
Distributed Simulation on a Many-Core
Processor

Karthik Vadambacheri Manian and Philip A. Wilsey
Experimental Computing Laboratory,

School of Electronic and Computing Systems,
PO Box 210030, Cincinnati, OH 45221–0030

vadambkk@mail.uc.edu, and philip.wilsey@uc.edu

Abstract—Parallel Discrete Event Simulation (PDES) using
distributed synchronization supports the concurrent execution of
discrete event simulation models on parallel processing hardware
platforms. The multi-core/many-core era has provided a low
latency “cluster on a chip” architecture for high-performance
simulation and modeling of complex systems. A research many-
core processor named the Single-Chip Cloud Computer (SCC)
has been created by Intel Labs that contains some interesting
opportunities for PDES research and development. The features
of most interest in the SCC system are: low-latency messag-
ing hardware, software managed cache coherence, and (user
controllable) core independent dynamic frequency and voltage
regulation capability. Ideally, each of these features provide
interesting opportunities that can be exploited for improving
the performance of PDES. This paper reports some preliminary
efforts to migrate an optimistically synchronized parallel simu-
lation kernel called WARPED to an SCC emulation system called
Rock Creek Communication Environment (RCCE). The WARPED
simulation kernel has been ported to the RCCE environment
and several test simulation models have also been ported to the
RCCE environment. Based on initial efforts, some preliminary
insights on how to exploit some of the exotic features of SCC for
increasing the performance of PDES applications is noted.

Index Terms—Parallel and Distributed Simulation, Time Warp,
Many-core processors.

I. INTRODUCTION

Discrete Event Simulation (DES) is widely used for perfor-
mance evaluation across many disciplines, including: computer
systems, computer networks, wired and wireless networks,
emergency evacuation management, wargaming, and others
[1], [2]. Often the simulation models grow very large and
can easily exceed the capabilities of large single-processor
compute platform. Thus, many simulation analysis activities
are based on fairly small simulation models whose behavior
is projected into the larger reality that the simulation is
attempting to model. The results from these projections can be
highly inaccurate [1]. PDES propose to help solve this problem
by running the simulation on a cluster of computers, but it has
thus far failed to deliver a promise of reliable speedup across
many applications. This failure is largely due to the huge
mismatch in speeds of execution vs communication of classic
parallel platforms. The integrated solution and more uniform
performance between communication and computation on

Support for this work was provided in part by the National Science
Foundation under grant CNS–0915337. The Intel c++ compiler used for this
project is provided by Ohio Super Computing Center.

Intel’s SCC [3], [4] many-core solution will provide a key
opportunity for parallel simulation to begin having a dramatic
role in the cloud services community.

In PDES, the concurrently executed simulations commu-
nicate by exchanging time-stamped event messages. Unfor-
tunately, the event processing step in most simulation ap-
plications are fine-grained computations that generate one or
more (but only a few) new events per event execution. One of
the key problems in optimizing parallel simulation is finding
adequate event processing work during the higher latency
event communications. Intel’s SCC many-core processor chip
provides a low latency on-chip communication medium that
should substantially reduce the time disparity between event
processing costs and event communication costs.

The Intel SCC chip also has other features that present
exciting and unique opportunities for optimizing parallel soft-
ware codes. For example, the current SCC chip has cache
memory that does not enforce coherence; it also has program
controlled power and frequency islands allowing independent
frequency/voltage settings among subsets of the processor
cores. From the perspective of optimistically synchronized
parallel simulation (e.g., Time Warp [1], [5]), the ability
to use software to modulate power and frequency islands
provides an opportunity for the simulation kernel to slow the
processing that occur off the critical path and accelerate the
processing on the critical path (within the bounds of satisfying
the total processor thermal envelope). Thus, balancing the
load and potentially accelerating the critical path of the total
parallel simulation (similar to Intel’s dynamic overclocking).
The optimistic nature of Time Warp synchronized simulations
may also allow one to exploit the incoherent caches by
allowing continued execution for some time without forcing
unnecessary coherency checks. However, suitable algorithms
to successfully exploit this are not yet known to the authors.

This work focuses on the potential opportunities between
Time Warp parallel simulation and the Intel SCC many-core
platform. The principle objective of this work is to develop
techniques to affect ultra-high performance parallel simulation
on many-core processors and ultimately on cloud services
provided by clusters of many-core processors. To pursue these
investigations, the WARPED simulation kernel [6] is used.
WARPED was developed at the University of Cincinnati for
supporting large scale simulations (millions of concurrently

32Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

executed simulation objects) on smaller (32-64 node) Beowulf
clusters. WARPED is an excellent starting point for this project
because it is a modular design setup with threaded objects
setup for execution on a heterogeneous Beowulf platform that
contains local (shared memory) and remote (Message Passing
Interface, MPI, based messaging) communication capabilities.

This paper reports on some preliminary explorations to
effectively utilize the SCC many-core processor for efficient
parallel simulation modeling and analysis. This work throws
light on further research for running PDES on many-core
Beowulf clusters. The rest of the paper is organized as follows:
Section II presents some background and related work. Section
III provides a brief introduction to parallel simulation and
WARPED. Section IV describes the challenges faced while
porting WARPED to the RCCE environment. Section V de-
scribes the experimental setup and presents some preliminary
performance results. Section VI presents some future research
directions that we hope to follow with SCC. Finally Section
VII concludes the paper.

II. BACKGROUND AND RELATED WORK

Cloud computing will play a significant role in the future for
providing general purpose and high performance computing
capabilities. Furthermore, the cloud computing platform will
almost certainly be composed primarily of multi-core and
many-core processing nodes. Hence the issues of efficiently
running PDES on multi-core and many-core processors in
cloud infrastructure is an important area of research worth
exploring. Fujimoto et al [7] has analyzed this area and studied
the different issues encountered while running PDES on cloud.
One of the issues is the processing delays of the PDES
simulation due to the load sharing of the node with other
tasks in the cloud. Malik et al [8] has analyzed this issue and
come up with a modified version of the Time Warp protocol
to mitigate this issue.

PDES researchers have also worked to enhance the per-
formance of PDES execution on multi-core processors [9],
[10]. When PDES runs in a cluster of multi-core nodes,
communications between the cores will have substantially
lower latencies than communications between nodes. Bahulkar
et al [9] has studied the behavior of communication between
the cores and between the nodes and their overall impact in
the performance of the simulation. They found that if the
frequently communicating cores are present in the same chip,
it greatly enhances the performance of the PDES. This has lead
them to focus their studies on partitioning and load balancing.

Intel’s SCC chip is an experimental many-core processor
created by Intel Labs mainly for the purpose of many-core
research efforts. SCC is the first Intel chip with x86 compliant
cores on a single die. The die has 48 cores organized into
24 Tiles with 2 x86 cores per Tile (Figure 1). The principle
features of the SCC platform are: (i) hardware support for
message passing between cores implemented by a 2-D on-chip
mesh interconnection network, (ii) an absence of hardware
cache coherency on the Tile caches, and (iii) a fine grained,

software controllable, dynamic power and frequency manage-
ment capability.

Each SCC Tile contains a hardware router, 256KB of L2
cache for each core (2) on the Tile, a 16KB shared Message
Passing Buffer (MPB), and 16KB of L1 caches in each core.
The MPB provides high-performance on-chip message passing
capabilities. The message bandwidth is around 1 GB/s and on-
die 2D mesh bisection bandwidth is 2 Tb/s. The MPB memory
is cached only in L1 cache of the core and hardware coherence
is not enforced. Hence care must be taken while accessing
the MPB memory. Typically the programmer will invalidate
the cache entry before accessing the MPB memory. Since the
caches are incoherent, a shared memory application running
across multiple cores must use software managed coherence
to ensure correct memory accesses.

One more interesting feature of SCC is that the software
control of the operating frequency and voltage of the process-
ing cores. Specifically the operating frequency of the cores
and the 2D communication network can be controlled by the
executing software. As illustrated in Figure 1, the frequency
and voltage adjustment occurs in groups of cores (called
islands) on the chip. Each Tile forms a frequency island and
2x2 groups of Tiles form voltage islands. Thus there are a total
of 28 frequency domains (24 for the processing cores; one each
for the system interface, the voltage regulator controller, and
the 2D communication network and memory controller) and 7
voltage domains (6 domains for the cores and 1 domain for the
2D communication network). All of the cores in a frequency
island will share the same frequency and all cores in a voltage
island will share the same voltage. Frequency changes take
only a few cycles whereas voltage changes occur on the
order of a million cycles. Hence in addition to voltage change
instructions, additional instructions are also provided to check
whether the voltage change is complete. The inter-core latency
within the SCC chip over a 2D-message network is directly
proportional to the number of hops taken by the packet. As
Figure 1 shows, by default 12 cores in each quadrant are
mapped to a specific memory controller. External memory
requests are serviced by these memory controllers.

III. PARALLEL SIMULATION AND WARPED

Research in parallel and distributed simulation focuses
primarily on distributed synchronization mechanisms and the
methods to optimize them [1]. A distributed simulation will
organize a sequential simulation into concurrently executing
parts that are called Logical Processes (LPs). The LP will
concurrently process events (following some synchronization
protocol) and exchange timestamped messages to communi-
cate event information designated for another LP.

There are two main categories of synchronization protocols
for distributed simulation, namely: (i) conservative [11], and
(ii) optimistic [5], [12]. Conservative techniques implement
a strict enforcement of the “happens-before” relationship be-
tween events [13] to synchronize the LP event processing
activities. In contrast, optimistic techniques do not strictly
enforce the event causality relations. Instead optimistically

33Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

M
em

or
y

C
on

tr
ol

le
r

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

M
em

or
y

C
on

tr
ol

le
r

M
em

or
y

C
on

tr
ol

le
r

RR

Tile

RR

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

RR

Tile

R

Tile

R

Tile

R

Tile

R

Tile

M
em

or
y

C
on

tr
ol

le
r

Voltage Island
Frequency
Island

Fig. 1. Architecture of Intel’s SCC Processor

synchronized simulations will have some mechanism to de-
tect and recover from an event causality error. This permits
optimistic techniques to aggressively process the distributed
events and permit greater amounts of parallelism. Of course
this comes at the cost of also potentially triggering causality
violations that must be repaired.

This paper studies parallel simulation on many-core pro-
cessors using a simulation kernel called WARPED [6], [10],
[14]. WARPED is both a general purpose discrete event API
for building simulation models and an implementation of a
discrete event simulation kernel (implementing the aforemen-
tioned API). The WARPED simulation kernel is highly config-
urable and has optimized implementations of a sequential and
a parallel execution mode. The parallel version implements
the Time Warp protocol [1], [5] for synchronization. The
design goals of WARPED are to support exploratory research
in PDES and to simplify the construction of simulation
models for parallel execution. More precisely, the WARPED
API hides the implementation details from the simulation
model developer. The WARPED code also includes several test
simulation models, namely: (i) the classic PHOLD model used
by many parallel simulation researchers [1], (ii) a configurable
simulation model of a RAID-5 storage array, and (iii) a generic
shared memory multi-processor (SMMP). Parallel execution of
VHDL models using the WARPED kernel is also possible using
the SAVANT/TyVIS tools [15].

Originally WARPED was configured as a collection of highly

optimized heavy-weight processes designed to run on Beowulf
clusters containing (single or multiple) single-core processors
using primarily distributed memory and message passing for
communication [6]. More recently the kernel has been ex-
panded and tuned for multi-core processing [10]. While the
work to optimize WARPED for execution on multi-core pro-
cessors is underway, the architecture of many-core processors
contain exotic features such as on die network interconnect,
no hardware cache coherency, dynamic voltage and frequency
regulation, and so on that are not found on conventional multi-
core processors. Hence the results obtained for running PDES
on multi-core processors cannot necessarily be generalized to
many-core processors.

IV. PORTING ISSUES

The experiments with the SCC many-core platform were
performed in a software emulation environment that executes
on a conventional x86 platform. The emulation environment is
called RCCE. The RCCE environment provides a framework
for software development that closely emulates the SCC com-
munication environment. The WARPED kernel and simulation
models are written in C++ and must be migrated to the
constrained, shared memory environment and support libraries
available for the SCC platform.

The primary language environment for SCC is C and the
message passing environment is primarily designed to support
a SPMD/synchronous communication application program-

34Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

ming environment. Fortunately interfacing the WARPED C++
code with the RCCE API is fairly straightforward. However,
there were several challenges to be overcome before the
WARPED simulation models could be successfully executed
in the RCCE emulator, namely: (i) the use of complex static
variables in WARPED, (ii) the asynchronous communication
patterns used in the WARPED simulation models, (iii) WARPED
has variable length messages sent between LPs, and (iv) issues
with the RCCE emulator while executing PDES on more than
30 cores (While this is not a problem that is overcome in
these experiments, this section explains why experiments were
limited to 30 cores in the emulator). Each of these issues is
discussed more fully in the sections below.

A. Static variables issue

The RCCE emulator uses OpenMP to emulate the SCC
message passing environment. If the program running in
RCCE emulator contains static variables, then they will be
initialized only once and shared between all threads. Un-
fortunately WARPED code contains a significant amount of
static variables that are designed to be static to a specific
thread, not to all threads. To overcome this issue the RCCE
manual recommends the usage of the #pragma openmp
threadprivate directive on static variables whenever they
are encountered and the code is compiled. However, in the
current versions of g++, the threadprivate directive only
works for Plaid Old Data-types (POD) such as int, float,
etc and do not work for non POD types such as class objects.
Fortunately Intel’s icpc C++ compiler can process complex
data types in the threadprivate directive. Thus, a licensed
version of the Intel compiler had to be obtained from the Ohio
Supercomputing Center and the WARPED code was modified
to build correctly with the icpc compiler.

B. Asynchronous Communication Pattern

The RCCE communication system is designed to support
synchronous communication, where a message send request
must wait for the corresponding message receive request. This
is not a good match for the asynchronous message passing
scenario programmed into WARPED. That is, a WARPED LP
sends the message asynchronously and continues with other
work. It then periodically polls back to check whether new
messages incoming have arrived. Fortunately there exists an
asynchronous communication library for the RCCE platform
called immediate RCCE (iRCCE) [16]. Unfortunately, the
ping-ping example pattern in the iRCCE manual and other
sample codes in the Many-core Applications Research Com-
munity (MARC) [17] forums have all used both non-blocking
send or receive in the same function of the application and
then they use a blocking call to poll and check whether the
requests have completed. Even this communication pattern is
not useful for WARPED. WARPED completely decouples the
send and receive primitives into separate functions and no
blocking call can be used after the send or receive.

The solution that was ultimately successful is to put the
asynchronous send and receive requests in a per thread global

wait-list. Whenever the application needs to check for mes-
sages, it simply checks this global wait-list for completed
tasks. This test can be achieved in a non-blocking manner. This
method was programmed into the WARPED code for execution
with RCCE.

C. Arbitrary length messages

The LPs in a WARPED simulation can exchange multiple
message types of varying lengths. Examples of these message
types are: initialization, event message, Global Virtual Time
(GVT) estimation messages, tests for termination, and so
on. As explained in the previous subsection, when messages
are obtained from the global waitlist, any type of message
can be received from LPs on any other core. Therefore, the
message type and size for the next message cannot be known.
Unfortunately, the RCCE/iRCCE platform requires that the
message size in the send and receive operations match. Thus,
the ported WARPED messaging subsystem was modified to
send each message in two parts, the first part is a message
header containing the length of the actual message and the
second part is the actual message. The receive operation
is likewise broken into two receives: the first receive reads
the message length information and uses that information to
trigger the specific command to receive the actual message.
Since the order of the messages is guaranteed, this is a
workable solution.

D. #pragma omp flush issue

The ported version of WARPED runs in parallel on the RCCE
emulator up to 30 cores. However when core count is in-
creased beyond 30, the message headers become polluted, with
payload data from the previous message. Problems similar to
this are reported in the MARC forums. This may be due to a
#pragma omp flush issue reported in the MARC forum
where the MPB does not reflect the latest content after being
written by a thread. As a result, no experimental results are
shown in this paper with SCC node counts above 30.

V. EXPERIMENTAL SETUP AND RESULTS

The simulation experiments were run on two machines.
The first is an Intel Core i7-920 with 4 hyper-threaded cores
supporting 8 threads and operating at 2.67 GHz. The second is
a dual core Intel Core2Duo supporting 2 threads operating at
2.00GHz. Both machines have 3 Gb of RAM and are running
Linux (version 2.6.x).

Four simulation models are packaged with the WARPED
simulation kernel, namely: PHOLD, RAID, SMMP, PING-
PONG. PHOLD is a synthetic simulation widely used by
the parallel simulation community for showing performance
results. The PHOLD configuration used in these experiments
contains 4 LPs with an event density of 4 and with an expo-
nential distribution and a seed of 1.0. The RAID simulation
simulates a RAID 5 disk array composed of 4 disks and with
total of 100 I/O requests issued by two LPs. SMMP is a
simulation model that simulates a symmetric multiprocessing
environment containing 8 processors, with cache speed 10

35Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Model Runtime (secs)
PHOLD 835.50
RAID 72.40
SMMP 229.50
PINGPONG 49.50

TABLE I
SIMULATION ON 30 CORES WITH THE INTEL I7

MPB Size i7 Runtime (secs)
(bytes) PHOLD RAID SMMP PINGPONG
100 1.03 0.16 5.32 4.08
150 1.01 0.15 5.32 2.10
200 1.00 0.15 5.27 2.53
8K 0.98 0.14 5.27 1.93

TABLE II
MPB ANALYSIS WITH 8 EMULATED SCC CORES ON THE I7

times that of main memory and with cache hit ratio of 0.85.
During the simulation 1,000 memory requests are made to the
memory space by each of the 8 simulated processors. Finally,
the PINGPONG simulation contains a fixed set of balls that
are circulated among a fixed set of players (LPs). A subset of
players start the simulation by circulating the balls to other
players. The simulation ends when all the balls are received
back at the originating LP.

A summary of the simulation runtimes for the emulated 30
core SCC platform is shown in Table I. These results were run
on the Intel i7 platform and they simply show the completion
of all of the simulation models on an emulated configuration
of 30 cores for the SCC platform. In the next two sections,
studies to evaluate the impact of message size and to show the
potential impact that voltage and frequency adjustments might
have are described.

A. Analysis of MPB size

To show the impact of the message passing buffer size on
simulation performance, the above simulation models were run
in the SCC emulator for varying sizes of the MPB (Table
II). By default, the MPB for each core is 8K. However, the
maximum message size used by the simulation models is 235
bytes. Hence the default 8K is more than sufficient for these
simulation models. The simulations were run on the Intel i7
and results are presented in Table II. The Table clearly shows
that the MPB size affects mainly the PINGPONG simulation
and other simulations are not significantly affected. Thus the
performance impacts depends not only on computation load
of the processors but may also be due to their communication
pattern. This is because, of the 4 simulations, SMMP and
PINGPONG have simulation objects executing on all the 8
cores and even SMMP have more simulation objects than
PINGPONG. But interestingly PINGPONG is more affected
by MPB variation than SMMP. This may be due to more inter-
core communications in PINGPONG than in SMMP. But this
needs to be verified further by a detailed investigation on this
subject.

Model # SCC cores Core id Time (sec) Rollbacks
PHOLD 4 0 346.87 2462

1 352.06 3794
2 352.57 2911
3 352.76 2640

RAID 4 0 26.36 381
1 26.53 175
2 26.52 1344
3 26.54 836

SMMP 4 0 71.92 20052
1 71.91 2359
2 71.94 1201
3 71.92 4531

TABLE III
SIMULATION RESULTS FROM CORE2DUO

VI. PDES RESEARCH DIRECTIONS WITH SCC

With the changes outlined in Section IV, all of the WARPED
example simulation models (except VHDL, which was not yet
attempted) were run on the RCCE simulator. The work is still
embryonic and just barely scratched the surface of possibilities
and opportunities with the SCC platform. However, even in
this preliminary state, one can draw some interesting insights.
These are described below.

A. Harnessing voltage and frequency control of SCC

The dynamic voltage and frequency control features of
SCC could be highly useful for balancing and optimizing
the performance of Time Warp synchronized PDES simu-
lations. In particular, the concurrent LPs of a Time Warp
simulation process events aggressively without regard for all
event causalities. Thus, some LPs may have frequent rollbacks
while others (on the critical path) may have minimal rollbacks.
For example, the above simulation models were run for a
configuration of 4 emulated SCC cores and detailed run-
time and rollback numbers were collected. These results are
shown in Table III. The Table shows that the simulation
results for RAID show that the LP on core #1 has only 175
rollbacks while the LP on core #2 has 1344 rollback. Likewise
SMMP shows widely varying rollback performance among the
various cores. By decreasing the frequency of the cores having
excessive rollbacks and increasing the frequency of cores
having minimal rollbacks, the simulation may actually be able
to accelerate the critical path of execution for faster overall
simulation throughput. Thus, on many-core processors with
suitable thermal monitoring and frequency control capabilities,
application specific dynamic overclocking can function to
maximally increase overall throughput. Unfortunately there is
no way known to test this hypothesis with the RCCE software
emulator.

B. Impact of communication on simulation performance

Another interesting area would be to study the communi-
cation between the cores of SCC within a single chip and
communication between cores of SCC on different nodes and
their impact on the overall performance of PDES. This is

36Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

similar to the study of Bahulkar et al [9] but now on many-
core processors.

C. Combining shared memory and distributed memory Time
Warp protocols

In addition to the per-core private memory and message
passing buffer, SCC has a significant amount of off die mem-
ory shared between the cores. The amount of shared memory
is configurable. Time Warp protocol is conventionally used
on either shared memory or distributed memory architectures
and the design of each system varies significantly [6], [18].
The SCC provides a unique opportunity to take the best
of both worlds and to come up with an efficient combined
solution. A similar work is done by Sharma et al [19] on
clusters of multiprocessors. The emphasis of their work is
on exploiting the parallelism of Symmetric MultiProcessing
(SMP) node rather than integrating both shared and distributed
memory time warp designs. One important hurdle to cross in
this direction is maintaining the cache coherency. In SCC no
hardware cache coherency is present for want of scalability of
the cores. Hence cache coherency in SCC has to be maintained
in software which by itself is an interesting research direction.

D. Multilevel Time Warp

Traditional Time Warp optimizations are designed to hide
the high network latency by performing useful work during
the network communications. However, the high speed on
chip network on the SCC processors supports a relatively low
network latency. Hence it may be time to revisit the classical
Time Warp optimizations such as lazy cancellation to see
whether their overhead outweighs their merit in many-core
chips. Finding optimizations for PDES on many-core chips is
a new avenue for research. Further, in the cluster of many-
core processors, the events can be obtained from a local or
remote cores. Hence classical Time Warp optimizations can
applied to remote events and switch to many-core specific
optimizations for events from local core. Hence multilevel
Time Warp protocol can be used to efficiently handle both
the local events and remote events. More study needs to be
done in this area to see the extent of practical usefulness.

VII. CONCLUSION

This initial work with parallel simulation on the RCCE
emulator has provided a few insights on programming needs
for future many-core processors. This is a first step in analyz-
ing the potential perform of the many-core SCC platform for
efficiently supporting Time Warp synchronized parallel simu-
lation. The possibility to adjust frequency and voltage settings
to optimize critical path performance (while maintaining safety
under the processor’s thermal limits) is an interesting prospect
for study. Likewise, the incoherent caches on the SCC plat-
form present opportunities. The dynamic state saving in Time
Warp and the opportunity to repair damage from incorrect or
premature computations may allow for the development of
algorithms to exploit the incoherent caches in interesting ways

to increase performance. In any event, the features of many-
core processors present numerous interesting opportunities and
challenges for the parallel simulation community.

REFERENCES

[1] R. M. Fujimoto, “Parallel discrete event simulation,” Commun. ACM,
vol. 33, pp. 30–53, October 1990.

[2] A. M. Law and W. Kelton, Simulation Modeling and Analysis, 3rd ed.
Mc Graw Hill, 2001.

[3] Intel Press Release, Intel Corporation, “Futuristic intel chip could
reshape how computers are built, consumers interact with their pcs
and personal devices,” Intel Press Release, Intel Corporation, Tech.
Rep., Dec. 2009. [Online]. Available: http://www.intel.com/pressroom/
archive/releases/20091202comp sm.htm

[4] J. Howard et al., “A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS,” in Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2010 IEEE International, 7-11 2010, pp. 108
–109.

[5] D. Jefferson, “Virtual time,” ACM Transactions on Programming Lan-
guages and Systems, vol. 7, no. 3, pp. 405–425, Jul. 1985.

[6] D. E. Martin, P. A. Wilsey, R. J. Hoekstra, E. R. Keiter, S. A. Hutchinson,
T. V. Russo, and L. J. Waters, “Redesigning the warped simulation kernel
for analysis and application development,” in Proceedings of the 36th
annual symposium on Simulation, ser. ANSS ’03, 2003, pp. 216–223.

[7] R. Fujimoto, A. Malik, and A. Park, “Parallel and distributed simulation
in the cloud,” SCS M&S Magazine, 2010.

[8] A. Malik, A. Park, and R. Fujimoto, “Optimistic synchronization of
parallel simulations in cloud computing environments,” in Proceedings
of the 2009 IEEE International Conference on Cloud Computing, ser.
CLOUD ’09, 2009, pp. 49–56.

[9] K. Bahulkar, N. Hofmann, D. Jagtap, N. Abu-Ghazaleh, and D. Pono-
marev, “Performance evaluation of pdes on multi-core clusters,” in
Proceedings of the 2010 IEEE/ACM 14th International Symposium on
Distributed Simulation and Real Time Applications, ser. DS-RT ’10,
2010, pp. 131–140.

[10] R. Miller, “Optimistic parallel discrete event simulation on a beowulf
cluster of multi-core machines,” Master’s thesis, University of Cincin-
nati, Cincinnati, OH, 2010.

[11] J. Misra, “Distributed discrete-event simulation,” Computing Surveys,
vol. 18, no. 1, pp. 39–65, Mar. 1986.

[12] K. M. Chandy and R. Sherman, “Space-time and simulation,” in Dis-
tributed Simulation. Society for Computer Simulation, 1989, pp. 53–57.

[13] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of ACM, vol. 21, no. 7, pp. 558–565, Jul.
1978.

[14] R. King, “WARPED redesigned: An api and implementation for discrete
event simulation analysis and application development,” Master’s thesis,
University of Cincinnati, Cincinnati, OH, 2011.

[15] P. A. Wilsey, D. E. Martin, and K. Subramani, “SA-
VANT/TyVIS/WARPED: Components for the analysis and simulation
of VHDL,” in VHDL Users’ Group Spring 1998 Conference, Mar.
1998, pp. 195–201.

[16] C. Clauss, S. Lankes, J. Galowicz, and T. Bemmerl, “ircce: A non-
blocking communication extension to the rcce communication library
for the intel single-chip cloud computer,” RWTH Aachen University,
Tech. Rep., Feb. 2011. [Online]. Available: http://communities.intel.
com/message/110482#110482

[17] “Marc - manycore application research community.” [Online]. Available:
http://communities.intel.com/community/marc

[18] S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette, “Gtw: a
time warp system for shared memory multiprocessors,” in Proceedings
of the 26th conference on Winter simulation, ser. WSC ’94, 1994, pp.
1332–1339.

[19] G. D. Sharma, R. Radhakrishnan, U. K. V. Rajasekaran, N. Abu-
Ghazaleh, and P. A. Wilsey, “Time warp simulation on clumps,” in
Proceedings of the thirteenth workshop on Parallel and distributed
simulation, ser. PADS ’99, 1999, pp. 174–181.

37Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

