces.isVehicle("E_04")]

C: SensorAccess //Original component
 S: int getQueueLength(String)
 I(G): getQueueLength(null)
 IC(0): exception [NullPointerException]
 I(A0): getQueueLength("E_01")
 IC(0): subsequent invocation
 [OpticDetection.getVehiclesCount("E_01")]
 IC(0): return value [2]
 IC(1): subsequent invocation
 [InductionLoop.isVehicle("E_01")]
 IC(1): return value [1]
. . .
 I(A0): getQueueLength("E_04")
 IC(0): subsequent invocation
 [OpticDetection.getVehiclesCount("E_04")]
 IC(0): return value [0]
 IC(1): subsequent invocation
 [InductionLoop.isVehicle("E_04")]
 IC(1): return value [0]
 S: boolean isVehicle(String)
 I(G): isVehicle(null)
 IC(0): exception [NullPointerException]
 I(A0): isVehicle("E_01")
 IC(0): subseqeuent invocation
 [OpticDetection.getVehiclesCount("E_01")]
 IC(0): return value [true]
 IC(1): subseqeuent invocation
 [InductionLoop.isVehicle("E_01")]
 IC(1): return value [true]
. . .
 I(A0): isVehicle("E_04")
 IC(0): subseqeuent invocation
 [OpticDetection.getVehiclesCount("E_04")]
 IC(0): return value [false]
 IC(1): subseqeuent invocation
 [InductionLoop.isVehicle("E_04")]
 IC(1): return value [false]
 S: DetectorTypes getDetectorType()
 I(G): getDetectorType()
 IC(0): return value [DetectorTypes.OPTIC]
 IC(1): return value [DetectorTypes.INDUCTION]
 S: void setDetectorType(DetectorTypes)
 I(G): setDetectorType(null)
 IC(0): exception [NullPointerException]
 I(G): setDetectorType(DetectorTypes.OPTIC)
 IC(0): nothing observable
 I(G): setDetectorType(DetectorTypes.INDUCTION)
 IC(0): nothing observable

Figure 6. Example of the filled explored tree data structure

146Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

if the invoking components were not present. These
parameters (e.g., “E_01”) are the IDs of the traffic lanes, in
which the sensors survey the state of road traffic. In this
case, the IDs are taken from the TrafficCrossroad
component, which provides information about the traffic
crossroad, by the StatisticsCollector and Traf-
ficControlAlgorithm components. The invocations of
the services of the TrafficCrossroad component are
not present in the filled tree data structure, because the
TrafficCrossroad is not present in the tree data
structure, since it is not an invoking component of the
original (i.e. SensorAccess) component. We know the
origin of the IDs, only because we developed the Traffic
crossroad control application. If this were not the case and
the source code of the application were not available to us,
the origin of the IDs would be hidden from us. Nevertheless,
the IDs would still be there helping to probe the behavior of
the original SensorAccess component.

The overall statistics of the content of the filled tree data
structure is summarized in Table I. The tree data structure is
filled in three iterations of the outermost (while) cycle (see
Figure 5). In the third iteration, there are no newly added
invocations or invocation consequences. So, the algorithm
ends.

TABLE I. OVERALL STATISTICS OF THE FILLED TREE DATA STRUCTURE

Feature Count
Number of invocations generated at beginning 8
Number of invocations provided by user 0
Number of automatically added invocations in 1st iteration (A0) 8
Number of automatically added invocations in 2nd iteration (A1) 0
Number of automatically added invocations in 3rd iteration (A2) 0
Number of generated consequences in 1st iteration (0) 31
Number of generated consequences in 2nd iteration (1) 17
Number of generated consequences in 3rd iteration (2) 0
Number of iterations 3

Using the part of the filled explored tree data structure

containing data for the SensorAccess component and a
set of rules, it is possible to generate limited bodies of the
services of this component with clues for the programmer.
The rules are following:
1. If there is a single return value for each invocation,

generate an if-else construction depending on the
parameters of the invocation for the particular return
values of the service.

2. If there are multiple return values for a single
invocation, generate an if-else construction depen-
ding on the parameters of the invocation for the return
value of the service. All but the first return value for the
same invocation put in the comments in the
corresponding branch of the if-else construction.

3. If there is a single return value for a service without
parameters, generate return statement with this value.

4. If there are multiple (different) return values for a
service without parameters, this service can reflect state
of the component (e.g., it is a getter). Generate an
information comment for the programmer. Generate

multiple return statements with all return values. All
but the first return statements put in the comments.

5. If there is a single subsequent invocation for each
invocation and the parameters of the invocation
correspond by type and value to the parameters of the
subsequent invocation, generate a method call
corresponding to the subsequent invocation using the
formal parameters of the service.

6. If there are multiple subsequent invocations of different
services for a single invocation and the parameters of
the invocation correspond by type and value to the
parameters of the subsequent invocations, generate
multiple methods calls corresponding to the particular
subsequent invocations using the formal parameters of
the service.

7. If there is a single subsequent invocation for each
invocation and the parameters of the invocation do not
correspond by type or value to the parameters of the
subsequent invocation, generate an if-else constru-
ction depending on the parameters of the invocation for
the particular methods calls corresponding to the
subsequent invocations.

8. If there are multiple subsequent invocations of different
services for a single invocation and the parameters of
the invocation do not correspond by type or value to the
parameters of the subsequent invocations, generate an
if-else construction depending on the parameters of
the invocation for the particular sets of the methods
calls corresponding to the subsequent invocations.

9. If there are multiple (different) subsequent invocations
for a single invocation in multiple iterations and the
parameters of the invocation correspond by type and
value to the parameters of the subsequent invocations,
the subsequent invocation can depend on the inner state
of the component. Generate an information comment
for the programmer. Generate an if-else constru-
ction depending on the parameters of the invocation for
the methods calls corresponding to the particular
subsequent invocations. All but the first method call for
the same invocation put in the comments in the
corresponding branch of the if-else construction.

10. If there are multiple (different) subsequent invocations
for a single invocation in multiple iterations and the
parameters of the invocation do not correspond by type
or value to the parameters of the subsequent
invocations, the subsequent invocation can depend on
the inner state of the component. Generate an
information comment for the programmer. Generate
multiple methods calls corresponding to the particular
subsequent invocations. All but the first method call put
in the comments.

11. If there is a single exception for a single invocation,
generate an if-else construction depending on the
parameters of the invocation for the throwing of the
corresponding exceptions.

147Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

12. If there are multiple (different) exceptions for a single
invocation, generate if-else construction depending
on the parameters of the invocation for the throwing of
the corresponding exception. Additional exceptions for
the same invocation put in comments in the
corresponding branch of the if-else construction.

13. If there are multiple exceptions or a single exception for
a service without parameters, generate the throwing of
the corresponding exceptions. Put them into the
comments.

The resulting generated bodies of the services of the
simulated SensorAccess component are depicted in
Figure 7. The handling of the service using the calendar was
added already during the component skeleton generation (see
Section VI.C). The particular parts of the generated bodies –
invocation of services, return values, throwing of exceptions
– are not directly usable. It is possible to compile the
generated simulated component, but its behavior will not
correspond to the behavior of the original component.
However, the programmer can use the generated parts as
clues for what the particular services should do. It is much
easier for him or her to finish the functionality of the
simulated component than when he or she should program
the functionality of the simulated components from the
scratch. This is the most important contribution of our semi-
automated approach.

In Figure 7, it is indicated with the comments in the
generated source code, which parts of the services bodies
were generated using which rule. For the entire
SensorAccess component, only the rules 1, 2, 4, 9, and
11 were utilized.

E. Approach Evaluation
As it was demonstrated using the case study, the

automatic part of our approach for the generation of the
simulated components is working and provides clues of what
the particular services of the component should do for the
programmer. The programmer then finishes the functionality
of the simulated component using these clues.

However, it should be noted that in a more complicated
case with services with multiple parameters, the generated
bodies of the services can become quite long and difficultly
understandable by the programmer. In such cases, the
restrictions of the generated parameters provided by the
programmer are important (see Section VI.D). This
restriction was not used in the presented case study, since the
number of parameters of the services was low and the
generated bodies of the services are easily readable.

The programmer also did not provide any parameters
values for the services invocations. Despite of this, the
invoking software components provided the String
parameters, which enable a better exploration of the behavior
of the services of the original component (see Section VI.D).
Nevertheless, this depends solely on the nature of the
component-based application. In many cases, the invoking
components do not have to provide useful parameters. Then,
the possibility to add the parameters of the services
invocations by the programmer becomes more important.

public int getQueueLength(String arg0) {
 calendar.insertEvent();

 //Rule 11
 if (arg0 == null) {
 throw new NullPointerException();
 }

 //Rule 9
 if (arg0.equals("E_01"))
 od.getVehiclesCount("E_01");
 //il.isVehicle("E_01");
. . .
 else if (arg0.equals("E_04"))
 od.getVehiclesCount("E_04");
 //il.isVehicle("E_04");

 //Rule 2
 if (arg0.equals("E_01"))
 return 2;
 //return 1;
. . .
 else if (arg0.equals("E_04"))
 return 0;
 else
 return 0;
}

public boolean isVehicle(String arg0) {
 calendar.insertEvent();

 //Rule 11
 if (arg0 == null) {
 throw new NullPointerException();
 }

 //Rule 9
 if (arg0.equals("E_01"))
 od.getVehiclesCount("E_01");
 //il.isVehicle("E_01");
. . .
 else if (arg0.equals("E_04"))
 od.getVehiclesCount("E_04");
 //il.isVehicle("E_04");

 //Rule 1
 if (arg0.equals("E_01"))
 return true;
. . .
 else if (arg0.equals("E_04"))
 return false;
 else
 return false;
}

public DetectorType getCurrentDetectorType() {
 calendar.insertEvent();

 //Rule 4
 return DetectorTypes.OPTIC;
 //return DetectorTypes.INDUCTION;
}

public void setCurrentDetectorType(DetectorType
arg0) {
 calendar.insertEvent();

 //Rule 11
 if (arg0 == null)
 throw new NullPointerException();
}

Figure 7. Generated services bodies of the SensorAccess component

148Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

VII. FUTURE WORK
In our future work, we will focus on improving our

approach in several ways.

A. Better Exploration of the Tree Data Structure
First of all, we will focus on a better exploration of the

tree data structure, from which the simulated components are
generated. This includes ordering of the particular
invocations in order to explore more different inner states of
the components. This can theoretically lead to acquiring of a
higher number of subsequent invocations.

We also want to employ analysis of the names of the
services/methods. This can be useful for example for
determining whether a pair of services serves as a getter and
a setter of a property of the component.

B. Expansion of the Set of Rules
The rules described in Section VI.D can be also

expanded by other rules in order to provide more and/or
better clues in the generated bodies of the services of the
simulated component. The generation of the clues can be
also refined to be clearer for the programmer. For example,
an array or a table with values accessed using indices can be
used instead of large if-else constructions.

VIII. CONCLUSION
In this paper, we described an approach for the semi-

automated generation of a simulated component, which is
used as a replacement of a real component during simulation
testing of other real software components. The approach is
based on the observation of the original component behavior
while it is interacting with other real components, which
require or are required by its services.

The resulting generated simulated component incorpo-
rates all services of the original component and parts of their
bodies, which provide clues for the programmer. The
programmer can then use these clues for the finishing of the
behavior of the services of the simulated component. The
approach was designed for the OSGi component model, but
the ideas behind it can be utilized also in other component
models. The approach is demonstrated using a case study.

ACKNOWLEDGMENT
This work was supported by the European Regional

Development Fund (ERDF), project “NTIS – New
Technologies for the Information Society”, European Centre
of Excellence, CZ.1.05/1.1.00/02.0090.

REFERENCES
[1] C. Szyperski, D. Gruntz, and S. Murer, Component Software

– Beyond Object-Oriented Programming, ACM Press, New
York, 2000.

[2] T. Potuzak and R. Lipka, “Possibilities of Semi-automated
Generation of Scenarios for Simulation Testing of Software
Components,” International Journal of Information and
Computer Science, vol. 2(6), September 2013, pp. 95–105.

[3] T. Potuzak, R. Lipka, J. Snajberk, P. Brada, and P. Herout,
“Design of a Component-based Simulation Framework for
Component Testing using SpringDM,” ECBS-EERC 2011 –
2011 Second Eastern European Regional Conference on the
Engineering on Computer Based Systems, Bratislava,
September 2011, pp. 167–168.

[4] T. Potuzak, R. Lipka, P. Brada, and P. Herout, “Testing a
Component-based Application for Road Traffic Crossroad
Control using the SimCo Simulation Framework,” 38th
Euromicro Conference on Software Engineering and
Advanced Applications, Cesme, Izmir, September 2012, pp.
175–182.

[5] R. Lipka, T. Potuzak, P. Brada, and P. Herout, “Verification
of SimCo – Simulation Tool for Testing of Component-based
Application,” EUROCON 2013, Zagreb, July 2013, pp. 467–
474.

[6] The OSGi Alliance, OSGi Service Platform Core
Specification. Release 4, version 4.2, 2009.

[7] D. Rubio, Pro Spring Dynamic Modules for OSGiTM Service
Platform, Apress, USA, 2009.

[8] R. M. Fujimoto, Parallel and Distributed Simulation Systems,
John Wiley & Sons, New York, 2000.

[9] S. Becker, H. Koziolek, and R. Reussner, “The Palladio
component model for model-driven performance prediction,”
Journal of Systems and Software, vol. 82(1), 2009, pp. 3–22.

[10] P. G. Sapna and H. Mohanty, “Automated Scenario
Generation based on UML Activity Diagrams,” International
Conference on Information Technology 2008, December
2008, pp. 209–214.

[11] J. McAffer, P. VanderLei., and S. Archer, OSGi and Equinox:
Creating Highly Modular JavaTM Systems, Pearson Education
Inc., Boston, 2010.

[12] G. Canfora and M. Di Penta, “New Frontiers of Reverse
Engineering,” Future of Software Engineering (FOSE'07),
Minneapolis, 2007, pp. 326–341.

[13] B. Korel, “Black-Box Understanding of COTS Components,”
Seventh International Workshop on Program Comprehension,
Pittsburgh, 1999, pp. 92–99.

[14] S. Liu and W. Shen, “A Formal Approach to Testing
Programs in Practice,” 2012 International Conference on
Systems and Informatics, Yantai, 2012, pp. 2509–2515.

[15] J. M. Haddox, G. M. Kapfhammer, and C. C. Michael, “An
Approach for Understanding and Testing Third Party
Software Components,” Proceedings of Annual Reliability
and Maintainability Symposium, Seattle, 2002, pp. 293–299.

[16] F. Naseer, S. U. Rehman, and K. Hussain, “Using Meta-data
Technique for Component Based Black Box Testing,” 2010
6th International Conference on Emerging Technologies,
Islamabad, 2010, pp. 276–281.

[17] J. Ying, Y.-N. Li, X.-D. Fu, “The Support of Interface
Specifications in Black-box Components Testing,” 2010 Fifth
International Conference on Frontier of Computer Science
and Technology, Changchun, 2010, pp. 305–311.

[18] M. Fisher and R. Tönjes, “Generating Test Data for Black-
Box Testing using Genetic Algorithms,” 2012 IEEE 17th
Conference on Emerging Technologies & Factory
Automation (ETFA), Krakow, 2012, pp. 1–6.

[19] N. Bartlell, OSGi in Practice, eBook (Creative Commons),
2009.

[20] I. R. Forman and N. Forman, Java Reflection in Action.
Manning Publications Co., Greenwich 2005.

149Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

