
Multiple Convolution Neural Networks for an Online Handwriting
Recognition System

Phạm Việt Dũng
Computer Network Centre

Vietnam Maritime University
Haiphong City, Vietnam

e-mail: vietdungiitb@vimaru.edu.vn

Abstract— This paper focuses on a specific word recognition
technique for an online handwriting recognition system which
uses Multiple Component Neural Networks (MCNN) as the
exchangeable parts of the classifier. As the most recent of
approaches, the system proceeds by segmenting handwriting
words into smaller pieces (usually characters), which are
recognized separately. The recognition results are then a
composition of individually recognized characters. They are
sent to the input of a word recognition module to choose the
most suitable one by applying some dictionary search
algorithms. The proposed classifier overcomes obstacles and
difficulties of traditional ones to large character classes.
Furthermore, the proposed classifier also has expandable
capacity, which can recognize other character classes by
adding or changing component networks and built-in
dictionaries dynamically.

Keywords- online handwriting; recognition; convolution;
neural network.

I. INTRODUCTION

Nowadays, Touch User Interfaces (TUI) devices are
becoming increasingly popular and already play an
important role in human-computer interaction. Tablets,
smartphones and TUI computers accepting finger touch or
pen based input are becoming a crucial part of many
everyday life activities. Using fingers or a pen as an input
device covers more and improves many functions as
compared to the conventional mouse and keyboard. One
major advantage of the pen over the mouse is the fact that it
is a natural writing tool for humans while the computer’s
mouse is very hard to use as a writing tool. However, it
needs a reliable transformation of handwritten text into a
coding that can be directly processed by a computer, e.g.,
ASCII [6]. A traditional transformation model usually
includes a preprocessor which extracts each word from
image or input screen and divides it into segments. A neural
network classifier then finds the likelihoods of each possible
character class given the segments. These likelihoods are
used as the input to a special algorithm which recognizes the
entire word. In recent years, research in handwriting
recognition has advanced to a level that makes commercial
applications. Nevertheless, significant disadvantages of such
single neural network classifiers are their complexity in big
network organizations and expandable capacity [4].

A highly reliable recognition rate neural network can be
easily built to recognize a small character class, but not
larger ones. The larger inputs and outputs increase the
number of layers of the neural network, neurons, and
connections. Hence, it makes the network training process
more difficult and especially the recognition rate, which is
significantly decreased [8]. Furthermore, a single neural
network classifier only works on a particular character class.
It is not exchangeable or expandable to recognize additional
character classes without recreating or retraining the neural
network.

This paper presents a new online handwriting recognition
system that is based on multiple Convolutional Neural
Networks (CNNs). As is well known, CNNs are efficient for
various applications [9]. They are presented in Section 2.
Section 3 presents a new classifier that includes a collection
of very high recognition rate component CNNs working
together. Each CNN can only correctly recognize a part of
the big character class (digits, alphabet, etc.), but when these
networks are combined by programing algorithms, they can
create a flexible classifier which can recognize differential
big character classes by simply adding or removing
component CNNs and language dictionaries. The computer
simulation results are shown in Section 4. Finally, the
conclusion is presented in Section 5.

II. CONVOLUTION NEURAL NETWORK

CNNs are a special kind of multi-layer neural networks.
Like almost every other neural network, they are trained
with a version of the back-propagation algorithm. Where
they differ is in their architecture. CNNs are designed to
recognize visual patterns directly from pixel images with
minimal preprocessing. They can recognize patterns with
extreme variability (such as handwritten characters), and
with robustness to distortions and simple geometric
transformations.

The LeNET 5 (see Fig. 1) for handwritten digit
recognition has allowed a reliable recognition rate of up to
99% to MNIST dataset [1].

108Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

Figure 1. A Typical Convolutional Neural Network (LeNET 5) [1]

The input layer is of size 32 x32 and receives the gray-
level image containing the digit to recognize. The pixel
intensities are normalized between −1 and +1. The first
hidden layer C1 consists of six feature maps, each having 25
weights, constituting a 5x5 trainable kernel, and a bias. The
values of the feature map are computed by convolving the
input layer with the respective kernel and applying an
activation function to obtain the results. All values of the
feature map are constrained to share the same trainable
kernel or the same weights values. Because of border
effects, the feature maps’ size is 28x28, smaller than the
input layer.

Each convolution layer is followed by a sub-sampling
layer which reduces the dimension of the respective
convolution layer’s feature maps by a factor of two. Hence,
the sub-sampling maps of the hidden layer S2 are of size
14x14. Similarly, layer C3 has 16 convolution maps of size
10x10 and layer S4 has 16 sub-sampling maps of size 5x5.
The functions are implemented exactly as layers C1 and S2
perform. The S4 layer’s feature maps are of size 5x5, which
is too small for a third convolution layer. The C1 to S4
layers of this neural network can be viewed as a trainable
feature extractor. Thereafter, a trainable classifier is added
to the feature extractor, in the form of 3 fully connected
layers (a universal classifier).

Figure 2. A convolution network based on P. Simard’s model [3]

Another model of CNN for handwritten digit recognition
that integrates convolution and sub-sampling processes into
a single layer also grants recognition rates of over 99% [3].
This model, presented in Fig. 2, extracts simple feature
maps at a higher resolution, and then converts them into
more complex feature maps at a coarser resolution by sub-
sampling a layer by a factor of two. The width of the
trainable kernel is chosen to be centered on a unit (odd size),
to have sufficient overlap to not lose information (3 would
be too small with only one unit overlap), but yet not to have

redundant computation (7 would be too large, with 5 units
or over 70% overlap). Padding the input (making it larger so
that there are feature units centered on the border) does not
improve performance significantly. With no padding, a sub-
sampling of two, and a trainable kernel of size 5x5, each
convolution layer reduces the feature map size from n to (n-
3)/2. Since the initial MNIST input used in this model is of
size 28x28, the nearest value which generates an integer size
after 2 layers of convolution is 29x29. After 2 layers of
convolution, the feature of size 5x5 is too small for a third
layer of convolution. The first two layers of this neural
network can be viewed as a trainable feature extractor after
which a trainable classifier is added to the feature extractor
in the form of 2 fully connected layers (a universal
classifier).

III. MULTIPLE COMPONENT NEURAL NETWORKS

CLASSIFIER

CNN can secure a significantly higher recognition rate
than traditional multilayer perceptron neural network to
small character classes such as digits [3] or the English
alphabet (26 characters). However, creating a larger neural
network that can reliably recognize a bigger collection (62
characters) is still a challenge. Finding an optimized and
large enough network becomes more difficult. Training
networks by large input patterns takes a much longer time.
Convergent speech of the network is slower and the
accuracy rate is significantly decreased because of bigger
badly written characters, similar and confusable characters
etc.

Figure 3. A MCNNs online handwriting recognition system

The proposed solution to the above problem is replacing
a unique complex neural network with multiple smaller
networks which have a high recognition rate to these own
output sets [4]. Fig. 3 illustrates explicitly the working
process of this new system. Each component network has an
additional unknown output (unknown character) beside the
official output sets (digit, letters, etc.). This means that, if
the input pattern is not recognized as a character of official
outputs, it will be understood as an unknown character.

The character recognition module of the classifier is a
collection of multiple component neural networks, which
work simultaneously with the input patterns. A handwritten

109Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

word is pre-processed by segmenting the isolated character
visual patterns [4]. These patterns are then given to the
inputs of all the component neural networks, which will
recognize likelihoods of each character class. A visual
pattern can be recognized by one, some, or all component
networks because there are several similar characters in
different classes. If a network cannot recognize the pattern
as a likelihood of its own character class, it will return an
unknown character (null character). The module’s output
result, presented in Fig. 4, is a table of possible characters
which is composed of possible words, such as “Exper1,
Expert, ExperJ, EXper1, EXpert, EXperJ” in the above
example. Unknown characters (null characters) are not used
in word composition. These words are then given to the next
word recognition module in turn to choose the most suitable
one to become the output of overall classifier. In this
example the word “Expert”will be chosen.

Figure 4. Output of MCNNs classifier module

The algorithm of word composition uses in character
recognition module:

Global variables:

 charMatrix = List<List<Char>>
{{E},{x,X},{p},{e},{r},{1,t,J}} // character table

 words =List<string> //list of composed word.
 startIndex: default is 0
 baseWord: default is “

void GetWords(int startIndex, String baseWord)
{

String newWord = "";
if (startIndex == charMatrix.Count - 1)
{

for (int i = 0; i < charMatrix[startIndex].Count; i++)
{

newWord = String.Format("{0}{1}", baseWord,
charMatrix[startIndex][i].ToString());

words.Add(newWord);
}

}
else
{

for (int i = 0; i < charMatrix[startIndex].Count; i++)
{

newWord = String.Format("{0}{1}", baseWord,
charMatrix[startIndex][i].ToString());

int newIndex = startIndex + 1;
GetWords(newIndex, newWord);

}
}

}

Word recognition module is in fact a spell checker which
uses several dictionary search algorithms and word
correction techniques to get the best meaning of the word.
All possible words from character recognition modules are
given to the dictionary search sequentially. If one of the
words is found in built-in dictionaries, it will become the
output word of the classifier. Otherwise, some other word
correction technique will be applied for choosing the most
suitable word in automatic mode or showing a list of similar
words to user in manual mode. Some of these techniques
are:

 Swap each character one by one and try all the
chars in its place to see if that makes a good word.

private bool ReplaceChars(String word, out String result)
{

result = "";
bool isFoundWord = false;
foreach (WordDictionary dictionary in Dictionaries)

{
ArrayList replacementChars =

dictionary.ReplaceCharacters;
for (int i = 0; i < replacementChars.Count; i++)

{
int split = ((string)replacementChars[i]).IndexOf(' ');
string key = ((string)replacementChars[i]).Substring(0,

split);
string replacement =

((string)replacementChars[i]).Substring(split + 1);
int pos = word.IndexOf(key);
while (pos > -1)
{

string tempWord = word.Substring(0, pos);
tempWord += replacement;
tempWord += word.Substring(pos + key.Length);
if (this.TestWord(tempWord))
{

result = tempWord.ToString();
isFoundWord = true;
return isFoundWord;

}
pos = word.IndexOf(key, pos + 1);
}

}
}
return isFoundWord;

}

 try swapping adjacent chars one by one.

private bool SwapChar(String word, out String result)
{

result = "";
bool isFoundWord = false;
foreach (WordDictionary dictionary in Dictionaries)
{

for (int i = 0; i < word.Length - 1; i++)
{

110Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

StringBuilder tempWord = new
StringBuilder(word);

char swap = tempWord[i];
tempWord[i] = tempWord[i + 1];
tempWord[i + 1] = swap;
if (this.TestWord(tempWord.ToString()))
{

result = tempWord.ToString();
isFoundWord = true;
return isFoundWord;

}
}

}
return isFoundWord;

}

 Try inserting a new character before every letter.

private bool ForgotChar(String word, out String result)
{

result = "";
bool isFoundWord = false;
foreach (WordDictionary dictionary in Dictionaries)
{

char[] tryme =
dictionary.TryCharacters.ToCharArray();

for (int i = 0; i <= word.Length; i++)
{

for (int x = 0; x < tryme.Length; x++)
{

StringBuilder tempWord = new
StringBuilder(word);

tempWord.Insert(i, tryme[x]);
if (this.TestWord(tempWord.ToString()))
{

result = tempWord.ToString();
isFoundWord = true;
return isFoundWord;

}
}

}
}
return isFoundWord;

}

 Split the string into two pieces after every char. If
both pieces are good words make them a
suggestion etc.

private bool TwoWords(String word, out String result)
{

result = "";
bool isFoundWord = false;
for (int i = 1; i < word.Length - 1; i++)
{

string firstWord = word.Substring(0, i);
string secondWord = word.Substring(i);
if (this.TestWord(firstWord) &&

this.TestWord(secondWord))
{

string tempWord = firstWord + " " + secondWord;
result = tempWord;
isFoundWord = true;
return isFoundWord;

}
}
return isFoundWord;

}

By using multiple language dictionaries simultaneously
in the spell checker, the proposed classifier can correctly
recognize different languages, if we supplement component
neural networks being trained these languages’ character
classes.

IV. EXPERIMENTS AND RESULTS

The demo program uses three well trained component
CNNs which can recognize 97 % of the digit class and 90%
of the upper or the lower alphabet classes of the UNIPEN
online handwriting dataset [12], respectively, to identify 62
English characters set. The initial experiment, which took
450 words from 45 students who were required to carefully
write 10 different words to a windows 8 touch screen
device, had shown an extremely satisfactory results.
Without word recognition module, the system could not
recognize words properly due to the randomized of the
process when choosing a possible word from a collection of
recognized characters at MCNN module’s outputs. The rate
of exactly recognized words was lower than 30%, although
the system could identify most of written characters. The
main reason for this low rate was a misunderstanding of the
system to similar characters “o”,”0” or “i”,“I”, “l”,”1”, etc.

Figure 5. Recognized words without a spell checker

Figure 6. Recognized words with a spell checker

111Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

Figure 7. Word correction mode

The recognized word rate dramatically increased when
the word recognition module was activated. 352 over 450
words in total were recognized exactly. The result should be
higher if the system used correction function for faulty
words. Figures 5 to 7 show different results to an image
when the system works in different modes.

V. CONCLUSIONS AND FUTURE WORK

Although there are many limits such as writing tools,
character segmentation techniques, the experimental
program has shown satisfactory results to the proposed
approach. Instead of using a traditional neural network, the
new system uses several smaller well trained networks to
recognize a large character set. The primary advantage of
this approach is that the system can adapt to recognize
different languages by changing component networks and
dictionaries. Also, the new classifier will overcome
obstacles and difficulties of traditional ones when faced
with large character classes. The full project and source
code can be downloaded from [13].

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-Based
Learning Applied to Document Recognition", Proceedings of the
IEEE, vol. 86, no. 11, Nov. 1998, pp. 2278-2324.

[2] Y. LeCun, L. Bottou, G. Orr and K. Muller, "Efficient BackProp", in
Neural Networks: Tricks of the trade, (G. Orr and Muller K., eds.),
1998.

[3] P. Y. Simard, D. Steinkraus and J. Platt, "Best Practices for
Convolutional Neural Networks Applied to Visual Document
Analysis," International Conference on Document Analysis and
Recognition (ICDAR), IEEE Computer Society, Los Alamitos, 2003,
pp. 958-962.

[4] P. V. Dung, “Online handwriting recognition using multi convolution
neural networks”. In Proceedings of The Ninth International
Conference on Simulated Evolution And Learning (SEAL 2012),
Hanoi, Vietnam, December 2012, pp. 310-319.

[5] F. Lauer, Ching Y. Suen and G. Bloch, "A Trainable Feature
Extractor for Handwritten Digit Recognition", Elsevier Science,
February 2006.

[6] I. Guyon, L. Schomaker, R. Plamondon, R. Liberman and S. Janet,
“Unipen project of on-line data exchange and recognizer
benchmarks”. In proceedings of the 12th International Conference on
Pattern Recognition, ICPR’94, Jerusalem, Israel, October 1994.
IAPRIEEE, pp. 29–33.

[7] L. Vuurpijl, R. Niels, M. V. E. Nijmegen, “Verifying the UNIPEN
devset”. In proceedings of Ninth International Workshop on Frontiers
in Handwriting Recognition, IWFHR-9 2004, pp. 586 – 591.

[8] M. Parizeau, A. Lemieux, and C. Gagné, “Character Recognition
Experiments using Unipen Data”. Parizeau & al., Proc. of ICDAR
2001, September 10-13. 2001 , pp. 481 – 485.

[9] List of publications by Dr. Yann LeCun.
http://yann.lecun.com/exdb/publis/index.html

[10] Mike O'Neill, “Neural Network for Recognition of Handwritten
Digits”. http://www.codeproject.com/Articles/16650/Neural-
Network-for-Recognition-of-Handwritten-Digi

[11] Modified NIST ("MNIST") database (11,594 KB total).
http://yann.lecun.com/exdb/mnist/index.html [retreived July 2014]

[12] The UNIPEN Project. http://unipen.nici.kun.nl/ [retrived July 2014]

[13] Codeproject website:
http://www.codeproject.com/Members/Vietdungiitb

[retrieved July 2014]

112Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://research.microsoft.com/~patrice/PDF/fugu9.pdf
http://research.microsoft.com/~patrice/PDF/fugu9.pdf
http://research.microsoft.com/~patrice/PDF/fugu9.pdf
http://hal.archives-ouvertes.fr/docs/00/05/75/61/PDF/LauerSuenBlochPR.pdf
http://hal.archives-ouvertes.fr/docs/00/05/75/61/PDF/LauerSuenBlochPR.pdf
http://yann.lecun.com/exdb/publis/index.html
http://www.codeproject.com/script/Membership/View.aspx?mid=208786
http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi
http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi
http://yann.lecun.com/exdb/mnist/index.html
http://yann.lecun.com/exdb/mnist/index.html
http://unipen.nici.kun.nl/

