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Abstract—In recent years, chip design complexity is further
increasing through multi-processor system-on-chip built up from
macro blocks. System-level design promises to close the growing
productivity gap between hardware and software design but more
sophisticated design models are needed. Therefore, we developed
a new model of system-level design abstraction. Therein, three
views divide the design space to reduce design complexity. A
unified design process with five steps has been defined for the
design views. Furthermore, we show that the model is able to
formalize system-level design exploration. Finally, exploration
has been considered as walk through the design views connected
via inter-view links. With the proposed system-level model, the
authors provide conceptual foundations to more holistic design
and introduce formalization of design exploration.
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I. INTRODUCTION

As integration technology continues to shrink and processor
clock frequency stagnates, design complexity grows through
the transition from traditional system-on-chip (SoC) towards
multi-processor system-on-chip (MPSoC) built up from macro
blocks. The increasing complexity motivates to use modeling
and simulation languages, such as SystemC, which allow for
simulation of the complete design at system-level including
the hardware and software. We believe that more sophisticated
models are needed to close the growing productivity gap
between hardware and software forecasted by the International
Technology Roadmap for Semiconductors [1]. Existing
models of system-level design require the application and
architecture description as starting point and apply exploration
in similar design views and process steps. Therefore, we
developed a model of system-level design abstraction to
bring them more into line. Our model defines three design
views, called administration, computation and communication,
wherein a unified design process is followed. We introduce
the administration view due to the growing importance
of management, e.g., of scheduling, power consumption,
reliability etc., in future MPSoCs and Many-Core systems. The
separation into three views and the reuse of the design process
aims at reducing design complexity. Furthermore, system-level
design exploration tools become more important but separation
and integration of design views and design process steps during
exploration is hardly supported in current approaches. Hence,
relationships between views and steps should be considered.
We show how our model is able to formalize system-level
exploration. More specifically, exploration is defined as walk

through the design views via inter-view links representing
the relationships. During exploration, each view applies one
or more design process steps. Our approach is independent
on the application domain and the formalization aims at
automated exploration. Moreover, we derive three exploration
types (classes) from our model and present their usage based
on design examples.
In this work, we describe system-level design abstraction

and exploration with regard to MPSoC design. Nevertheless,
the authors see a general relevance of the model for complex
systems based on networks. For example, computer networks,
telecommunication networks and sensor networks are also
composed of computation, communication and administration.
Hence, these systems could be designed and explored using
our model.
In the remainder of the paper, Section II provides an overview

of the model of system-level design abstraction. In Section III,
we compare our model with existing work. Then, Section IV
describes the system-level design views. The system-level
design process is explained in Section V. Section VI presents
different types of design exploration based on system-level
design abstraction. Finally, Section VII concludes our work.

II. OVERVIEW OF SYSTEM-LEVEL DESIGN ABSTRACTION

In Figure 1, the tripartite representation called λ-chart is our
model to realize system-level design abstraction. We use three
axes to describe the design views: administration, computation
and communication. Along each of the axes, we unified the
design process to five steps which are given as concentric
bands. The process starts with modeling and partitioning,
e.g., of application, architecture and administrative algorithm.
Provisioning describes the selection and dimensioning of
system components, e.g., cores and processors respectively.
As depicted in Figure 1, we separate scheduling and allocation.
Finally, the system is validated to decide for an additional
design iteration. Hence, the axial loop indicates the iterative
design process within each design view.
The example in Figure 2 illustrates the relationship between

λ-chart and Y-chart which was introduced by Gajski and
Kuhn [2] and refined by Walker and Thomas [3]. We
refer to the Y-chart in [3] which is a model of design
representation and synthesis. It defines the structural, behavioral
and physical domain description. “Structural” means the
abstract implementation of the design, “behavioral” describes
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Fig. 1. The λ-chart: A Model of System-Level Design Abstraction.

Fig. 2. Relationship between λ-chart and Y-chart [3] illustrated for the
Computation View and our Unified Design Process.

the functionality of the design and “physical” relates to the
physical realization of the abstract structure. Hence, synthesis
is defined as transition from the behavioral model to the
structural model ending in the physical realization. Figure 2
contains relevant domain descriptions for the computation view
and the unified design process. In the example, not all process
steps include a domain description. For example, provisioning
is limited to the structural and physical description. In contrast
to Y-chart synthesis, the λ-chart jointly uses structural and
behavioral descriptions to realize the physical description.
For example in Figure 2, the simulation of application and
architecture creates scheduling and binding results to physically
map application tasks to cores. In the λ-chart, each design
view and process step is further characterized with the three
domain descriptions. This is demonstrated in Section IV-VI.
Moreover, the λ-chart can be considered as refinement of the
architectural level within the Y-chart in [3]. This corresponds
to the fact that our model addresses decisions at early design
stages.

III. RELATED WORK

Thomas et al. [4] present a model and methodology for mixed
hardware-software design. According to given performance

goals, the design process results in optimal hardware and
software realizations. In contrast, our model aims at abstraction
of system-level design. Therefore, we separate several views on
the system to reduce design complexity. Software functionality
is covered through high-level task graphs.
In [5], the authors propose interface-based design which

abstracts design with decomposed components. Moreover
a communication view is implicitly considered separating
communication and component behavior. In addition to
structural compositions we also decompose behavioral and
physical descriptions independently on each other. Our
approach is more generic because it uses communication
as separate design view to support also less communication-
centric designs.
Blickler et al. [6] define system-level synthesis as mapping of

task-level specifications onto heterogeneous hardware/software
architectures. They introduce a new formal definition for
system-level synthesis which includes several process steps.
Our model refines this approach to a unified design process
applicable to several design views.
In [7], system design at different abstraction levels is

proposed which reduces design complexity by separating
concerns, such as function, architecture, computation and
communication. The authors also use platform-based design
to map applications to abstract representation of micro-
architectures similar to [6]. In [8], the author proposes
platform-based design as unified methodology applicable
to future systems with heterogeneous subsystems, such as
electronic and mechanical components. Despite our model
supports platform-based design, we extend the work unifying
the design process and also considering an administration
view.
Gerstlauer and Gajski [9] have developed a design process

starting with system specification to build the architecture by
mapping communication and computation. The authors focus
on model refinement between abstraction levels, e.g., system-
level and algorithmic level. In addition, Kienhuis et al. [10]
have developed a tripartite representation of system-level
design. Therein, application models are mapped to architecture
models and evaluated afterwards. We also consider modeling,
mapping and evaluation in the design process. In general, our
separation of design view and process allows a more generic
description of system-level design and exploration.

IV. VIEWS ON SYSTEM-LEVEL DESIGN

Our model of system-level design abstraction includes three
design views: administration, computation and communication.
Each view represents a separate portion of the total design
space. Hence, inter-view links are necessary to synchronizewith
the other views. Although other divisions of the system-level
design have been published, e.g., by [9] and [10], we believe
that our division is the most natural. Thus, the administration
view includes the design of planning, monitoring and control
tasks of a system and its subsystems. In the computation view,
all designs related to the code execution are covered. The
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design of data storage and data exchange between components
is considered within the communication view. In the following,
each design view is characterized in more detail via the domain
descriptions.

A. Administration View
The “Administration View” considers all design tasks for

planning, monitoring and control in the system and its
subsystems. A structural description is the administrative
architecture, e.g., central or distributed. In the behavioral
description, the administrative algorithm would be realized
either in a static or dynamic manner, such as static or dynamic
scheduling. Considering physical descriptions, administrative
units, such as hardware schedulers, are placed at a geometric
position in the design. Hence, hardware-based vs. software-
based administration corresponds to the physical realization.

B. Computation View
The “Computation View” considers all design tasks related

to code execution. The computational architecture could
be designed as central system or divided into subsystems
(clusters). Further examples of structural descriptions are the
decision for a heterogeneous or homogeneous set of processing
elements (PEs) and subsystems (clusters). In contrast, the
computational behavior is characterized by the degree of
application parallelism or the number of inputs and outputs.
Physical descriptions relate to binding and placement which
typically take geometric and area constraints into account.

C. Communication View
The “Communication View” considers the design of data

storage and data exchange between components, such as
memory, router and peripherals. The topology of memory and
network are examples of structural descriptions. Strategies
for routing and data caching are considered as behavioral
description. For the physical description, the dimensioning of
links, routers (buffers) and memories are important realizations.

D. Further Characterizing the Design Views
The domain descriptions in the λ-chart include components

and behavior in different levels of hierarchy. The hierarchical
compositions occur in each design view and we divide
them into structural, behavioral and physical compositions.
This enables to further specify the design views and allows
the formal representation of inter-view relationship, described
further below. Figure 3-5 illustrate exemplary compositions for
each design view as tree-based graph representations. Figure 3
shows an example of the administration architecture. Therein, a
software-based application balancer supplies several hardware
schedulers with application code. Hence, this describes
structural and physical details of the design view. Referring
to Figure 3, a behavioral composition is given for different
scheduling strategies, such as As Soon As Possible (ASAP),
Earliest Deadline First (EDF), priority-based etc. In Figure 4,
structure and behavior of the computation view are depicted
as hierarchical compositions. The system consists of several

Fig. 3. Hierarchical Compositions in the Administration View.

Fig. 4. Hierarchical Compositions in the Computation View.

subsystems (clusters) which include either heterogeneous or
homogeneous sets of PEs. A PE could be a RISC core, ASIC
core, DSP core etc. Referring to Figure 4, the behavioral
composition shows that sets of computation tasks are scheduled
and that synchronization between these sets is necessary. Here,
the term “task” means a computation kernel which is executable
on a PE. Task examples are FFT, FIR, ENC, DCT etc. In
Figure 5, the memory structure of the communication view is
represented as hierarchy of main memory and local cache. In
the physical composition, memory is realized as DDR3 and
SRAM. An example for the behavioral composition is the
selection of the switching technique, here guaranteed service,
wormhole switching etc.
In general, relationships between the design views exist.

For example, the structure of communication and computation
are closely coupled as depicted in Figure 6. Therein, all
subsystems (clusters) access the main memory and each PE
includes a local cache. Hence, formal representations are
necessary to integrate inter-view relationships into system-
level design. Referring to Figure 6, graph representations are
suited to model the relationships between design views.

E. Importance of the Administration View for Dynamic
Behavior
We introduce the administration view in system-level design

abstraction because administrative tasks and the design of such
hardware units become important in future MPSoC and Many-
Core systems. For example, administration units can be used
to improve reliability, power consumption, programmability,
product reuse etc. In general, administration can handle static

Fig. 5. Hierarchical Compositions in the Communication View.
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Fig. 6. Relationship between Computation and Communication.

TABLE I
LIMITATIONS FOR STATIC ADMINISTRATION OF DYNAMIC BEHAVIOR

No adaption to Computation Communication Administration
Failure/
Resiliency

Processing
element

Router, Link,
Memory

Administrative
unit

Hotspots Thermal issue Transfer
bottleneck

Monitoring/
control bottleneck

System/
User changes

Performance scaling, Energy saving Non-deterministic
task dependency

Data dependent
control structures Non-deterministic operation

Concurrent
applications

and dynamic behavior with static or dynamic mechanisms.
If the changing conditions are known in advance, dynamic
behavior can be administrated statically. Therefore, periodic
applications with fix schedules are statically administrated,
such as in data-flow driven communication protocols. As
MPSoCs become subject to unpredictable dynamic behavior
(see Table I), static administration is not suited anymore.Hence,
dynamic administration increases design complexity which
underlines the importance of the administration view. Table I
lists limitations of static administration for dynamic behavior.
It shows that components in the computation, communication
and administration view can hardly adapt to unpredictable
situations like failure/resiliency, hotspots, system/user changes,
data dependencies or application concurrency. If components,
such as a PE, memory, router, link or administrative unit,
fail or require a certain fault tolerance, static administration
is poorly able to react to this situations. Other examples are
hotspots, such as thermal issues and bottlenecks, which can
temporarily occur and would require dynamic management.
Referring to Table I, high-performance or energy-savingmodes
are examples for unpredictable user and system changes. This
can only be effectively handled via dynamic administration.
Furthermore, static administration shows weaknesses in non-
deterministic operation which occurs due to data dependent
control structures and concurrent applications. Moreover, non-
deterministic tasks dependencies can only be resolved via
dynamic administration.

V. SYSTEM-LEVEL DESIGN PROCESS

The λ-chart defines five steps unifying the design process to:
modeling and partitioning, provisioning, scheduling, allocation
and validation. Prior to that, the design goal must be defined,

Fig. 7. Unified System-Level Design Process.

Fig. 8. λ-chart refined by Domain Descriptions for the Design Views and
Design Process Steps.

e.g., low-power or high-performance. Figure 7 shows that the
process steps are independently followed in each design view
but the views have to be synchronized via inter-view links.
This section describes all five process steps which have been
further characterized by structural, behavioral and physical
domain descriptions, as illustrated in Figure 8. Therein, the
design views and design process are detailed by components,
behavior, properties and design goals which relate to a domain
description.Modeling and partitioning are limited to behavioral
and structural descriptions because the process step does not
intend a physical realization. Hence, provisioning, scheduling
and allocation increasingly contain physical descriptions due
to the elapsed design progress. Finally, validation must be
restricted to physical descriptions since it represents the
last design process step. Unfortunately, terminology is not
consistently used amongst the researchers, e.g. the term
allocation might also include provisioning for some people.
Because we do not intend to confuse the reader by inventing
new names, our model considers the most accepted naming
to the authors best knowledge.

A. Modeling and Partitioning

Modeling and partitioning describe the first step in the
design process which is to build formal representations of
the system structure and behavior. In addition, partitioning
underlines the importance of modeling hierarchical structures
and concurrent behavior. Representations of the application
and architecture should be adequate for an automated design
flow. Therefore, graph representations are widely used and
applied in the administration, computation and communication
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views. Referring to Figure 8, our model accounts for structural
descriptions of system-level design by describing the topology
(architecture). This also includes the modeling of hardware
and software supported application functionality, known as
HW/SW codesign. In addition, application and administrative
algorithm represent behavioral descriptions.

B. Provisioning
Provisioning is the second step in the design process

and basically means to select the type and number of
components and behavior necessary to fulfill the purpose of the
system under design. Hence, provisioning chooses structural
and behavioral descriptions, e.g., cores, routers, application
tasks and administrative algorithms, to increasingly create
the physical realizations. For the administration, computation
and communication view, different provisioning decisions are
needed. These decisions include the reuse of existing IP, the
design from scratch or an intermediate solution. Provisioning
considers also different design hierarchies, such as number
and type of subsystems (clusters). Usually, the decisions are
determined by the availability and experience of designers, the
cost of IP and the reuse of existing designs. Nevertheless, other
criteria such as tool support or user and system requirements
might influence the choice.

C. Scheduling
The scheduling step represents the temporal planning of

the application and component behavior, such as execution,
communication, monitoring and power mode. Referring to
Figure 8, structural and behavioral descriptions include
components, behavior and properties related to scheduling. A
physical description is the realization either in software or
hardware. Administration, computation and communication
design could be closely coupled because administrative
units are responsible for the scheduling of computation and
communication behavior. For example, a scheduling algorithm
jointly aims at improved computation performance and low
communication latency. In that case, additional monitoring
and control functionality is required in all three design views.
Furthermore, priority based scheduling represents a widely
used technique to account for real-time behavior. In that case,
priorities must be considered as behavioral description.

D. Allocation
The allocation step focusses on spatial planning of

the application, architecture and administrative algorithm.
Allocation is considered in all design views. It requires
structural and behavioral descriptions, such as units and
algorithms for component binding and application balancing.
A physical description is the assignment of application code
to components, such as tasks to cores. Furthermore, balancing
tries to level component usage to improve performance and
reliability. Referring to Figure 8, physical description is also
represented by the geometric placement of components, such as
of cores, memories, routers or administrative units. Allocation
also accounts for techniques aiming at power reduction, such as

power/clock gating or frequency scaling. In general, scheduling
and allocation must be closely coupled to improve the design
goals.

E. Validation
Validation represents the last process step and it proves

whether the system fulfills the previously defined purpose
or not. As prerequisite of the validation, design execution is
either based on an analytical, simulative or hybrid approach.
During execution, adequate evaluation data is aggregated
for further analysis. Finally, design validation is performed
according to the given objectives and constraints. In case the
current system misses the design goal, relevant representations
and design decisions are adapted by means of an additional
design iteration. This can be separately done for each design
view. Validation is applied to the physical realizations. Hence,
structural and behavioral descriptions can only be examined by
means of their physical realization. For example, insufficient
computation performance leads to changes in prior design
steps and relate to one or more design views.

VI. SYSTEM-LEVEL DESIGN EXPLORATION

The model of system-level design abstraction is also suited
to describe system-level design exploration. We introduce the
following exploration types to be able to operate both with
separated and integrated design views:

• single view,
• view-to-view and
• all views integrated.

The term design exploration denotes to systematically alternate
design parameters with the goal of finding systems that fulfill
the intended purpose. In Figure 9-11, we present the design
exploration types based on three design examples.
Figure 9 illustrates single view exploration which is not

necessarily limited to information of the explored view.
In our case, administration delay and transfer time has
been additionally provided after modeling and partitioning.
Referring to Figure 9, all design process steps are followed
in the computation view. In contrast, only “modeling and
provisioning” is rudimentarily considered in the remaining
views. In general, focusing to a single view simplifies
exploration at the cost of limited coverage of the overall
design space.
In Figure 10, an example of view-to-view exploration

is shown. Therein, the computation view provides a fixed
configuration which serves as basis for the exploration of
the communication. The administration view delivers only
basic information, such as strategy/behavior of scheduling and
routing. View-to-view exploration realizes limited interaction
between the views during the design process. This allows the
exploration to improve design space coverage within a specific
design view. Nevertheless, observation of design space in the
residual views remains limited.
Single view and view-to-viewexploration are either suited for

designs dedicated to a specific view or to designs with a small
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Fig. 9. System-Level Design Exploration - Single view.

Fig. 10. System-Level Design Exploration - View-to-view.

amount of interacting components and system functionality.
An example would be to limit exploration to the performance
analysis of IP cores assuming a single shared bus architecture.
The design of complex systems, such as MPSoC, imply
wider functionality,more interaction and dependencies between
the three design views. A MPSoC is based on an on-chip
network and different memory types. It has often several
administration components, such as scheduler and performance
monitor. Moreover, computation is enabled by an arbitrary
number of cores. In addition, an MPSoC structure could be
composed of several hierarchies, such as subsystems (clusters)
for computation, communication and administration. Therefore,
exploration integrating all views, as shown in Figure 11, is
needed to create feasible MPSoC designs. Therein, the three
design views are closely coupled. Several inter-view links allow
the synchronization of results in each view and process step.
Referring to Figure 11, exploration starts in the computation
view which serves the communication view. In the example,
the administration view requires input from the other views.
But it also provides design decisions from the scheduling step
towards the other views, such as execution schedule, routing
strategy etc.
The exploration types are combined to form different

exploration strategies. For example, exploration starts with the
integrated type to initially create feasible design solutions.
Afterwards, single-view or view-to-view exploration allow the
optimization towards certain design goals within a design view
and process step. Hence, the refinement should be guided with

Fig. 11. System-Level Design Exploration - All views integrated.

the validation results.

VII. CONCLUSION AND FUTURE WORK

Increasingly complex chip design, such as MPSoC design,
motivates us to contribute to the better understanding of design
and exploration at system-level. Therefore, we developed a
new model of system-level design abstraction. It reduces
design complexity via abstraction to three design views
and relationships between views have been considered.
Furthermore, a unified system-level design process was
introduced which is applicable to the three design views.
As exploration becomes more important, the authors show
how the model is used to formalize design exploration at
system-level. This paper provides conceptual foundations to
more holistic system-level design and introduces formalization
of system-level exploration by giving examples. In future work,
we will use our model for automatic system-level exploration.
Ideally, the model will be proven within a real MPSoC design
project.
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