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Abstract—A recently developed Recursive Least-Squares
(RLS) adaptive filter based on a Third-Order Tensor (TOT)
decomposition technique, namely RLS-TOT, has proved to be
efficient in system identification problems that target the esti-
mation of long length impulse responses. This solution fits very
well in echo cancellation scenarios, where the associated impulse
response of the echo path can reach hundreds or even thousands
of coefficients. In this short paper, we further discuss several
strategies for improving the performance of RLS-TOT, focusing
on its main parameters that control the convergence features.

Index Terms—adaptive filter; recursive least-squares algorithm;
echo cancellation; tensor decomposition; convergence parameters

I. INTRODUCTION

Adaptive filtering algorithms are frequently involved in
many real-word system identification problems [1]. Among
them, the Recursive Least-Squares (RLS) algorithm represents
a very appealing choice due to its fast convergence rate, which
can be achieved even for highly correlated input signals [2].
However, the price to pay is a high computational complexity.

In this framework, the overall difficulty increases when deal-
ing with the identification of long length impulse responses,
which raise significant challenges in terms of the complexity,
convergence/tracking, and accuracy of the solution. Even the
“fast” (i.e., less complex) versions of the RLS algorithm face
performance limitations in such scenarios [3]. A well-known
example is related to echo cancellation, where the echo paths
are usually modeled as finite impulse response filters that can
reach hundreds/thousands of coefficients [4].

Exploiting the characteristics of the systems to be identified
represents a natural path to follow, in order to overcome
the main challenges related to the estimation of long length
impulse responses. In this context, several recent works have
focused on decomposition-based techniques that involve the
Nearest Kronecker Product (NKP) and low-rank approxima-
tions [5]–[8]. In this framework, the NKP-based approach in
conjunction with a Third-Order Tensor (TOT) decomposition

has been addressed in [9] and [10]. The resulting RLS-TOT
algorithm combines the coefficients of three adaptive filters of
much shorter lengths, which leads to important advantages in
terms of the main performance criteria.

In this short paper, we explore several upcoming develop-
ments related to the RLS-TOT adaptive filtering algorithm,
aiming to improve the overall performance by tuning its con-
vergence features. In this context, we target the development
of improved versions of this algorithm, by using variable
forgetting factors and variable regularization parameters.

In the following, Section II presents the RLS-TOT al-
gorithm. Next, Section III is dedicated to the results and
discussions. Finally, Section IV concludes this paper.

II. RLS-TOT ALGORITHM

Let us consider a single-input single-output scenario with
real-valued signals. The main goal is to identify an unknown
impulse response with L real-valued coefficients, which are
grouped into the column vector h. Thus, at the discrete-time
index n, the reference signal results in

d(n) = hTx(n) + w(n) = y(n) + w(n), (1)

where the superscript T denotes the transpose operator, the
column vector x(n) contains the most recent L samples of
the zero-mean input signal x(n), y(n) = hTx(n) is the
output signal, and w(n) is a zero-mean additive noise, which
is uncorrelated with x(n).

Also, let us consider that the length of h can be expressed
as L = L11L12L2, with L11 ≥ L12 and L11L12 ≫ L2. Thus,
the impulse response can be equivalently decomposed as [9]

h =

L2∑
l=1

P∑
p=1

hl
2 ⊗ hlp

12 ⊗ hlp
11, (2)

where P < L12 and the (shorter) component impulse re-
sponses hlp

11, hlp
12, and hl

2 have the lengths L11, L12, and
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L2, respectively, while ⊗ denotes the Kronecker product.
The particular subscript/superscript notation indicates different
set of vectors related to the component impulse responses,
as shown in Table I (which summarizes the specific data
structures). The development from [9] that led to (2) is based
on the low-rank approach [5]. This is a reasonable approach,
since in practice most of the system impulse responses are low
rank, especially in the context of room acoustics [7].

In this decomposition framework, the main focus is the
identification of the component impulse responses from (2).
Thus, the identification of the impulse response h (with
L = L11L12L2 coefficients) is reformulated as a combination
of three sets of coefficients, i.e., hl

2 of length L2 (with
l = 1, 2, . . . , L2), hlp

12 of length L12, and hlp
11 of length

L11 (with l = 1, 2, . . . , L2 and p = 1, 2, . . . , P ). Corre-
spondingly, related to these three sets, we need to estimate
L2
2, PL12L2, and PL11L2 coefficients, respectively. For the

common decomposition setup that involves L11L12 ≫ L2 and
P ≪ L12 [9], this represents an important dimensionality
reduction, especially for large values of L.

In this context, let us consider that ĥ(n) is an estimate of
the impulse response h at the discrete-time index n, so that
the a priori error signal results in

e(n) = d(n)− ĥT (n− 1)x(n). (3)

On the other hand, using the impulse response decomposi-
tion from (2), we can also express its estimate as ĥ(n) =∑L2

l=1

∑P
p=1 ĥ

l
2(n)⊗ ĥlp

12(n)⊗ ĥlp
11(n), where ĥlp

11(n), ĥ
lp
12(n),

and ĥl
2(n) are three shorter impulse responses of length L11,

L12, and L2, respectively. Thus, in order to construct the cost
functions of the RLS-TOT algorithm, we can rewrite e(n) in
three equivalent ways, with the purpose of “extracting” each
individual component. As a result, following the development
from [10], the equations that defined the RLS-TOT are:

k12,11(n) =
P12,11(n− 1)x12,11(n)

λ2 + xT
12,11(n)P12,11(n− 1)x12,11(n)

,

k2,11(n) =
P2,11(n− 1)x2,11(n)

λ12 + xT
2,11(n)P2,11(n− 1)x2,11(n)

,

k2,12(n) =
P2,12(n− 1)x2,12(n)

λ11 + xT
2,12(n)P2,12(n− 1)x2,12(n)

,

P12,11(n) = λ−1
2

[
IL2

2
− k12,11(n)x

T
12,11(n)

]
P12,11(n− 1),

P2,11(n) = λ−1
12

[
IPL12L2 − k2,11(n)x

T
2,11(n)

]
P2,11(n− 1),

P2,12(n) = λ−1
11

[
IPL11L2 − k2,12(n)x

T
2,12(n)

]
P2,12(n− 1),

ĥ2(n) = ĥ2(n− 1) + k12,11(n)e(n),

ĥ12(n) = ĥ12(n− 1) + k2,11(n)e(n),

ĥ11(n) = ĥ11(n− 1) + k2,12(n)e(n),

where λ2, λ12, and λ11 are the forgetting factors, which are
positive constants smaller than or equal to one. The rest of
notation is detailed in Table I, where IL• denotes the identity
matrix of size L•×L• and 0L• generally denotes an all-zeros
column vector of length L•. As shown in Table I, the three
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Figure 1. Complexity order of the conventional RLS algorithm and RLS-TOT
for two impulse responses, with lengths (a) L = 512 and (b) L = 2048.

component impulse responses are connected via the Kronecker
product, so that they are interdependent. The initialization
setup is P12,11(0) = δ−1IL2

2
, P2,11(0) = δ−1IPL12L2 , and

P2,12(0) = δ−1IPL11L2 , where δ > 0 is the regularization
parameter. Also, the components of the filters are initialized
with ĥl

2(0) =
[
1 0T

L2−1

]T
, ĥlp

12(0) =
[
1 0T

L12−1

]T
,

and ĥlp
11(0) =

[
1 0T

L11−1

]T
.

The computational complexity of the RLS-based algorithms
is proportional to the square of the filter length [2]. Thus,
the conventional RLS algorithm requires a computational
amount proportional to O(L2) = O(L11L12L2)

2. On the
other hand, the RLS-TOT combines three much shorter filters
(for the common setup of the decomposition parameters),
so that it has a lower computational complexity order, i.e.,
O
[
L4
2 + (PL11L2)

2 + (PL12L2)
2
]
. This aspect is indicated

in Figure 1, where the complexity orders of the conventional
RLS algorithm and RLS-TOT are plotted, considering two
impulse responses with L = 512 and L = 2048. For L = 512,
the decomposition setup of the RLS-TOT involves L2 = 2
and L11 = L12 = 16, while for L = 2048 we use L2 = 2
and L11 = L12 = 32. Note that the value of P is usually
significantly smaller than L12, while L12 ≪ L. Consequently,
the computational complexity order of the RLS-TOT can be
much lower as compared to the conventional RLS algorithm.

In the analysis reported in [10], the RLS-TOT was compared
to the conventional RLS algorithm, but also with a previously
developed decomposition-based version that exploits a second-
order decomposition level, which is referred as the RLS
algorithm using the NKP decomposition, i.e., RLS-NKP [6].
This counterpart combines the estimates provided by two
adaptive filters of lengths P ∗L∗

1 and P ∗L∗
2, with L = L∗

1L
∗
2

and P ∗ < L∗
2. While the RLS-TOT is able to outperform the

conventional RLS benchmark and also the RLS-NKP, there is
still room for improvements, as outlined in the next section.
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TABLE I
NOTATION USED FOR THE RLS-TOT ALGORITHM.

Indices: l = 1, 2, . . . , L2, p = 1, 2, . . . , P

Initialization:

ĥ2(0) =

[ (
ĥ1
2

)T
(0) · · ·

(
ĥL2
2

)T
(0)

]T
ĥ
l

12(0) =

[ (
ĥl1
12

)T
(0) · · ·

(
ĥlP
12

)T
(0)

]T
ĥ12(0) =

[ (
ĥ
1

12

)T

(0) · · ·
(
ĥ
L2

12

)T

(0)

]T
ĥ
l

11(0) =

[ (
ĥl1
11

)T
(0) · · ·

(
ĥlP
11

)T
(0)

]T
ĥ11(0) =

[ (
ĥ
1

11

)T

(0) · · ·
(
ĥ
L2

11

)T

(0)

]T
For discrete-time index n = 1, 2, . . .

Ĥlp
12,11(n− 1) = IL2 ⊗ ĥlp

12(n− 1)⊗ ĥlp
11(n− 1)

Ĥ
l

12,11(n− 1) =

P∑
p=1

Ĥlp
12,11(n− 1)

Ĥ12,11(n− 1) =
[

Ĥ
1

12,11(n− 1) · · · Ĥ
L2

12,11(n− 1)

]
Ĥlp

2,11(n− 1) = ĥl
2(n− 1)⊗ IL12 ⊗ ĥlp

11(n− 1)

Ĥ
l

2,11(n− 1) =
[

Ĥl1
2,11(n− 1) · · · ĤlP

2,11(n− 1)
]

Ĥ2,11(n− 1) =
[

Ĥ
1

2,11(n− 1) · · · Ĥ
L2

2,11(n− 1)

]
Ĥlp

2,12(n− 1) = ĥl
2(n− 1)⊗ ĥlp

12(n− 1)⊗ IL11

Ĥ
l

2,12(n− 1) =
[

Ĥl1
2,12(n− 1) · · · ĤlP

2,12(n− 1)
]

Ĥ2,12(n− 1) =
[

Ĥ
1

2,12(n− 1) · · · Ĥ
L2

2,12(n− 1)

]
x12,11(n) = Ĥ

T

12,11(n− 1)x(n)

x2,11(n) = Ĥ
T

2,11(n− 1)x(n)

x2,12(n) = Ĥ
T

2,12(n− 1)x(n)

ĥ2(n) =

[ (
ĥ1
2

)T
(n) · · ·

(
ĥL2
2

)T
(n)

]T
ĥ12(n) =

[ (
ĥ
1

12

)T

(n) · · ·
(
ĥ
L2

12

)T

(n)

]T
ĥ
l

12(n) =

[ (
ĥl1
12

)T
(n) · · ·

(
ĥlP
12

)T
(n)

]T
ĥ11(n) =

[ (
ĥ
1

11

)T

(n) · · ·
(
ĥ
L2

11

)T

(n)

]T
ĥ
l

11(n) =

[ (
ĥl1
11

)T
(n) · · ·

(
ĥlP
11

)T
(n)

]T
ĥ(n) =

L2∑
l=1

P∑
p=1

ĥl
2(n)⊗ ĥlp

12(n)⊗ ĥlp
11(n)

III. RESULTS AND DISCUSSIONS

The main parameters of the RLS-based algorithms are
the forgetting factors. While the conventional RLS algorithm
involves a single forgetting factor (denoted by λ), the RLS-
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Figure 2. Misalignment of the RLS-based algorithms for the identification of
a network impulse response of length L = 512. The forgetting factors are set
based on (4), using K = 5 for the conventional RLS algorithm, and K = 45
for the RLS-NKP and RLS-TOT. The input signal is an AR(1) process and
SNR = 20 dB.

TOT algorithm requires three forgetting factors, i.e., λ11, λ12,
and λ2. Also, the RLS-NKP algorithm [6] uses two forgetting
factors, λ∗

1 and λ∗
2, which correspond to the two adaptive

filters. It is known that choosing the value of a forgetting
factor involves a compromise between the main performance
criteria, i.e., fast convergence/tracking and low misalignment.
In general, the value of a forgetting factor λ⋆ can be related
to the associated filter length (generally denoted by L⋆),
according to the relation [6]:

λ⋆ = 1− 1

KL⋆
, (4)

with K ≥ 1. A higher value of K leads to λ⋆ closer to one,
which improves the accuracy of the solution, but sacrificing
in terms of the tracking behavior. We should also outline that
the initial convergence rate is not always relevant for the RLS-
based algorithms, while the tracking is the true assessment [3].

As compared to the conventional RLS algorithm, the RLS-
TOT provides a better flexibility related to the choice of these
parameters, since it combines three adaptive filters of different
lengths, but much shorter as compared to the length of the
global filter. Since a shorter adaptive filter is usually related
to a faster tracking capability, we could increase the values of
RLS-TOT forgetting factors, aiming to improve its accuracy,
while slightly sacrificing in terms of tracking. On the other
hand, the forgetting factors of the conventional RLS algorithm
and the RLS-NKP should be increased in order to improve
their tracking behavior, while paying in terms of accuracy.

Such an approach is considered in Figure 2, where the
forgetting factors of the comparing algorithms are set based
on (4), using K = 5 for the conventional RLS algorithm and
K = 45 for the decomposition-based versions, i.e., RLS-
NKP and RLS-TOT. The experimental framework is echo
cancellation, aiming to identify a network echo path from
G168 Recommendation [11], with the length L = 512 (the
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Figure 3. Misalignment of the APA, DR-FRLS algorithm, and RLS-TOT, for
the identification of an acoustic impulse response of length L = 2048. The
RLS-TOT uses λ11 and λ12 set based on (4), with K = 100, while λ2 = 1.
The input signal is speech and SNR = 10 dB.

sampling rate is 8 kHz). Thus, the decomposition setup uses
L∗
1 = 32 and L∗

2 = 16 for the RLS-NKP, and L11 = L12 = 16
and L2 = 2 for the RLS-TOT. The input signal x(n) is a
first order autoregressive process, AR(1), which is obtained
by filtering a white Gaussian noise through an AR(1) transfer
function with the pole at 0.8. The output of the echo path,
y(n), is corrupted by a white Gaussian noise, w(n), while
the signal-to-noise ratio (SNR) is set to 20 dB. In order
to test the tracking capabilities, an abrupt change of the
impulse response is considered, by changing the sign of the
coefficients after 2.5 seconds. The performance measure is
the normalized misalignment (in dB), which is evaluated as
20log10

[∥∥∥h− ĥ(n)
∥∥∥ / ∥h∥], where ∥·∥ denotes the Euclidean

norm. As we can notice in Figure 2, the performance gain
(i.e., misalignment/tracking) is clear in the favor of RLS-
TOT, as compared to the RLS-NKP counterpart, for P ∗ = P .
Besides, even if the tracking capability of the conventional
RLS algorithm is improved when using a smaller value of K,
it is significantly slower as compared to the RLS-TOT.

Another strategy that should be considered in case of the
RLS-TOT is to set the maximum value of the forgetting
factor (i.e., equal to 1) for the shortest filter of length L2

2.
In the common setups, this filter has only a few coefficients
(e.g., 4 in our scenario), so that the tracking behavior of the
global filter will be slightly affected, while still improving its
misalignment. This is supported in Figure 3, in the framework
of acoustic echo cancellation. This second experiment is ded-
icated to the identification of an acoustic impulse response of
length L = 2048, using a speech signal as input and operating
in a noisy environment with SNR = 10 dB. Therefore, the
decomposition setup of the RLS-NKP considers L∗

1 = 64
and L∗

2 = 32, while the RLS-TOT uses L11 = L12 = 32
and L2 = 2. Due to its high computational complexity, the
conventional RLS algorithm is prohibitive in such scenarios
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Figure 4. Impulse responses related to the experiment reported in Figure 3:
(a) true acoustic impulse response h; (b) ĥ(n) obtained by APA using µ = 1;
(c) ĥ(n) obtained by DR-FRLS using N = 12; and (d) ĥ(n) obtained by
RLS-TOT using P = 8.

that involve very long length impulse responses. Hence, other
more practical algorithms are used in this simulation. First, we
involve the Affine Projection Algorithm (APA) [12], which
is a very popular choice in the framework of acoustic echo
cancellation. The main parameters of APA are the step-size
(0 < µ ≤ 1) and the projection order (1 ≤ M ≪ L).
Higher values of µ and M improve the convergence rate
and tracking of the algorithm, but increase the misalignment.
In our scenario, we set M = 8 and use different values
of µ to illustrate this behavior. Second, we involve in the
experiment the recently developed Data-Reuse Fast RLS (DR-
FRLS) algorithm [13]. This algorithm can operate with the
maximum value of the forgetting factor (i.e., λ = 1), while the
tracking capability is tuned based on the data-reuse parameter,
denoted by N . As we can notice in Figure 3, the RLS-TOT
outperforms both APA and the DR-FRLS algorithm, in terms
of convergence rate/tracking and misalignment level.

The most relevant estimated impulse responses related to
the experiment reported in Figure 3 are included in Figure 4.
These are compared to the true acoustic impulse response h of
length L = 2048 [shown in Figure 4(a)]. Here, we compare the
estimates provided by three algorithms: i) APA using µ = 1
[Figure 4(b)], ii) DR-FRLS using N = 12 [Figure 4(c)], and
iii) RLS-TOT using P = 8 [in Figure 4(d)]. As we can notice,
the accuracy of the estimated impulse response of RLS-TOT
is significantly better as compared to the estimates obtained
by the comparing algorithms.

In future works, it would be interesting to investigate time-
dependent (i.e., variable) forgetting factors. In this manner,
by varying these parameters within the iterations of the main
algorithm, we can target a better compromise between the
performance criteria. In echo cancellation, this translates in
addressing several challenging situations, like the echo path
change, the double-talk scenario (i.e., the two speakers talk
simultaneously), and the background noise variation.
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In terms of double-talk robustness, an appealing approach
would be to design variable regularization parameters for
the RLS-TOT. To this purpose, the main relations of the
algorithm (presented in Section II) need to be reformulated,
by considering the covariance matrices

R12,11(n) =

n∑
k=1

λn−k
2 x12,11(k)x

T
12,11(k), (5)

R2,11(n) =

n∑
k=1

λn−k
12 x2,11(k)x

T
2,11(k), (6)

R2,12(n) =

n∑
k=1

λn−k
11 x2,12(k)x

T
2,12(k). (7)

Their inverses are equivalent to the matrices P12,11(n),
P2,11(n), and P2,12(n). They can be iteratively evaluated as

R12,11(n) = λ2R12,11(n− 1) + x12,11(n)x
T
12,11(n), (8)

R2,11(n) = λ12R2,11(n− 1) + x2,11(n)x
T
2,11(n), (9)

R2,12(n) = λ11R2,12(n− 1) + x2,12(n)x
T
2,12(n), (10)

so that the final updates of the filters result in

ĥ2(n) = ĥ2(n− 1) +M−1
12,11(n)x12,11(n)e(n), (11)

ĥ12(n) = ĥ12(n− 1) +M−1
2,11(n)x2,11(n)e(n), (12)

ĥ11(n) = ĥ11(n− 1) +M−1
2,12(n)x2,12(n)e(n), (13)

where M12,11(n) = R12,11(n) + δ2IL2
2
, M2,11(n) =

R2,11(n) + δ12IPL12L2 , and M2,12(n) = R2,12(n) +
δ11IPL11L2 . The regularization parameters δ2, δ12, and δ11 can
be designed in a time-dependent manner, as a function of the
estimated SNR. In other words, a lower SNR should be associ-
ated to higher values of the regularization terms, which further
slow down the adaptation process. This is the desired behavior
in double-talk situations or noisy environments, where a low
SNR level could significantly disturb the echo canceler.

IV. CONCLUSIONS

In this short paper, we have presented a tensorial RLS-based
algorithm, which follows a recently developed method that
splits the impulse response of the system based on a third-order
tensor decomposition. The resulting RLS-TOT combines the
estimates provided by three shorter adaptive filters, so that it is
suitable for the identification of long length impulse responses.
We further investigated different strategies for this algorithm,
focusing on its main parameters, i.e., the forgetting factors
and the regularization terms. Simulations performed in echo
cancellation scenarios support the performance gain, in terms
of converge/tracking and accuracy of the solution.
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