
IoT Component Design and Implementation using Discrete Event Specification

Simulations

Abstract— The Internet of Things (IoT) approach enables

rapid innovation in the area of internet connected devices and

associated cloud services. An IoT node can be defined as a

flexible platform for interacting with real world objects and

making data about those objects accessible through the

internet. Communication between nodes is discrete event-

oriented and the simulation process play an important role in

defining assembly of nodes. In this paper, we propose the

definition of a modeling and simulation scheme based on a

discrete-event formalism in order to specify at the very early

phase of the design of an ambient system: (i) the behavior of

the components involved in the ambient system to be

implemented; (ii) the possibility to define a set of strategies

which can be implemented in the execution machine. The

DEVSimPy environment is then used to implement the

example of a switchable on/off lamp.

Keywords-DEVS; IoT; formalism; assembly; strategies.

I. INTRODUCTION

Technological advances in recent years around mobile

communication and miniaturization of computer hardware

have led to the emergence of ubiquitous computing.

Computing tools are embedded in objects of everyday life.

The user has at its disposal a range of small computing

devices, such as Smartphone or PDA (Personal Digital

Assistant), and their use is part of ordinary daily life. The

definition of such complex systems involving sensors,

smartphone, interconnected objects, computers, etc., results

in what is called ambient systems. One of todays challenges

in the framework of ubiquitous computing concerns the
design ambient complex systems. One of the main problems

is to propose a management adapted to the composition of

applications in ubiquitous computing. The difficulty is to

propose a compositional adaptation which aims to integrate

new features that were not foreseen in the design, remove or

exchange entities that are no longer available in a given

context. Mechanisms to address this concern must then be

proposed by middleware for ubiquitous computing. Several

kinds of middleware tools have been proposed in the recent

years [2]. We have being focused on the WComp

environment. WComp is a prototyping and dynamic
execution environment for Ambient Intelligence

applications. WComp [2] is created by the Rainbow

research team of the I3S laboratory, hosted by University of

Nice - Sophia Antipolis and CNRS. It uses lightweight

components to manage dynamic orchestrations of Web

service for device, like UPnP (Universal Plug and Play),

discovered in the software infrastructure. In the framework

of the WComp, it has been defined a management

mechanism allowing extensible interference between

devices. In order to deal with the asynchronous nature of the

real world, WComp has defined an execution machine for

complex connections.

In this paper, we propose the definition a modeling and
simulation scheme based on the DEVS formalism in order

to specify at the very early phase of the design of an

ambient system: (i) the behavior of the components

involved in the ambient system to be implemented; (ii) the

possibility to define a set of strategies which can be

implemented in the execution machine. The interest of such

an approach is twofold: (i) the behavior will be used to write

the methods required in order to code the components using

WComp environment; (ii) to check the different strategies

(to be implemented in the execution machine) before

implementation.
The rest of the paper is as follows: Section II concerns

the background of the study by presenting the traditional

approach for the design IoT systems. It briefly introduces a

set of middleware framework before focusing on the

WComp Framework. The DEVS formalism and the

DEVSimPy environment are also presented. In Section III,

the proposed approach based on the DEVS formalism is

given. An overview of the approach as well as the interest in

using DEVS simulation is detailed. Section IV deals with

the validation of the approach through a case study The

conclusion and future work are given in Section V.

II. BACKGROUND

A. IoT Design and WComp.

The ubiquitous computing is a new form of computing

that has inspired many works in various fields such as the

embedded system, wireless communication, etc. Embedded

systems offer computerized systems having sizes smaller

and smaller and integrated into objects everyday life. An

ambient system is a set of physical devices that interact with

Souhila Sehili

University of Corsica

SPE UMR CNRS 6134

 Corte, France

 Sehili@univ-corse.fr

Laurent Capocchi

University of Corsica

SPE UMR CNRS 6134

Corte, France

capocchi@univ-corse.fr

Jean-François Santucci

University of Corsica

SPE UMR CNRS 6134

Corte, France

santucci@univ-corse.fr

71Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

each other (e.g., a temperature sensor, a connecting lamp,

etc.). The design of an ambient system should be based on a

software infrastructure and any application to be executed in

such an ambient environment must respect the constraints

imposed by this software infrastructure.

Devices and software entities provided by the
manufacturers are not provided to be changed: they are

black boxes. This concept can limit the interactions to use

the services they provide and prevents direct access to their

implementation. The creation of an ambient system can not

under any circumstances pass by a modification of the

internal behavior of these entities but simply facilitate the

principle reusability, since an entity chooses for its

functionality and not its implementation. In the vision of

ubiquitous computing, users and devices operate in an

environment variable and potentially unpredictable in which

the entities involved and appear conveniently disappear (a

consequence of mobility, disconnections, breakdowns, etc.).
It is not possible to anticipate what the design will all

devices that will be available and when. As a result a set of

tools have been interested in developing software

infrastructure allowing the design of applications with the

constraint unpredictability availability of component entities

[2].

In this paper, we deal with the WComp framework,

which is used in order to design ambient systems. The

WComp architecture is organized around containers and

designers. The purpose of containers is to take over the

management of the dynamic structure such that
instantiation, destruction of components and connections.

An application is created by a WComp component assembly

in a container, according to LCA (Lightweight Component

Architecture) [2]. WComp allows to implement an

application from an orchestration of services available in the

platform and/or other off-the-shelves components.

Whatever the tool which may be used, the design of a

IoT component leans on the definition of:

 A set of methods allowing to describe the behavior

of the component;

 The execution machine associated with the

considered component.

The design of ambient computing systems involves a

technique different from those used in conventional
computing. Applications are designed dynamically by

”smart” devices (assembly components) of different nature.

The construction of an ambient IoT system requires the

definition Figure 1 of Methods and an execution engine.

The Designer runs the Container for instantiation and for

the removal of components or connections between

components in the Assembly which has to be created. A

component belonging to the WComp platform is an instance

of the Bean class implemented in the object language (C#).

The description of a given execution machine has to be
defined manually using methods for the management of

events usually based on automata theory. Figure 1describes

the traditional way to design an ambient system using

WComp. The behavior and the components involved in the

ambient system as well as the Bean classes describing the

execution machine are coded using the C# language (C#

rectangle in Figure 1).

The compilation allows to derive the corresponding

binary files (dll) of the Bean classes involved in the

resulting Assembly. The Assembly can then be executed.

Conflicts are checked: if conflicts (generally due to

asynchronous couplings) are detected the designer has to
write a new behavior of the execution machine by recoding

Bean classes in order to solve the coupling conflicts while if

no conflict are detected the application is ready.

In this paper, we choose the proposed a new approach for a

computer aided design of ambient systems using the DEVS

formalism by developing DEVS simulation concepts and

tools for the WComp platform. The goal is to use the DEVS

formalism and the DEVSimPy framework in order to

perform DEVS modeling and simulations: (i) to detect the

potential conflicts without waiting to implementation and

execution phases as in the traditional approach of Figure 1;
(ii) to offer the designer to choose between different

executions strategies and to test them using DEVs

simulations; (iii) to propose a way to automatically generate

the coded of the methods involved in the execution machine

strategies. The DEVS formalism and the DEVSimPy

environment are briefly introduced in the next two sub-

sections while the proposed approach is introduced in

Section III.

B. The DEVS formalism

 Since the seventies, some formal works have been

directed in order to develop the theoretical basements for the

modeling and simulation of dynamical discrete event

systems [8]. DEVS [9] has been introduced as an abstract

formalism for the modeling of discrete event systems, and
Figure 1. Traditional IoT component design.

72Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

allows a complete independence from the simulator using

the notion of abstract simulator.

 DEVS defines two kinds of models: atomic models and

coupled models. An atomic model is a basic model with

specifications for the dynamics of the model. It describes

the behavior of a component, which is indivisible, in a timed
state transition level. Coupled models tell how to couple

several component models together to form a new model.

This kind of model can be employed as a component in a

larger coupled model, thus giving rise to the construction of

complex models in a hierarchical fashion. As in general

systems theory, a DEVS model contains a set of states and

transition functions that are triggered by the simulator.

 A DEVS atomic model AM with the behavior is

represented by the following structure:

 (1)

 X is the set of input values,

 Y is the set of output values,

 S is the set of sequential states,

 is the internal transition function dictating
state transitions due to internal events,

 is the external transition function dictating
state transitions due to external input events,

 is the output function generating external events
at the output,

 is the time-advance function which allows to
associate a life time to a given state.

 Connections between different atomic models can be

performed by a coupled model. A coupled model, tells how

to couple (connect) several component models together to

form a new model. This latter model can itself be employed

as a component in a larger coupled model, thus giving rise

to hierarchical construction.

C. The DEVSimPy environment

DEVSimPy [1] is an open Source project (under GPL

V.3 license) supported by the SPE team of the University of

Corsica Pasquale Paoli. This aim is to provide a GUI for the

modeling and simulation of PyDEVS [4] models. PyDEVS

is an Application Programming Interface (API) allowing the

implementation of the DEVS formalism in Python language.

Python is known as an interpreted, very high-level, object-

oriented programming language widely used to quickly
implement algorithms without focusing on the code

debugging [6]. The DEVSimPy environment has been

developed in Python with the wxPython [7] graphical

library without strong dependences other than the Scipy [3]

and the Numpy [5] scientific python libraries. The basic

idea behind DEVSimPy is to wrap the PyDEVS API with a

GUI allowing significant simplification of handling

PyDEVS models (like the coupling between models or their

storage).

DEVSimPy capitalizes on the intrinsic qualities of DEVS

formalism to simulate automatically the models. Simulation

is carried out in pressing a simple button which invokes an

error checker before the building of the simulation tree. The

simulation algorithm can be selected among hierarchical

simulator (default with the DEVS formalism) or direct
coupling simulator (most efficient when the model is

composed with DEVS coupled models).

III. PROPOSED APPROACH

As pointed in sub-Section II-A, the traditional way to

design ambient systems described in Figure 1 has the

following drawback: the creation of Bean class components

using the WComp platform is performed by the definition of

methods (both implementing the behavior of a device and its

execution machine) in the object oriented language C#. The

compilation allows to obtain a set of library components

which are used in a given Assembly (which corresponds to
the designed ambient system). However, eventual conflicts

due to the connections involved by the Assembly can be

detected only after execution. This means that the Designer

has to modify the execution machine of some components

and restart the design at the beginning. We propose a quite

different way to proceed, which is described in Figure 3.

The idea is to use the DEVS formalism in order to help the

Designer to:

 Validate different strategies for execution machines

involved in an Assembly.

 Write the methods corresponding to the strategy of
the execution machine he wants to implement.

For that, the Designer has first to write the specifications

the components as well as the coupling involved in an

Assembly (corresponding to an ambient system to

implement) then simulations can be performed. According

to the results of the simulation, conflicts can be highlighted:

if some conflicts exists the DEVs specifications have to be

modified if not the design process goes on with C#

implementation, as in Figure 1. The DEVS specifications

can be used to help the Designer to write the methods of the

Bean classes in the C# language Figure 2 and then compile

Figure 2. IoT component design using DEVS.

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

them and execute the resulting Assembly being assured that

there will be no coupling conflict.

Section IV detailed the proposed approach using a

pedagogical example. Two different execution machine

strategies will be implemented using WComp and using the

DEVS formalism. We will point out how DEVS can be used
to simulate execution machines strategies before

compilation and execution of the C# Bean classes.

Furthermore, we also point out how the designer can use the

DEVS specifications in order to write the methods involved

in an execution machine strategy.

IV. CASE STUDY :SWITCHABLE ON/OFF LAMP

A. Description

We choose to validate the proposed approach on a

pedagogical case study: realization of an application to

control the lighting in a room. The case study involved three
components to be assembled: a light component with an

input (ON / OFF) and two switches components with an

output (ON / OFF), as shown in Figure 3. Two different

behaviors concerning the connections between the switch

and the light component are envisioned (corresponding to

the implementation of two different execution machines):

 First behavior: the light is controlled by toggles

switches which rest in any of their positions.

 Second behavior: the light is controlled by

pushbutton switches which have two-position

devices actuated with a button that is pressed and
released.

 In this part, we will present first how we have

implemented these two previous behaviors using the

WComp platform. Then we will give the DEVS approach

involving the DEVS specifications of the two behaviors of

the case study and the way DEVS can be used for WComp

design of the ambient components.

Figure 3. Assembly light and switches

B. WComp implementation

We implemented using the WComp platform the

behavior corresponding to the toggle switch and the

behavior of the push button switch. The two behaviors have

been coded using two different Bean classes associated with

the light component.

1) First behavior implementation.

 The implementation corresponding to the toggle switch

is described in the Figure 4. The line 2 is used to check the

position of the toggle switch: if ON is true the line 3 ensures

that there are subscribers before calling the event Property-

Changed. In the lines 4 and 5, the event is raised and a

resulting string is transmitted. The Bean class returns the
String once the”ControlMethod” method is invoked.

Figure 4. First light method implementation in WComp.

2) Second behavior implementation.
The implementation corresponding to the pushbutton

switch is described in the Figure 5. The initialization of the

“lightstate” variable of component Light is performed

through line 1. Line 3 allows to switch the value of the

“lightstate” variable while line 4 allows to initialize the

message to be returned. Line 5 is dedicated to check the
“lightstate” variable and to eventually change to returned

message. Lines 6 and 7 allow to ensure that there are

subscribers before calling the event Property-Changed and

transmit the returned message.

Figure 5. Second light method implementation in WComp.

After the compilation of the two Bean classes, each bean

class will be instantiated and connected with two checkbox

representing the respective switches in order to realize the

assembly in a WComp container, as shown in Figure 6.

Figure 6. WComp assembly components.

C. DEVS Specifications

In order to highlight the interest of the DEVS formalism

in the management of conflicts between WComp assembly

components, we have written an atomic DEVS model for
each kind of component ”light” and implement both of them

using the DEVSimPy platform.

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

1) First case: DEVS implementation corresponding to the

toggle switch behavior.

The DEVS specification of the corresponding WComp

component of Section IV-B is achieved using the state

automaton of Figure 7.

Figure 7. Automaton 1 of the light component.

The corresponding DEVSimPy implementation is given

in Figure 8 (the behavior is expressed through the external

transition of the Light component atomic model).

Figure 8. External Transition of the light in DEVSimPy.

The initialization of the state variable “instate” is done

in line 1 (initial value is OFF). Line 3 and line 4 allow to

assign the variable msg with the value of the events on the

input ports. From line 5 to line 10 the code allows to assign

the value of the state variable “instate” according to the

value of the variable “msg”: if the message on the port is

equal to the initial state then the state variable remains on

the same state else the value of the “instate” variable is

changed. Line 11 by setting the variable sigma to 0 allows

to activate the output function.

2) Second case: DEVS implementation
corresponding to the pushbutton switch behavior.

The DEVS specification of the corresponding WComp

component of Section IV-B is achieved using the state

automaton of Figure 9.

Figure 9. Automaton 2 of the light component.

The corresponding DEVSimPy implementation is given

in Figure 10 (the behavior is expressed through the external

transition of the Light component atomic model).

Figure 10. External Transition of the light in DEVSimPy.

Figure 10 gives the code of the external transition of the

Light component atomic model. One can see from line 5 to

10 that in this second case the output message is switched

from ON to OFF or OFF to ON according to the values of

the input ports.

D. Simulation results

 In both two cases, once the modeling scheme has be

realized using the DEVSimPy environment we are able to

perform simulations which correspond to the behavior of

the ambient system under study according to the two

different execution machines that have been defined.

 The simulation results of the first case express the fact that

the execution machine allows the ambient system under

study remains in the initial position (ON or OFF) until we

will actuate another position using one of the switches.
 The simulation results of the second case express the fact

that the execution machine allows the ambient system under

study to alternately “ON” and “OFF “with every push of

one of the switches.

E. Interest of the presented approach

As described in Sections IV-C and IV-D, the proposed
approach allows to study the behavior of an ambient system

using DEVS simulations before any WComp

implementation. This will allow a Designer of ambient

system to select the desired execution machine without

having coding and compiling the C# classes under WComp

platform.

Furthermore, in this sub-section, we briefly introduce

how the DEVS specifications can be use by an ambient

system Designer to write the code of execution machine.

From the two previous cases one can note that the WComp

method of Bean class of a given ambient component and the
external transition of the corresponding DEVS atomic

model present some similarities (in the one part, see Figure

4 and Figure 8; on the other part, see Figure 5 and Figure

10).

V. CONCLUSION AND FUTURE WORK

This paper dealt with an approach for the design and the
implementation of IoT ambient systems based on Discrete

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

Event Modeling and Simulation. Instead of waiting the
implementation phase to detect eventual conflicts, we
propose an initial phase consisting in DEVS modeling and
simulation of the behavior of components involved in an
ambient system, as well as the behavior of execution
machines. Once the DEVS simulations have brought
successful results, the Designer can implement the behavior
of the given ambient system using an IoT framework such
as WComp. The presented approach has been applied on a
pedagogical example which is described in detail in the
paper: implementation of two different behaviors of a given
ambient system, definition of the corresponding DEVS
specification, implementation of the DEVS behavior using
the DEVSimPy framework analysis of the simulation
results. Furthermore, we have also pointed out that the
DEVS specifications can be used in order to help the
Designer to write the behavior of the IoT components. Our
future work will consist in proposing an approach allowing
to automatically write the behavior of the execution
machines after their validation based on DEVS simulation.

In this paper, we used a pedagogical example to model
“execution strategies” to prevent conflict.

REFERENCES

[1] L. Capocchi, J. F. Santucci, B. Poggi, and C. Nicolai,

“DEVSimPy: A collaborative python software for modeling and

simulation of DEVS systems,” Proc. IEEE Conf. WETICE, Eds,

IEEE Computer Society, pp. 170–175, 27-29 June 2011, doi:

10.1109/WETICE.2011.31, Available from:

http://code.google.com/p/devsimpy. [Retrieved: August, 2014].

[2] D. Cheung-Foo-Wo, “Adaptation dynamique par tissage

d’aspects d’assemblage,” PhD thesis, University of Nice Sophia

Antipolis, Nice (France), 2009.

[3] E. Jones, T. Oliphant, and P. Peterson, “Scipy: Open source

scientific tools for python,” 2001, Available from:

http://www.scipy.org. [Retrieved: February, 2014].

[4] X. Li, H. Vangheluwe, Y. Lei, H. Song, and W. Wang, “A

testing framework for DEVS formalism implementations,”

Proc. Theory of Modeling & Simulation: DEVS Integrative

M&S Symposium, Society for Computer Simulation

International, San Diego, CA, USA, 2011, pp. 183–188.

[5] T. E. Oliphant. “Python for scientific computing,” Computing in

Science and Engineering 9, 2007, pp. 10–20.

[6] F. Perez, B.E. Granger, and J. D. Hunter, “Python: An

ecosystem for scientific computing,” Computing in Science and

Engineering 13, 2011, pp. 13–21.

[7] N. Rappin, and R. Dunn, “WxPython in action,” Manning,

2006.

[8] B. P. Zeigler, “An introduction to set theory,” Tech. rep.,

ACIMS Laboratory, University of Arizona, 2003. Available

from: http://www.acims.arizona.edu/EDUCATION. [Retrieved:

April, 2014].

[9] B. P. Zeigler., H. Praehofer, and T. G. Kim, “Theory of

Modeling and Simulation,” Second Edition. Academic Press,

2000.

76Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

http://code.google.com/p/devsimpy
http://www.scipy.org/
http://www.acims.arizona.edu/EDUCATION

