
Improving Simulators Quality Using Model and

Data Validation Techniques

Industrial Project Examples

Vesselin Gueorguiev
Technical University Sofia,

Sofia, Bulgaria

e-mail: veg@tu-sofia.bg

Abstract - This paper presents ideas and approaches to design,

implementation and validation of simulators using the

program generation approach. This approach is well presented

in today’s industrial control systems configurators. It has now

extensive use also in embedded systems design and

implementation. Unfortunately, the validation of the generated

control systems usually is not part of the generating tool.

Results of simulator implementation using the program

generation approach and their validation are presented.

Analyses of problems found and the steps for problem fixing

are presented in the context of increasing the system model

reliability. This paper also presents the validation of the

program generation approach for design and implementation

of object simulators and how the quality of the simulator can

be increased using validation techniques.

Keywords – simulation validation; program generation; re-

design after validation; model reliability.

I. INTRODUCTION

The area of Validation and Verification (V&V) of system
design and system modelling and simulation has been a hot
topic for the last more than three decades [1][2]. A huge
number of papers have been written on it. A large number of
tools for V&V of different complexity has been designed,
implemented and used. In this paper some validation aspects
will be discussed. Ways to improve the model of the
simulated system will also be discussed.

It is clear that there is no perfect solution for any
validation problem. This is based on the generic fact that
human activities of any kind are not only formal (scientific),
but informal (art) too. The titles of two basic (very formal)
too often cited books help to prove this – The Art of
Computer Programming by Donald Knuth [22] and The Art
of Simulation by K.D. Tocher [23]. Nobody can eliminate all
problems and errors in system models and their
implementation; here, an approach will be presented how it
will be possible to increase models’ reliability and to
decrease the risk of design and implementation failures. The
approach ‘I was smart, I thought’ is always valid; but, for the
engineering practice, is needed something much more stable.
Elements of these approaches will be presented hereafter.

Simulator-based studies of theories, algorithms and their
implementation validity today are old and extensively
exploited topics. These include vehicle, flight, nuclear power
plant, robots and many other simulators [6][7][8][9].
Computer-based simulators of many different complex
objects are a reality today. First, they appeared in military,

aircraft and nuclear power plant applications; now they are
available everywhere. Simulation of various systems has a
lot of advantages compared to experimenting and using the
actual systems. Such an advantage is the possibility to train
the personnel to operate various types of machines, or to use
such simulations in preparation and optimization of control
algorithms, or to repeat and analyse specific situations.

In the area of control systems design, there are many
implementation approaches – from ad-hoc design and
programming to fully automated code generation [10]. One
specific approach to control systems implementation is the
program generation. Using the same approach for simulator
implementation is very promising, too. This approach
reduces the amount of investments and risks in the design
and implementation phases of the control system design.
Simulators of that type are not used only for control system
tests and improvements. Personnel training and abnormal
situations analyses are other areas of their use.

In this paper we discuss not only validation of generated
control systems, but validation of the program generation
approach as a validated basis for control systems and
simulators generation.

The paper is structured as follows: Section II presents
validation techniques for simulators. Section III presents the
program generator used for simulator generation and its
formal model. Section IV presents validation of the
implemented simulators; Section V is the conclusion.

II. VALIDATION TECHNIQUES FOR SIMULATORS

To check that a programmed system implements just
what is designed, an analyst needs to verify that system.
Many methods have been developed over time to achieve
this [2][11]. Additionally, the analyst has to check that the
implementation is free of errors. But one question has not
been answered yet, namely whether the design is correct and
if the conceptual model is an accurate representation of the
system it has to represent.

Let us start with the presumption that the validation is a
compulsory element of the activities and procedures for
improving the quality of the generated software as well as
that of the whole system. Validation can be a "process of
evaluating a system or its components in the process of its
development or at its end to determine whether they satisfy
specified requirements" [12] or a "process of collection of
information showing that both software and associated
products satisfy the system requirements at the end of each

243Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

cycle of its life, as well as satisfy some user needs in a
specific case".

Simulators, as software products, can be created using
every one of the four basic models for development:
(i) development of a new product; (ii) modification;
(iii) configuration / reconfiguration, and (iv) use of ready-
for-use software applications (through the "Pipes & Filters"
architecture). In case of simulators produced by program
generation, the very good results gives the method for
validation of product type “configuration / reconfiguration”.
On this basis, a modification of the classical methodology for
validation of this class of applications was implemented. The
main characteristics of this new approach are the following:

Validation when creating a new software product using the

"Configure/Reconfigure" approach

It is performed in two main ways:

 Validation of the basic software;

 Validation of the configuration data.
The validation of the basic software is done by using the

existing software (by applying one of the two options).

 For each subsystem and for each module responsible
for any of the functions of the new SW;

 For each operation of the basic SW which results in
a change of configuration/reconfiguration of the SW.

Validation of the configuration data is similar to a new
program validation.

Data validation

Validation of data is divided into two activities:

 Validation of data values;

 Validation of techniques and methods for data
storage, modification and use.

In both cases, the validation has to determine whether the
data are used correctly and whether they allow to develop
SW that will function correctly.

Validation of data values

The idea is to determine the correctness of every data at
every moment of the software operation.

There exist different forms, some of which are entirely
manually implemented, and other are fully automated.

 Check if the input signals are received in the right
places;

 Check whether the input signals comply with the
criteria for quality and correctness;

 Check for correctness of the reactions generated by
the input signals.

It is a good practice first to perform validation using
specially developed test environment, and only after that
perform it in the actual environment.

Validation of the data management system

These are validation techniques and methods for data
storage, modification and use. They are applicable in all
cases, whether there are automated tools for database
management or not.

The selection of validation techniques depends on the
type of stored information and its usage. For the purpose of

validation of program generated simulators, only items that
affect the validated operation are checked.

Validation as part of a system

The final validation results from the successful validation
of the following elements:

 Evaluation as a part of the system;

 Validation as part of a technological process;

 Product validation.

This is very important in case of a “partial” or “semi-
natural” simulator.

The features of validation of a software application as
part of an integral system are:

 In this case, in addition to the validation of software,
a number of activities to validate the integral system
are performed;

 Evaluation of the relation 'Requirements to the
requirements − requirements to the software';

 In some cases of application development (using
pre-programed software pieces, configuration/
reconfiguration) validation on system level can be
performed directly.

III. THE PROGRAM GENERATOR PRGEN

The PrGen program generator is designed to create
distributed real-time control systems. It is implemented in
many different versions [13][14][15]. It is based on an
extended Moore machine implementing specific actions in
each node of the state machine. Specific elements of its
design are reflecting possibilities to generate both stand-
alone and distributed systems. A graph representation of the
control algorithms is chosen. The system can be described by
its activities. Each activity is a separate thread. After some
model and library extensions, the PrGEn started to be used
also for simulator generation.

The PrGen program generator is designed to answer the
following requirements [14][15]:

 hybrid object/process configuration specification

 an object model facilitating the implementation of
open and reconfigurable systems;

 a process model capturing both the reactive and the
transformational aspects of system behavior in the
context of various types of control systems;

 predictable scheduling of process execution and
communication in the context of local and remote
subsystems interactions;

 support for modern software engineering techniques
such as program generation, formal verification of
process and process interaction, etc.

As has been pointed out by Angelov and Ivanov [14] the
specification of system reactions and signal transformation is
very important for simulator quality and model validation.
They can be formally presented as follows:

244Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

Specification of system reactions

System reactions can be defined as functions, specifying

the output signals, generated in response to certain

activating events. R = { ri } , where :

ri : А E C Y

It can be shown that the function ri is a composite

function, i.e., ri = oi pi, where pi is a state transition

function and oi is an output function. These are defined

below as follows:

 pi is a state transition function that can be generally

defined as: pi : А E C A

Consequently, am A we can specify a subset of

successor states:

},,........,,{
21 rnnnm aaaFa

and accordingly – a subset of alternative transitions :

).())((&)(&)(

...

);())((&)(&)(

);())((&)(&)(

222

111

tatxcteta

tatxcteta

tatxcteta

rrr n

m

n

m

nm

n

m

n

m

nm

n

m

n

m

nm

This will ultimately result in the construction of the state

transition graph of process P.

 oi is an output function, i.e: oi: A Y

Consequently, the reaction function ri can be specified as a

composition of the above two functions:

ri : A E C Y A E C ip
 A io

 Y

Specifically, the above transformation implies that

 ri R : ri yk = f(a(t)), which follows the well known
definition of the Moore machine.

Specification of sygnal transformations

Signal transformation functions specify how the output
signals are generated within the corresponding system
reactions and the associated process states. Specifically,

 yk Y sk S and;

 sk :)()(tytX kk , kX X

In one specific case yk = const. This case is common for a
class of discrete controllers, i.e., the so-called state-logic
controllers, whereby the controller generates predefined
combinations of discrete on/off control signals, within
various operators (reactions) associated with the
corresponding controller states.

In the general case, yk may be a complex function that
can be represented as a composition of simple functions, i.e.:

kk

l

k

l

k

lk wwwwy 121 ,

where

i

jw
 are basic application functions that are usually

implemented as a library of standard function modules
(FM’s). The above composition corresponds to a sequence of
computations, which can be described by means of two types
of models:

(1) Conventional control flow model, such as

flowcharts, computation graphs, etc.

(2) Data flow models, e.g., (quasi) analog signal flow

diagrams.
The presented mathematical model meets all the formal

requirements to it. Formally, an extended Moore machine
implementing activities (actions) of analogue, discrete and
communication type at any state node can represent most of
the industrial systems and objects available today. It is not
limited either by numerical transformations or by logical
constructions.

IV. VALIDATION OF IMPLEMENTED SIMULATORS

Below, simulators of different objects and validation of
their conceptual models and implementations will be
presented.

 Harbour crane

The simulated harbour crane is of the type shown in
Figure 1. It has to be modelled for the following actions:

 A1: Crane with no container, turning to container
and lowering hook.

 A2: Crane with container, lifting the container and
turning to the ship.

 A3: Lowering the load and positioning the container
into the ship.

 A4: Empty crane, from initial position (turned to the
port). Turning to the ship, positioning above
container, lifting load and unloading it into port.

Each action consists of several different movements in
vertical and horizontal directions. Additional limits
(dimensions) for horizontal and vertical movements are
included.

The motivation to design and implement this simulator is
that experiments with the real crane are dangerous and
expensive and that the exploitation personnel need a full-
time and functional training environment.

Figure 1. Harbor Crane

245Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

The crane has four different mechanical movements: turn
around vertical axe, grapple lifting/lowering, grapple control
and grapple horizontal shifting. Additionally the crane can
move along its railway but it is out of scope of the presented
simulator. The mechanical construction is independent for
each of these movements. They can be started
simultaneously but interviewing operators it was found that
they run every movement separately. The explanation was
that in the other case the crane can lose its stability. Because
of this, limit for simultaneous movements, limits for
horizontal and vertical speed, etc. have been incorporated in
the simulator. A presentation of the MATLAB® models of
one of the crane’s movements is shown in Figure 2a and
Figure 2b.

The simulator includes models for all movements, as well
as simulation for operator’s interface devices, predictor of
the absolute (3D) grapple position and a load simulator.

Figure 2a. Harbor Crane grapple non-linear model

Figure 2b. Harbor Crane grapple discrete model

The motor control is implemented by drive controllers
connected to the main controller via Profibus. To make
simulation easier Profibus was substituted with MODBUS.
The main controller supported both protocols. The
simulation of Profibus connections by MODBUS is shown in
Figure 3.

Figure 3. Harbor Crane Profibus/MODBUS model

Validation of the designed simulator envisaged that in the
MATLAB® environment after structural and parametric
identification the mathematical model and real data are
acceptably close. After that a real simulator was
implemented. It was developed using the PrGen program
generator and its modules library. Real-time execution is
done on single-board ARM computer equipped with
peripheral devices and communication modules
corresponding to the real object. Mathematical
transformations are identical to these implemented in
MATLAB. Surprisingly, the results from the simulator were
very different from the MATLAB results. Detailed data
validation was implemented. Finally it was found that the
main difference came from the different accuracy in floating-
point calculations. After passing incorrect data through non-
linearities we received results different by 20% from the
original ones. This problem was solved using calculations
with extended accuracy. Sensitivity of some non-linear
elements was changed as well. Results after simulator tuning
for actions A1 to A4 are shown in Table 1.

TABLE 1. COMPARISON BETWEEN CRANE REAL DATA AND SIMULATOR

OUTPUTS

N.

Measure-

ments

Crane

(samples)

measure-

ments

Simulator

(samples)

Min.

Movemen

t Acc. %

Max.

Moveme

nt Acc.

%

Total

Acc.

%

A 1 680,000 890,000 95 98 97

A 2 1, 280,000 1,460.000 94 97 95

A 3 1,800,000 1,960,000 95 98 97

A 4 3,640,000 4,000,000 93 97 96

Data validation using plotting is presented in Figure 4
and Figure 5. They show the similarity between real data and
simulator outputs. They demonstrate the very high quality of
the simulation. This made possible development and fine
tuning of the crane control system and it also reduced
development costs.

8000
<=

Relational
operator

AND

du/dt

derivate

<=

0

Constant

[joistick
Strela]

From
Workspace

kStrela

Gain1

kStrela/6

Gain2

1/s

integration

swith

Constant

1

Out 1

Clock

To
Workspace

D
ri

ve
 c

o
n

tr
o

lle
r

2

D
ri

ve
 c

o
n

tr
o

lle
r

1

D
ri

ve
 c

o
n

tr
o

lle
r

4

D
ri

ve
 c

o
n

tr
o

lle
r

3

Upper level controller

246Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

Figure 4. Harbor Crane simulator and experimental data comparison:

simulation of grapple horizontal movement;

 Figure 5. Harbor Crane simulator and experimental data comparison:
simulation of grapple vertical movement

 Large-scale textile plotter

Similar approach for validation of the quality of
simulation was used for a large-scale textile plotter. The
motivation to invest time and money in this was the
requirements to combine maximal performance and
geometrical accuracy.

Printing drawings with a length of 5 or more (up to 20)
meters is one of the available solutions to prepare the fabric
cutting sketch for real cutting. Several different solutions for
this process are known; but one of the best is to draw this
sketch on an unbreakable paper sheet with the required
length. This is done by a special kind of plotters. Normally,
they are of flat-bed type. The simulator of a plotter of that
type and its validation will be presented here.

The scheme of the plotter is presented in Figure 6 and
Figure 7.

Figure 6. Large-scale textile plotter - top view

Kinematics and wiring schemes of the plotter are shown
in Figure 8 and Figure 9. The closed loop kinematics, shown
in Figure 8 and Figure 9, generates dynamics problems based
on the fact that movements on axis X or Y need both motors

to work but movement in direction with tg α = ±1 engages
only one of the motors which has to move both the bridge
and the head.

Figure 7. Large-scale textile plotter - side view

Simulation of such a dynamics is rather complicated. The
weight of the object to be moved varies 20 times – it is only
the head or both head and bridge. According to the angle of
movement, every motor has a different load. The load varies
all the time when the head has to draw some curve.
Identification and modelling of that plotter are out of the
scope of this paper. Here, we will discuss the simulator and
its validation.

Figure 8. Kinematics scheme

0 50 100 150 200 250
0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time [s]

EncoderStrela

From simulation model

From experimental data

0 10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

30

Time [s]

[m
]

Podem [m]

From experimental data

From simulation model

Motor B

Motor A

X

Y

Source roll

Destination roll

B
r
i
d

g
e

D
r
a

w
i
n

g

h
e

a
d

2000

mm

1
0

0
0

m

m

M
o

t
o

r

A

M
o

t
o

r

B

Destination roll

X

Source roll

p
a

p
e

r

Drawing head

1000 mm

247Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

Figure 9. Wiring scheme

The simulation procedure is implemented in two different
types of complexity. The first one is a simple computer
simulation. The second is a parallel run of the simulator and
the real machine. The possibility to run both types of
simulation is the reason to avoid usage of MATLAB and
SIMULINK for a real-time test-bed. The simulator is
implemented on a 32-bit computer with a math co-processor
running a real-time operating system and the real-time
interpreter of the generated by the PrGen system. For testing
purposes, it is equipped with a display having appropriate
dimensions and resolution. The communication between the
plotter controller and the simulator meets the requirements
for Real-Time protocols. It is capable of transferring all the
information for simulation and for the system log in a single
control time interval. Visualisation and log modules of the
simulator draw and save required and actual trajectories,
internal parameters, etc.

Validation of the implemented simulator is done using
model and data validation. Model validation is done off-line
comparing real data and mathematical model outputs. After
tuning, the mathematical model is implemented in the
simulator. The simulator computational model is tuned again
using the same approach. Real data are compared to the
simulator outputs. Main differences are found in calculations
accuracy. It follows from both calculation orders and
numerical accuracy. After re-ordering calculation sequences
in the simulator in the same way as they are done in
MATLAB and increasing floating point accuracy both
MATLAB and real simulator calculations become practically
identical.

The implemented simulator was used for two different
purposes: 1) to develop and implement new control
algorithms to increase plotting accuracy and speed; 2) to
analyse problems in drawn sketches, frame stitching, etc.

Using this simulator in simulated time (fast time) made
possible to run long-lasting experiments (taking tens of
minutes in normal speed) in minutes and thus enabled
extensive experiments including full drawing of large
sketches.

The simulator validity was proven using data validation
on several levels. First, there was model and object output
comparison implementing one and the same input sequences.
Second, there was geometry accuracy validation. Drawn on
paper and calculated by the simulator sizes were compared.
All differences had the acceptable tolerance of ±0.25 mm,
which is the initial requirement for mechanical accuracy.

V. CONCLUSION

This paper presented the validation of the program
generation approach for design and implementation of object
simulators and how the quality of the simulator can be
increased using validation techniques. The presented results
confirm that program generation is a promising way to
implement object simulators with hardware and software
structures representing the modelled object very closely.
Once the program generator internal model is validated it
becomes a useful tool for implementation of both simulators
and control systems. The validation of the tool and generated
by it systems are separated.

Validation of the implemented simulators follows both
approaches – model validation and data validation. By
implementing sequentially these validation techniques, the
designed simulator can achieve required accuracy and
functionality.

Using one and the same environment and tool for both
controller and simulator building has the advantage to use
only one tool for everything. This makes possible to
distribute all changes in every building element immediately
both in the controller and the simulator.

ACKNOWLEDGMENT

This work is funded partially by the Bulgarian NSF under
DRNF02/3 project.

REFERENCES

[1] S. Robinson, Simulation model verification and validation: increasing
the users’ reliability, Proceedings of the 1997 Winter Simulation
Conference ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L.
Nelson.

[2] J.P.C. Kleijenen, Verification and Validation of simulation models,
European Journal of Operational Research, vol. 82, 1995, pp. 145-
162.

[3] G.W. Silvaggio, Emulated Digital Control System Validation in
Nuclear Power Plant Training Simulators,
http://scs.org/upload/documents/conferences/powerplantsim/2011/pre
sentations/Session%207/Westinghouse/silvaggioFullPaper.pdf, [last
accessed: 08.08.2014].

[4] Weilin Li, X. Zhang, and H. Li, Co-simulation platforms for co-
design of networked control systems: An overview, Control
Engineering Practice, vol. 23, 2014, pp. 44–56.

[5] O. Balci, 1997. “Verification, Validation and Accreditation of
Simulation Models.” In Proceedings of the 1997 Winter Simulation
Conference, pp. 135-141.

[6] The Rapid Automotive Performance Simulator (RAPTOR),
http://www.swri.org/4org/d03/vehsys/advveh/raptor/default.htm [last
accessed: 08.08.2014].

[7] M. Pasquier, M. Duoba, and A. Rousseau, Validating Simulation
Tools for Vehicle System Studies Using Advanced Control and

Testing Procedure, http: //www.autonomie.net/docs/6 -

papers/validation/validating_simulation_tools.pdf [last accessed:
08.08.2014].

[8] IAEA, Use of control room simulators for training of nuclear power
plant personnel, Vienna, 2004, IAEA-TECDOC-1411, ISBN 92–0–
110604–1.

[9] Johnstone M., D. Creighton, and S. Nahavandi, Enabling Industrial
Scale Simulation / Emulation Models, In Proceedings of the 2007
Winter Simulation Conference, 2007, pp. 1028-1034.

l 1

l 2

h

α1

α2

r

hcurr

248Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

[10] MathWorks, Generate and verify embedded code for prototyping or
production, http://www.mathworks.com/embedded-code-generation/,
[last accessed: 08.08.2014].

[11] F. G. Gonzalez, Real-Time Simulation and Control of Large Scale
Distributed Discrete Event Systems, Conference on Systems
Engineering Research, 2013, Procedia Computer Science 16 (2013),
pp. 177 – 186.

[12] IEEE Standard Glossary of Software Engineering Terminology, New
York, USA, 1990, ISBN 1-55937-067-X.

[13] N. Baldzhiev, V. Bodurski, and V. Gueorguiev, I. E. Ivanov,
Implementation of Objects Simulators and Validators using Program
Generation Approach, DESE 2011, Dubai, UAE, December 2011.

[14] C. K. Angelov and I. E. Ivanov, “Formal Specification of Distributed
Computer Control Systems (DCCS). Specification of DCCS
Subsystems and Subsystem Interactions”. Proc. of the International
Conference “Automation & Informatics’2001”, May 30 - June 2,
2001, Sofia, Bulgaria, vol. 1, pp. 41-48.

[15] C. K. Angelov, I. E. Ivanov, K. L. Perev, and V. E. Georgiev. Design
for Open and Predictable Automation Systems. Proc. of the 45th
International Scientific Colloquium of the Technical University of
Ilmenau, Oct. 2000, Ilmenau, Germany.

[16] I. E. Ivanov and V. Georgiev, “Formal models for system design”,
Proc. of IEEE spring seminar 27th ISSE, Annual School Lectures,
Bulgaria, 2004,vol. 24, pp. 564-568.

[17] D. Harel, “Statecharts: A visual formalism for complex systems”
Science of Computer Programming 8 (1987) 231-274.

[18] I. E. Ivanov , “Control Programs Generation Based on Component
Specifications”, PhD thesis, 2005, Sofia, (in Bulgarian).

[19] C. K. Angelov, I. E. Ivanov, and A. A. Bozhilov. Transparent Real-
Time Communication in Distributed Computer Control Systems.
Proc. of the International Conference “Automation &
Informatics’2000”, Oct. 2000, Sofia, Bulgaria, vol. 1, pp. 1-4.

[20] A. Dimov, I. E. Ivanov, and K. Milenkov, "Component-based
Approach for Distributed hard Real-time Systems", Information
Technologies and Control, 2, 2005.

[21] A. Dimov and I. E. Ivanov, Towards development of adaptive
embedded software systems, Proceedings of TU Sofia, vol. 62,
book.1, 2012, pp.. 133-140.

[22] D. Knuth, The Art of Computer Programming I, Addison-
Wesley,1968

[23] K. D. Tocher, The Art of Simulation, The English Universities Press
Ltd., 1963

249Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

