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Abstract - This paper presents ideas and approaches to design, 

implementation and validation of simulators using the 

program generation approach. This approach is well presented 

in today’s industrial control systems configurators. It has now 

extensive use also in embedded systems design and 

implementation. Unfortunately, the validation of the generated 

control systems usually is not part of the generating tool. 

Results of simulator implementation using the program 

generation approach and their validation are presented. 

Analyses of problems found and the steps for problem fixing 

are presented in the context of increasing the system model 

reliability. This paper also presents the validation of the 

program generation approach for design and implementation 

of object simulators and how the quality of the simulator can 

be increased using validation techniques. 

Keywords – simulation validation; program generation; re-

design after validation; model reliability. 

I.  INTRODUCTION 

The area of Validation and Verification (V&V) of system 
design and system modelling and simulation has been a hot 
topic for the last more than three decades [1][2]. A huge 
number of papers have been written on it. A large number of 
tools for V&V of different complexity has been designed, 
implemented and used. In this paper some validation aspects 
will be discussed. Ways to improve the model of the 
simulated system will also be discussed. 

It is clear that there is no perfect solution for any 
validation problem. This is based on the generic fact that 
human activities of any kind are not only formal (scientific), 
but informal (art) too. The titles of two basic (very formal) 
too often cited books help to prove this – The Art of 
Computer Programming by Donald Knuth [22] and The Art 
of Simulation by K.D. Tocher [23]. Nobody can eliminate all 
problems and errors in system models and their 
implementation; here, an approach will be presented how it 
will be possible to increase models’ reliability and to 
decrease the risk of design and implementation failures. The 
approach ‘I was smart, I thought’ is always valid; but, for the 
engineering practice, is needed something much more stable. 
Elements of these approaches will be presented hereafter.  

Simulator-based studies of theories, algorithms and their 
implementation validity today are old and extensively 
exploited topics. These include vehicle, flight, nuclear power 
plant, robots and many other simulators [6][7][8][9]. 
Computer-based simulators of many different complex 
objects are a reality today. First, they appeared in military, 

aircraft and nuclear power plant applications; now they are 
available everywhere. Simulation of various systems has a 
lot of advantages compared to experimenting and using the 
actual systems. Such an advantage is the possibility to train 
the personnel to operate various types of machines, or to use 
such simulations in preparation and optimization of control 
algorithms, or to repeat and analyse specific situations. 

In the area of control systems design, there are many 
implementation approaches – from ad-hoc design and 
programming to fully automated code generation [10]. One 
specific approach to control systems implementation is the 
program generation. Using the same approach for simulator 
implementation is very promising, too. This approach 
reduces the amount of investments and risks in the design 
and implementation phases of the control system design. 
Simulators of that type are not used only for control system 
tests and improvements. Personnel training and abnormal 
situations analyses are other areas of their use.  

In this paper we discuss not only validation of generated 
control systems, but validation of the program generation 
approach as a validated basis for control systems and 
simulators generation.  

The paper is structured as follows: Section II presents 
validation techniques for simulators. Section III presents the 
program generator used for simulator generation and its 
formal model. Section IV presents validation of the 
implemented simulators; Section V is the conclusion.   

II. VALIDATION TECHNIQUES FOR SIMULATORS 

To check that a programmed system implements just 
what is designed, an analyst needs to verify that system. 
Many methods have been developed over time to achieve 
this [2][11]. Additionally, the analyst has to check that the 
implementation is free of errors. But one question has not 
been answered yet, namely whether the design is correct and 
if the conceptual model is an accurate representation of the 
system it has to represent. 

Let us start with the presumption that the validation is a 
compulsory element of the activities and procedures for 
improving the quality of the generated software as well as 
that of the whole system. Validation can be a "process of 
evaluating a system or its components in the process of its 
development or at its end to determine whether they satisfy 
specified requirements" [12] or a "process of collection of 
information showing that both software and associated 
products satisfy the system requirements at the end of each 
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cycle of its life, as well as satisfy some user needs in a 
specific case". 

Simulators, as software products, can be created using 
every one of the four basic models for development: 
(i) development of a new product; (ii) modification; 
(iii) configuration / reconfiguration, and (iv) use of ready-
for-use software applications (through the "Pipes & Filters" 
architecture). In case of simulators produced by program 
generation, the very good results gives the method for 
validation of product type “configuration / reconfiguration”. 
On this basis, a modification of the classical methodology for 
validation of this class of applications was implemented. The 
main characteristics of this new approach are the following:  

Validation when creating a new software product using the 

"Configure/Reconfigure" approach 

It is performed in two main ways: 

 Validation of the  basic software; 

 Validation of the configuration data. 
The validation of the basic software is done by using the 

existing software (by applying one of the two options). 

 For each subsystem and for each module responsible 
for any of the functions of the new SW; 

 For each operation of the basic SW which results in 
a change of configuration/reconfiguration of the SW. 

Validation of the configuration data is similar to a new 
program validation. 

Data validation 

Validation of data is divided into two activities: 

 Validation of data values; 

 Validation of techniques and methods for data 
storage, modification and use. 

In both cases, the validation has to determine whether the 
data are used correctly and whether they allow to develop 
SW that will function correctly. 

Validation of data values 

The idea is to determine the correctness of every data at 
every moment of the software operation. 

There exist different forms, some of which are entirely 
manually implemented, and other are fully automated. 

 Check if the input signals are received in the right 
places; 

 Check whether the input signals comply with the 
criteria for quality and correctness; 

 Check for correctness of the reactions generated by 
the input signals. 

It is a good practice first to perform validation using 
specially developed test environment, and only after that 
perform it in the actual environment. 

Validation of the data management system 

These are validation techniques and methods for data 
storage, modification and use. They are applicable in all 
cases, whether there are automated tools for database 
management or not. 

The selection of validation techniques depends on the 
type of stored information and its usage. For the purpose of 

validation of program generated simulators, only items that 
affect the validated operation are checked. 

Validation as  part of a system 

The final validation results from the successful validation 
of the following elements: 

 Evaluation as a part of the system; 

 Validation as part of a technological process; 

 Product validation. 

This is very important in case of a “partial” or “semi-
natural” simulator.  

The features of validation of a software application as 
part of an integral system are: 

 In this case, in addition to the validation of software, 
a number of activities to validate the integral system 
are performed; 

 Evaluation of the relation 'Requirements to the 
requirements − requirements to the software'; 

 In some cases of application development (using 
pre-programed software pieces, configuration/ 
reconfiguration) validation on system level can be 
performed directly. 

 

III. THE PROGRAM GENERATOR PRGEN 

The PrGen program generator is designed to create 
distributed real-time control systems. It is implemented in 
many different versions [13][14][15]. It is based on an 
extended Moore machine implementing specific actions in 
each node of the state machine. Specific elements of its 
design are reflecting possibilities to generate both stand-
alone and distributed systems. A graph representation of the 
control algorithms is chosen. The system can be described by 
its activities. Each activity is a separate thread. After some 
model and library extensions, the PrGEn started to be used 
also for simulator generation. 

The PrGen program generator is designed to answer the 
following requirements [14][15]: 

 hybrid object/process configuration specification 

 an object model facilitating the implementation of 
open and reconfigurable systems; 

 a process model capturing both the reactive and the 
transformational aspects of system behavior in the 
context of various types of control systems; 

 predictable scheduling of process execution and 
communication in the context of local and remote 
subsystems interactions; 

 support for modern software engineering techniques 
such as program generation, formal verification of 
process and process interaction, etc. 

As has been pointed out by Angelov and Ivanov [14] the 
specification of system reactions and signal transformation is 
very important for simulator quality and model validation. 
They can be formally presented as follows: 
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Specification of system reactions 

System reactions can be defined as functions, specifying 

the output signals, generated in response to certain 

activating events. R = { ri } , where :    

ri  :     А  E  C  Y 

It can be shown that the function ri is a composite 

function, i.e., ri = oi  pi, where pi  is a state transition 

function and oi is an output function. These are defined 

below as follows: 

 pi is a state transition function that can be generally 

defined as:  pi  :  А  E  C  A 

Consequently, am  A we can specify a subset of 

successor states:  
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This will ultimately result in the construction of the state 

transition graph of process P. 

 oi is an output function, i.e:  oi: A  Y 

Consequently, the reaction function ri  can be specified as a 

composition of the above two functions: 

ri : A  E  C  Y  A  E  C  ip
  A  io

 Y 

Specifically, the above transformation implies that 

 ri  R : ri  yk = f(a(t)), which follows the well known 
definition of the Moore machine. 

Specification of sygnal transformations 

Signal transformation functions specify how the output 
signals are generated within the corresponding system 
reactions and the associated process states. Specifically,  

 yk Y  sk  S  and; 

 sk : )()( tytX kk  , kX  X 

In one specific case yk = const. This case is common for a 
class of discrete controllers, i.e., the so-called state-logic 
controllers, whereby the controller generates predefined 
combinations of discrete on/off control signals, within 
various operators (reactions) associated with the 
corresponding controller states. 

In the general case, yk may be a complex function that 
can be represented as a composition of simple functions, i.e.:

 
kk

l

k

l

k

lk wwwwy 121 ........  , 

where 

i

jw
 are basic application functions that are usually 

implemented as a library of standard function modules 
(FM’s). The above composition corresponds to a sequence of 
computations, which can be described by means of two types 
of models: 

(1) Conventional control flow model, such as 

flowcharts, computation graphs, etc. 

(2) Data flow models, e.g., (quasi) analog signal flow 

diagrams. 
The presented mathematical model meets all the formal 

requirements to it. Formally, an extended Moore machine 
implementing activities (actions) of analogue, discrete and 
communication type at any state node can represent most of 
the industrial systems and objects available today. It is not 
limited either by numerical transformations or by logical 
constructions.  

 

IV. VALIDATION OF IMPLEMENTED SIMULATORS 

Below, simulators of different objects and validation of 
their conceptual models and implementations will be 
presented. 

 Harbour crane 

The simulated harbour crane is of the type shown in 
Figure 1. It has to be modelled for the following actions: 

 A1: Crane with no container, turning to container 
and lowering hook.  

 A2: Crane with container, lifting the container and 
turning to the ship.  

 A3: Lowering the load and positioning the container 
into the ship.  

 A4:  Empty crane, from initial position (turned to the 
port). Turning to the ship, positioning above 
container, lifting load and unloading it into port.  

Each action consists of several different movements in 
vertical and horizontal directions. Additional limits 
(dimensions) for horizontal and vertical movements are 
included.   

The motivation to design and implement this simulator is 
that experiments with the real crane are dangerous and 
expensive and that the exploitation personnel need a full-
time and functional training environment. 

 

 
Figure 1. Harbor Crane 
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The crane has four different mechanical movements: turn 
around vertical axe, grapple lifting/lowering, grapple control 
and grapple horizontal shifting. Additionally the crane can 
move along its railway but it is out of scope of the presented 
simulator. The mechanical construction is independent for 
each of these movements. They can be started 
simultaneously but interviewing operators it was found that 
they run every movement separately. The explanation was 
that in the other case the crane can lose its stability. Because 
of this, limit for simultaneous movements, limits for 
horizontal and vertical speed, etc. have been incorporated in 
the simulator. A presentation of the MATLAB® models of 
one of the crane’s movements is shown in Figure 2a and 
Figure 2b.  

The simulator includes models for all movements, as well 
as simulation for operator’s interface devices, predictor of 
the absolute (3D) grapple position and a load simulator.  

 
Figure 2a. Harbor Crane grapple non-linear model 

 
Figure 2b. Harbor Crane grapple discrete model 

 

The motor control is implemented by drive controllers 
connected to the main controller via Profibus. To make 
simulation easier Profibus was substituted with MODBUS. 
The main controller supported both protocols. The 
simulation of Profibus connections by MODBUS is shown in 
Figure 3. 

 

 
 

Figure 3. Harbor Crane Profibus/MODBUS model 

Validation of the designed simulator envisaged that in the 
MATLAB® environment after structural and parametric 
identification the mathematical model and real data are 
acceptably close. After that a real simulator was 
implemented. It was developed using the PrGen program 
generator and its modules library. Real-time execution is 
done on single-board ARM computer equipped with 
peripheral devices and communication modules 
corresponding to the real object. Mathematical 
transformations are identical to these implemented in 
MATLAB. Surprisingly, the results from the simulator were 
very different from the MATLAB results. Detailed data 
validation was implemented. Finally it was found that the 
main difference came from the different accuracy in floating-
point calculations. After passing incorrect data through non-
linearities we received results different by 20% from the 
original ones. This problem was solved using calculations 
with extended accuracy. Sensitivity of some non-linear 
elements was changed as well.  Results after simulator tuning 
for actions A1 to A4 are shown in Table 1. 

 
TABLE 1. COMPARISON BETWEEN CRANE REAL DATA AND SIMULATOR 

OUTPUTS 

 

N.  

Measure-

ments 

Crane 

(samples) 

measure-

ments 

Simulator 

(samples) 

Min. 

Movemen

t Acc. % 

Max. 

Moveme

nt Acc. 

% 

Total 

Acc. 

% 

A 1 680,000 890,000 95 98 97 

A 2 1, 280,000 1,460.000 94 97 95 

A 3 1,800,000 1,960,000 95 98 97 

A 4 3,640,000 4,000,000 93 97 96 

Data validation using plotting is presented in Figure 4 
and Figure 5. They show the similarity between real data and 
simulator outputs. They demonstrate the very high quality of 
the simulation. This made possible development and fine 
tuning of the crane control system and it also reduced 
development costs. 
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Figure 4. Harbor Crane simulator and experimental data comparison:  

simulation of grapple horizontal movement; 

 Figure 5. Harbor Crane simulator and experimental data comparison:  
simulation of grapple vertical movement 

 

 Large-scale textile plotter 

Similar approach for validation of the quality of 
simulation was used for a large-scale textile plotter. The 
motivation to invest time and money in this was the 
requirements to combine maximal performance and 
geometrical accuracy.  

Printing drawings with a length of 5 or more (up to 20) 
meters is one of the available solutions to prepare the fabric 
cutting sketch for real cutting. Several different solutions for 
this process are known; but one of the best is to draw this 
sketch on an unbreakable paper sheet with the required 
length. This is done by a special kind of plotters. Normally, 
they are of flat-bed type. The simulator of a plotter of that 
type and its validation will be presented here.  

The scheme of the plotter is presented in Figure 6 and 
Figure 7. 
 

Figure 6. Large-scale textile plotter - top view 

Kinematics and wiring schemes of the plotter are shown 
in Figure 8 and Figure 9. The closed loop kinematics, shown 
in Figure 8 and Figure 9, generates dynamics problems based 
on the fact that movements on axis X or Y need both motors 

to work but movement in direction with tg α = ±1 engages 
only one of the motors which has to move both the bridge 
and the head. 

 

Figure 7. Large-scale textile plotter - side view 

Simulation of such a dynamics is rather complicated. The 
weight of the object to be moved varies 20 times – it is only 
the head or both head and bridge. According to the angle of 
movement, every motor has a different load. The load varies 
all the time when the head has to draw some curve. 
Identification and modelling of that plotter are out of the 
scope of this paper. Here, we will discuss the simulator and 
its validation. 

 
Figure 8. Kinematics scheme 
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Figure 9. Wiring scheme 

The simulation procedure is implemented in two different 
types of complexity. The first one is a simple computer 
simulation. The second is a parallel run of the simulator and 
the real machine. The possibility to run both types of 
simulation is the reason to avoid usage of MATLAB and 
SIMULINK for a real-time test-bed. The simulator is 
implemented on a 32-bit computer with a math co-processor 
running a real-time operating system and the real-time 
interpreter of the generated by the PrGen system. For testing 
purposes, it is equipped with a display having appropriate 
dimensions and resolution. The communication between the 
plotter controller and the simulator meets the requirements 
for Real-Time protocols. It is capable of transferring all the 
information for simulation and for the system log in a single 
control time interval. Visualisation and log modules of the 
simulator draw and save required and actual trajectories, 
internal parameters, etc. 

Validation of the implemented simulator is done using 
model and data validation. Model validation is done off-line 
comparing real data and mathematical model outputs. After 
tuning, the mathematical model is implemented in the 
simulator. The simulator computational model is tuned again 
using the same approach. Real data are compared to the 
simulator outputs. Main differences are found in calculations 
accuracy. It follows from both calculation orders and 
numerical accuracy. After re-ordering calculation sequences 
in the simulator in the same way as they are done in 
MATLAB and increasing floating point accuracy both 
MATLAB and real simulator calculations become practically 
identical.  

The implemented simulator was used for two different 
purposes: 1) to develop and implement new control 
algorithms to increase plotting accuracy and speed; 2) to 
analyse problems in drawn sketches, frame stitching, etc.  

Using this simulator in simulated time (fast time) made 
possible to run long-lasting experiments (taking tens of 
minutes in normal speed) in minutes and thus enabled 
extensive experiments including full drawing of large 
sketches. 

The simulator validity was proven using data validation 
on several levels. First, there was model and object output 
comparison implementing one and the same input sequences. 
Second, there was geometry accuracy validation. Drawn on 
paper and calculated by the simulator sizes were compared. 
All differences had the acceptable tolerance of ±0.25 mm, 
which is the initial requirement for mechanical accuracy.   

V. CONCLUSION 

This paper presented the validation of the program 
generation approach for design and implementation of object 
simulators and how the quality of the simulator can be 
increased using validation techniques. The presented results 
confirm that program generation is a promising way to 
implement object simulators with hardware and software 
structures representing the modelled object very closely. 
Once the program generator internal model is validated it 
becomes a useful tool for implementation of both simulators 
and control systems. The validation of the tool and generated 
by it systems are separated.  

Validation of the implemented simulators follows both 
approaches – model validation and data validation. By 
implementing sequentially these validation techniques, the 
designed simulator can achieve required accuracy and 
functionality.  

Using one and the same environment and tool for both 
controller and simulator building has the advantage to use 
only one tool for everything. This makes possible to 
distribute all changes in every building element immediately 
both in the controller and the simulator.  
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