
Fuzzy Discrete-Event Systems Modeling and Simulation
with Fuzzy Control Language and DEVS Formalism

Jean-François Santucci and Laurent Capocchi

SPE UMR CNRS 6134 Laboratory
University of Corsica

Email: {santucci, capocchi}@univ-corse.fr

Abstract—There is an increasing use of fuzzy data in the field
of discrete-event system modeling. This paper deals with an
approach based on the use of Fuzzy Control Language (FCL)
allowing to facilitate the modeling and simulation of Discrete
EVent Systems (DEVS) involving uncertainty. The main contri-
bution of this paper is to integrate the Fuzzy Control Logic three
basic steps (fuzzification, defuzzification, fuzzy rules) into DEVS
models in a generic way using a FCL-based implementation. The
implementation has been performed with the DEVSimPy envi-
ronment through a classical example. The DEVSimPy modeling
of the example highlights how the DEVS modeler can realize the
three basic steps inside the DEVS transition functions.

Keywords–DEVS; Fuzzy systems; Modeling; Simulation;
Discrete-event system.

I. INTRODUCTION

In the recent years, a set of work has concerned the
introduction of fuzzy notions into DEVS concepts in order
to propose incorporation of uncertainty into models [1]. Ap-
proaches [2]–[4] developed around the DEVS formalism have
been proposed in order to apply fuzzy set theory [5] to the
sets and functions defined on crips sets in DEVS formalism.
Fuzzy modeling and simulation can be useful in the study
of different kinds of systems for example in the case of the
modeling of systems for which we have few observations of
how and where the human being acts as a sensor or expert.
The already developed approaches integrating fuzzy sets into
DEVS bring nice formalisms allowing to deal with fuzzy
events, fuzzy transition functions and even fuzzy time advance
function. However, the modeling and simulation of concrete
applications involving fuzzy notions based on human expertise
are not easily implemented using the previous approaches. In
order to set up this, the fuzzy logic provides methods closed to
expert human labor. Fuzzy logic has already proved the ability
to reason about imprecise or subjective data in wide range of
fields, from finance to industrial control, through consumer
electronics and weapons systems. Fuzzy logic is closed to
reasoning and human language, as it is known to use vague
concepts (such as “hot ”, “weak”, “strong enough”, etc.).

The fuzzy approach allows the computer modeling of vague
notions (hotter, colder, etc.), commonly used by consumers
or by plant operators. Fuzzy technology has the advantage of
using explicit knowledge (the system works by applying rules)
by highlighting three distinct steps: (i) initially the fuzzifica-
tion process is studied in order to consider the inclusion of
linguistic information. (ii) the second part is devoted to the
identification of fuzzy rules mainly when observations on the
behavior of the system are imprecise and uncertain. Fuzzy rules

(such as “if X . . . then Y”) allow to express the knowledge
concerning the problem to address; (iii) the last part concerns
the defuzzification which is to convert the fuzzy domain to the
digital domain, with a conversion preferences. The method of
defuzzification is used to exploit the information encoded in
the output fuzzy sets corresponding to expert knowledge on
the output variable of the model.

The integration of fuzzy logic into the DEVS formalism
involves three steps: (i) the definition of concepts allowing
to deal with fuzzy logic in the framework of DEVS; (ii) the
selection of a fuzzy logic programming language in order to
accomplish the integration of DEVS and fuzzy logic; (iii) the
implementation of the concepts into the DEVSimPy framework
[6][7]. The first step allows to define the concepts allowing to
perform with the DEVS formalism the three required steps
involved in fuzzy logic control: fuzzication, the fuzzy rules
definition and firing and finally defuzzification. Among a set
of available fuzzy theory programming languages (FCL -
Fuzzy Control Language [8], FPL-Fuzzy Programming Lan-
guage [9], FTL - Fuzzy Technology Language [10], FSTDS-
fuzzy STDS [11], LPL - Linguistic oriented Programming Lan-
guage [10], FSML-Fuzzy System Modeling Language [12],
etc.), we choose the FCL one for different reasons: it is a stan-
dardized Domain Specific Language created for fuzzy control
applications; it allows to define blocks of fuzzy functions with
fuzzy inputs and outputs; it allows also to simplify the writing
of variables and linguistic values, as well as the writing of
logical rules using syntax such as “IF, THEN”.

The main contribution of this paper is not concept-oriented
as in Kwon et al. [4], but concerns the implementation
of a Fuzzy Control Logic library (including fuzzification,
defuzzification, fuzzy rules) into the DEVSimPy framework
in a generic way using a FCL-based implementation. The
DEVSimPy framework is a DEVS modeling and simulation
tool written in Python language. Python is one of the pro-
gramming languages that provides a framework for defining
fuzzy inference systems through PyFuzzy package [13]. In
addition, Python also allows the definition of these fuzzy
inference systems from the FCL language. In order to facilitate
for a DEVS modeler the use of fuzzy logic when performing
simulation of a given application we choose to integrate FCL
systems into the DEVSimPy framework. FCL facilitates the
DEVS modeler to transform the imprecision in users request
into defuzziyfied values which can be used easily in DEVS
simulations. The rationale behind the coupling of FCL system
with DEVS is that an “expert” human operator can control
a process without understanding the details of its underlying
dynamics. The effective and real control strategies that the

250Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

expert learns through experience can often be expressed as a
set of condition-action, “IF, THEN” rules, that describe the
process state and recommend actions using linguistic, fuzzy
terms instead of classical, crisp rules.

The rest of the paper is organized as follows: Section 2
presents the background of the work including the DEVS
formalism and the FCL language. Section 3 gives the concepts
that have been defined in order to integration fuzzy logic into
the DEVS formalism. The implementation of the previously
defined concepts is given is Section 4. A pedagogical example
allows to illustrate the feasibility of the approach inside the
DEVSimPy environment. Finally, in the last part, we conclude
the work and present the future work around fuzzy inductive
modeling.

II. BACKGROUND

A. The DEVS Formalism

Since the seventies, some formal works have been directed
in order to develop the theoretical basements for the modeling
and simulation of dynamical discrete event systems [14].
DEVS [15] has been introduced as an abstract formalism for
the modeling of discrete event systems, and allows a complete
independence from the simulator using the notion of abstract
simulator.

DEVS defines two kinds of models: atomic models and
coupled models. An atomic model is a basic model with
specifications for the dynamics of the model. It describes the
behavior of a component, which is indivisible, in a timed state
transition level. Coupled models tell how to couple several
component models together to form a new model. This kind
of model can be employed as a component in a larger coupled
model, thus giving rise to the construction of complex models
in a hierarchical fashion. As in general systems theory, a DEVS
model contains a set of states and transition functions that are
triggered by the simulator.

A DEVS atomic model AM with the behavior is repre-
sented by the following structure:

AM =< X,Y, S, δint, δext, λ, ta > (1)

where:

• X : {(p, v)|(p ∈ inputports, v ∈ Xh
p)} is the set of

input ports and values,

• Y : {(p, v)|(p ∈ outputports, v ∈ Y h
p)} is the set of

output ports and values,

• S: is the set of states,

• δint : S → S is the internal transition function that
will move the system to the next state after the time
returned by the time advance function,

• δext : Q ×X → S is the external transition function
that will schedule the states changes in reaction to an
external input event,

• λ : S → Y is the output function that will generate
external events just before the internal transition takes
places,

• ta : S → R+
∞ is the time advance function, that will

give the life time of the current state.

The dynamic interpretation is the following:

• Q = {(s, e)|s ∈ Sh, 0 < e < ta(s)} is the total state
set,

• e is the elapsed time since last transition, and s the
partial set of states for the duration of ta(s) if no
external event occur,

• δint : the model being in a state s at ti , it will go into
s′ , s′ = δint(s), if no external events occurs before
ti + ta(s),

• δext : when an external event occurs, the model being
in the state s since the elapsed time e goes in s′, The
next state depends on the elapsed time in the present
state. At every state change, e is reset to 0.

• λ : the output function is executed before an internal
transition, before emitting an output event the model
remains in a transient state.

• A state with an infinite life time is a passive state
(steady state), else, it is an active state (transient
state). If the state s is passive, the model can evolve
only with an input event occurrence.

The DEVS abstract simulator is derived directly from the
model. A simulator is associated with each atomic model and
a coordinator is associated with each coupled model. In this
approach, simulators allows to control the behavior of each
model, and coordinators allows the global synchronization
between each of them.

B. Fuzzy Control Language

A Fuzzy Control Language (FCL) system allows to define
the process for the mapping from a given input to an output
using fuzzy logic. It is based on Mamdani [16] method for
fuzzy inference which is the most suitable for capturing expert
knowledge, as its rules allow us to describe the expertise in
more intuitive and human-like manner. The fuzzy inference
process comprises the following steps: fuzzify the input, eval-
uate the fuzzy rules, aggregate the outputs to reach the final
decision, and defuzzify the output to obtain a crisp value.

A FCL system can be formalized as follows:

• V1: a set of input variables.

• V2: a set of output variables.

• Fuzzification part:
<term (or set) name> := <points that make up the
term> for each input variable.

• Rules description part:
<operator>:<algorithm>;
ACCUM:<accumulation method>;
RULE <rule number>: IF <condition> THEN
<conclusion>;

• Defuzzifiation part:
METHOD:<defuzzification method>;

Each one of these parts has to be defined when considering
a FCL system.

251Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

Fuzzyfication part: The values of V1 have to be converted
into degrees of membership for the membership functions
defined on linguistic variables. These linguistic variables shall
be described by one or more linguistic terms. The linguistic
terms are introduced and described by membership functions
in order to fuzzify the variable.

membership function ::= (pointi), (pointj), . . . (2)

A membership function is defined by a table of points under
the format presented in 2.

Rules description part: Two definitions are required in
order to defined the rules: (i) The Fuzzy operators are used
inside the rules; (ii) The accumulation method.

Fuzzy Operators: To fulfill de Morgans Law, the algorithms
for operators AND and OR shall be used pair-wise e.g.:

• MAX shall be used for OR if MIN is used for AND.

• ASUM for Or if PROD for AND.

• BSUM for OR if BDIF for AND.

Accumulation method: Three methods are available:

• Maximum: MAX.

• Bounded Sum: BSUM.

• Normalized sum: NSUM.

The inputs of a set of rules are linguistic variables with a
set of linguistic terms. Each term has a degree of membership
assigned to it. It is possible to combine several sub-conditions
and input variables in one rule. The general format is the
following:

subcondition := linguistic variable IS [NOT]

linguistic term (3)

The conclusion can be split into several subconclusions and
output variables:

subconclusion := linguistic variable IS

linguistic term (4)

Optionally it is possible to give each subconclusion a
weighting factor which is a real with a value between 0.0
and 1.0. This shall be done by the keyword WITH followed
by the weighting factor. The weighting factor shall reduce the
membership degree (membership function) of the subconclu-
sion by multiplication of the result in the subconclusion with
the weighting factor. The generic format of a rule is:

IF condition THEN subconclusion

[WITH weighting factor] subconclusion (5)

Defuzzification part: A linguistic variable for an output
variable has to be converted into a value. The variable which is
used for the defuzzification corresponds to an output variable.

A defuzzification method has to be chosen; The following
defuzzification methods are possible:

• COG Centre of Gravity.

• COGS Centre of Gravity for Singletons.

• COA Centre of Area.

• LM Left Most Maximum.

• RM Right Most Maximum.

The following Section introduces the proposed approach
based on the previous concepts.

III. PROPOSED APPROACH

The section introduces the concepts that have been defined
in order to integrate FCL into DEVS models. In order to
succeed in this integration, the following requirements have
to be fulfill:

• Ability to define of membership functions (see Equ. 2)
for creating fuzzy inference systems (V1, V2).

• Ability to support the AND, OR, and NOT logic
operators in user-defined rules.

• Ability to embed a fuzzy inference system in a DEVS
model.

• Ability to generate executable fuzzy inference engines.

The proposed solution to integrate FLC into DEVS models
is to offer the possibility to define aggregate fuzzy logic to each
one of the functions involved in the DEVS formalism (δext,
δint, λ and ta). For that X, Y and S will contain variables
which are going to be fuzzyfied. Then inferences rules (see
Equ. 3,4,5) will be written inside of DEVS function and fired
as soon as the corresponding function is activated. Finally, a
defuzzyfication mis performed in order to obtain the result
of the respective function (new state for δext and δint, an
output for λ and a real representing the σ for ta). During
the simulation, the execution of one of the traditional DEVS
functions consists in firing the fuzzy engine associated with
each DEVS function.

A DEVS atomic model AM integrating a fuzzy behavior
using the FCL language and inference engine is represented
by specifying the following functions:

• δint : S → S is defined as a FCL system involving the
three previously presented steps (fuzzyfication, rules
definition, defuzzyfication). It is defined as a FCL
system δFCL

int (V 1 : S, V 2 : S).

• δext : Q × X → S is defined as a FCL system
δFCL
ext (V 1 : Q×X,V 2 : S)

• λ : S → Y is defined as a FCL system λFCL(V 1 :
S, V 2 : Y)

• ta : S → R+
∞ is defined as a FCL system tFCL

a :
(V 1 : S, V 2 : real).

252Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

The proposed approach allows a modeler using the DEVS
formalism to integrate fuzzy logic into the modeling scheme
of the system under study just by specifying for one or more
of the 4 atomic model functions (δext, δint, λ or ta): The
fuzzification method of the input variables; Write the inference
rules linked with the behavior of the system under study;
Select the defuzzification method for the output variables. The
classical DEVS modeling and simulation has been unchanged
and it allows to perform the associated fuzzy inference engine.
The next Section will point out how this approach has been
implemented in the framework of the DEVSimPy environment.

IV. DEVSIMPY IMPLEMENTATION

A. The DEVSimPy Framework

DEVSimPy [6] is an open Source project (under GPL
V.3 license) supported by the SPE team of the University
of Corsica “Pasquale Paoli”. This aim is to provide a GUI
for the modeling and simulation of PyDEVS [17] models.
PyDEVS is an Application Programming Interface (API) al-
lowing the implementation of the DEVS formalism in Python
language. Python is known as an interpreted, very high-
level, object-oriented programming language widely used to
quickly implement algorithms without focusing on the code
debugging [18]–[20]. The DEVSimPy environment has been
developed in Python with the wxPython [21] graphical library
without strong dependences other than the Scipy [22] and the
Numpy [23] scientific python libraries. The basic idea behind
DEVSimPy is to wrap the PyDEVS API with a GUI allowing
significant simplification of handling PyDEVS models (like the
coupling between models or their storage).

Figure 1 depicts the general interface of the DEVSimPy
environment. A left panel (see bag 1 in Figure 1) shows
the libraries of DEVSimPy models. The user can instantiate
models by using a drag-and-drop functionality. The bag 2 in
Figure 1 shows the modeling part based on a canvas with inter-
connection of instantiated models. This canvas is a diagram of
atomic or coupled DEVS models waiting to be simulate.

Figure 1. DEVSimPy general interface.

A DEVSimPy model can be stored locally in the hard disk
or in cloud through the web in the form of a compressed file
including the behavior and the graphical view of the model
separately. The behavior of the model can be extended using

specific plug-ins embedded in the DEVSimPy compressed file.
This functionality is powerful since it makes it possible to
implement new algorithms above the DEVS code of models
in order to extend their handling in DEVSimPy (exploit
behavioral attributes, overriding of DEVS methods, ...). A
plug-in can also be global in order to manage several models
through an generic interface embedded in DEVSimPy. In this
case, the general plug-in can be enabled/disabled for a family
of selected models.

B. Case of Study: A Burner tank

1) Description: We have validated the implementation us-
ing a classical pedagogical example issued from [15]. This
example concerns a fuzzy modeling of a boiler system. The
system consists of two subsystems, a burner and a boiler tank.
The behavior of the boiler tank is specified as a deterministic
one while the behavior of the burner system relies on fuzzy
rules. Of course we are mainly interested in this paper into
the burner fuzzy modeling and simulation. The burner model
has two inputs ports: “on” port and “off” port. Events on
“on” (resp. “off”) port allow to turn on (resp. off) the burner.
A set of specifications involving possibilities that a faulty
behavior of the burner emerges has been defined in order to
study some unusual or faulty operations. The specifications are
expressed as follows (see Figure 2):

• When an input event “on” is applied to the model
whose initial state is “OFF” , the possibility to remain
in “OFF” is 0.3 and the possibility of state transition
to state “IGN” is 0.8.

• When an input event “off” is applied to the model
whose initial state is “OFF” , the possibility to remain
in “OFF” is 0.9 and the possibility of state transition
to state “EXT” is 0.3.

• When an input event “off” is applied to the model
whose initial state is “ON” , the possibility to remain
in “ON” is 0.2 and the possibility of state transition
to state “EXT” is 0.9.

• When an input event “on” is applied to the model
whose initial state is “ON” , the possibility to remain
in “ON” is 0.7 and the possibility of state transition
to state “IGN” is 0.5.

• When an input event “on” is applied to the model
whose initial state is “IGN” , the possibility to remain
in “IGN” is 0.3 and the possibility of state transition
to state “ON” is 0.7.

• When an input event “off” is applied to the model
whose initial state is “IGN” , the possibility of state
transition to state “ON” is 0.2 and the possibility of
state transition to state “OFF” is 0.8.

• When an input event “on” is applied to the model
whose initial state is “EXT” , the possibility of state
transition to state “ON” is 0.8 and the possibility of
state transition to state “OFF” is 0.3.

• When an input event “off” is applied to the model
whose initial state is “EXT” , the possibility to remain
in “EXT” is 0.4 and the possibility of state transition
to state “OFF” is 0.7.

253Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

Figure 2. State automaton of the model Burner.

• In the state “EXT” ,there are two possible internal
transitions: one is to state “ON” with possibility 0.3
and the other to the state “OFF” with possibility 0.9.
The model generates an output event (“B ON” or
“B OFF”) according to the transition.

• In the state “IGN” there are two possible internal
transitions: one is to state “ON” with possibility 0.8
and the other to the state “OFF” with possibility 0.4.
The model generates an output event (“B ON” or
“B OFF”) according to the transition.

2) DEVSimPy Modeling: The DEVSimPy model is given
in Figure 3. It is a coupled model involving three atomic
models:

• An atomic model Generator allowing to generate the
inputs events sent to the burner atomic model;

• The atomic model Burner which implements the
fuzzy behavior of the system using three FCL systems;
it has two input ports corresponding to the “on” and
“off” ports and two outputs corresponding to the
“B ON” and “B OFF” ports. The automaton of this
model (see Fig. 2) is expressed through three set of
rules included in three different files embedded in the
model. Figure 3 depicts the file corresponding to the
δint function.

• An atomic model Observer which allows to print
the obtained solutions issued from the burner atomic
model which implements a fuzzy behavior. Some of
the obtained printed results are shown in Figure 4.

We have to highlight that, as it can be seen in Figure 3,
the defuzzification method is called Dict. In fact it is not a
true defuzzification method since the fuzzification does not
deal with numerical value but instead a complex structure
(a dictionary) involving the potential states. For this reason,
no classical defuzzification methods (as COG, COGS, LM,
RM, etc.) can be used. The user has to define manually after

Figure 3. The DEVSimPy implementation of the Burner coupled model.

a function that according to the possibility values obtained
after applying the “defuzzification” method Dict, what is the
selected state. In regular cases, the user can give priority to
the state value possibility being the greatest.

We can point out the three following main advantages
of the proposed implementation. First, the use of the FCL
language allows a DEVS modeler to access and manipulate
both numerical and linguistic information under one common
framework. The rules generated by the fuzzy inference are
easy to extract and they are already in an understandable,
human readable format. Second, the design of the fuzzy
controller system is flexible because membership functions can
be defined in a large variety of shapes. Third, a FCL system can
be developed with the use of a straightforward one-pass build-
up procedure. This will permit to avoid a tedious and time
consuming activity, especially for the novice fuzzy modeler
(as it is often the case for a DEVS modeler).

3) DEVSimPy Simulation: Some simulation results col-
lected by the Observer model are presented in Figure 4. They
highlight the interest in using fuzzy logic in the study of such
a system. For example, the possibility that the burner sub-
system can stay in the state “OFF” despite the fact that an input
event should have changed the state of the burner sub-system is
expressed in Figure 4. The results obtained by simulation of the
model of Figure 3 with an input event “on” and an initial state
of the burner system being “OFF” show that the possibility to
be in the state “OFF” after the external transition execution
due to the input event “on” is 0.3 while the possibility to
change to state “IGN” is 0.8. In the same way when the state
of the burner sub-system is “EXT” after an internal transition,
an output event is generated by the burner sub-system: the

254Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

possibility of a “B OFF” event is 0.9 while the possibility of
a “B ON” event is 0.3.

Figure 4. Simulation results for the external transition function and the output
function of the Burner model.

V. CONCLUSION AND FUTURE WORK

This paper proposes an approach to integrate fuzzy logic
control into the DEVSimPy framework using FCL language.
This approach leans on the coupling of FCL systems with the
classical DEVS formalism. The concepts of fuzzy logic control
have been introduced in the field of DEVS through an uncom-
plicated integration scenario. Fuzzy logic controller systems
are relatively simple to design in the DEVSimPy framework
using FCL system specifications. Involved mathematical in-
sight was not required and the process relied more on intuition
and experience for a DEVS modeler. A pedagogical example
has been introduced and implemented into DEVSimPy in order
to validate the presented approach. This work can further be
developed in the following areas: (1) The fuzzification of
the time advance function has not yet been validated. We
are currently working on this validation using a pedagogical
example requiring the modeling of uncertainty of the time ad-
vance function. (2) We plan to combine fuzzy logic and neural
networks in the framework of the DEVSimPy environment. By
cooperating, the two technologies could combine their advan-
tages in order to explain the results of neural networks and
to simplify the development of fuzzy rules. (3) A last future
orientation concerns fuzzy Inductive modeling [24]. The idea is
to design models from observations of Input/Output Behavior.
Fuzzy inductive modeling leans on the following four steps:
(i) Discretization of quantitative information; (ii) Reasoning
about discrete categories; (iii) Inferring consequences about
categories; (iv) Interpolation between neighboring categories
using fuzzy logic. The future work will also concern the
application of the fuzzy modeling and simulation on real cases
such as the prediction of the water consumption on the Corsica
Island in order to plan the production of water using a water
distribution network all over the country or the forecasting of
rainfall on the island in order to predict flood or land drought.

REFERENCES

[1] K. Saleem, “Fuzzy time control modeling of discrete event systems,”
in Proc. of the World Congress on Engineering and Computer Science,
International Association of Engineers (IAENG), 2008, pp. 683–688.

[2] M.-J. Son and T.-W. Kim, “Torpedo evasion simulation of underwater
vehicle using fuzzy-logic-based tactical decision making in script tactics
manager,” Expert Syst. Appl., vol. 39, no. 9, Jul. 2012, pp. 7995–8012.

[3] P. A. Bisgambiglia, L. Capocchi, P. Bisgambiglia, and S. Garredu,
“Fuzzy inference models for discrete event systems,” in Fuzzy Systems
(FUZZ), 2010 IEEE International Conference on, July 2010, pp. 1–8.

[4] Y. Kwon, H. Park, S. Jung, and T. Kim., “Fuzzy-devs formalism :
Concepts, realization and application,” in Proc. of AIS, 1996, pp. 227–
234.

[5] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, 1965, pp.
338–353. [Online]. Available: http://www-bisc.cs.berkeley.edu/Zadeh-
1965.pdf [accessed: August, 2014]

[6] L. Capocchi, J. F. Santucci, B. Poggi, and C. Nicolai, “DEVSimPy:
A collaborative python software for modeling and simulation of devs
systems,” in Proc. of 20th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, June, pp.
170–175.

[7] L. Capocchi. DEVSimPy software. [Online]. Available:
http:// code.google.com/p/devsimpy/ [accessed: August, 2014]

[8] I. E. C. technical committee, “Industrial process measurement and
control,” IEC 61131 - Programmable Controllers, Tech. Rep., 2000,
part 7: Fuzzy control programming. IEC.

[9] J. Kelber, S. Triebel, K. Pahnke, and G. Scarbata, “Automatic generation
of analogous fuzzy controller hardware using a module generator
concept,” in Proc. of 2nd European congress on intelligent techniques
and soft computing, 1994, p. 8 pages.

[10] G. Nhivekar, S. Nirmale, and R. Mudholkar, “A survey of fuzzy logic
tools for fuzzy-based system design,” vol. ICRTITCS, no. 9, February
2013, pp. 25–28, published by Foundation of Computer Science, New
York, USA.

[11] M. Umano, M. Mizumoto, and K. Tanaka, “FSTDS system: A fuzzy-set
manipulation system.” Inf. Sci., vol. 14, no. 2, 1978, pp. 115–159.

[12] W. L. Fellinger, “Specification for a fuzzy systems modelling language.”
Ph.D. dissertation, 1978, ph.D. Thesis, Oregon State Univ., Corvallis.

[13] R. Liebscher, “PyFuzzy python package,” http://pyfuzzy.source-
forge.net/ [accessed: August, 2014], 2013.

[14] B. P. Zeigler, “An introduction to set theory,” ACIMS Laboratory,
University of Arizona, Tech. Rep., 2003. [Online]. Available:
http://www.acims.arizona.edu/EDUCATION/ [accessed: August, 2014]

[15] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and
Simulation, Second Edition. Academic Press, 2000.

[16] O. Cordón, “A historical review of evolutionary learning
methods for mamdani-type fuzzy rule-based systems: Designing
interpretable genetic fuzzy systems,” Int. J. Approx. Reasoning,
vol. 52, no. 6, Sep. 2011, pp. 894–913. [Online]. Available:
http://dx.doi.org/10.1016/j.ijar.2011.03.004 [accessed: August, 2014]

[17] J. S. Bolduc and H. Vangheluwe, “The modelling and simulation
package pythondevs for classical hierarchical devs,” McGill University,
Tech. Rep., 2001, mSDL technical report MSDL-TR-2001-01.

[18] F. Pérez, B. E. Granger, and J. D. Hunter, “Python: An ecosystem for
scientific computing,” Computing in Science and Engineering, vol. 13,
no. 2, 2011, pp. 13–21.

[19] K. J. Millman and M. Aivazis, “Python for scientists and engineers,”
Computing in Science and Engineering, vol. 13, no. 2, 2011, pp. 9–12.

[20] H. Langtangen, A primer on scientific programming with Python.
Springer-Verlag New York Inc, 2011, vol. 6.

[21] N. Rappin and R. Dunn, WxPython in action. Greenwich, Conn:
Manning, 2006.

[22] F. J. Blanco-Silva, Learning SciPy for Numerical and Scientific Com-
puting. Packt Publishing, 2013.

[23] T. Oliphant, A Guide to NumPy. Trelgol Publishing, Spanish Fork,
UT, 2006, vol. 1.

[24] J. Moreno-Garcia, J. Castro-Schez, and L. Jimenez, “A fuzzy inductive
algorithm for modeling dynamical systems in a comprehensible way,”
Fuzzy Systems, IEEE Transactions on, vol. 15, no. 4, Aug 2007, pp.
652–672.

255Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

