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Abstract—Parameter estimation plays a crucial role in many
applications of statistical signal processing. Estimation theory is a
well-established and rigorous framework for making the statisti-
cal inferences from noisy observations. It yields the best possible
(in a precisely defined sense), interpretable and numerically effec-
tive procedures, provided that the models of measurements and
of signals are known up to unknown parameters. Understanding
the fundamental principles of parameter estimation is nowadays
also important in designing the interpretable machine learning
architectures, which usually exchange the computational com-
plexity for the superior performance, while alleviating the need
for knowing the models of signals and measurements. This paper
comprehensively outlines the key principles of estimating the
time-invariant random and non-random parameters, which are
accompanied by several illustrative examples. The presentation
focuses on the key ideas, and does not cover many other relevant
topics; for example, neither the estimation of time-varying signals
nor the survey of the research literature are considered.

Keywords—Inference; linear estimator; noise; optimum estima-
tor; parameter estimation; risk function; uncertainty.

I. INTRODUCTION

The common task in many applications of statistical signal

processing is to learn the values of hidden parameters, and

to extract other useful information from noisy measurements.

This must be done statistically, i.e., the good-quality parameter

estimates must be obtained with a high probability, i.e., most

of the time. As illustrated in Figure 1, the unknown values

of parameters are mapped to measured signals, which are

distorted by the measurement noise. The goal is to find the

optimum mapping for the measurements in order to recover

the parameter values of interest with as small error as possible,

despite the presence of other nuisance parameters and the

measurement noise. Since the mapping of parameters to mea-

surements is assumed to be known, one might be tempted to

simply undo the mapping by using the corresponding inverse

mapping. This may be a simple strategy for estimating the

parameter values, provided that the inverse mapping can be

obtained. However, the caveat is that the inverse mapping

usually amplifies the measurement noise, so it is only effective

if the noise is sufficiently small, and thus, can be neglected.

In practice, this is often not the case, and more sophisticated

methods of the parameter estimation are required.

The best possible target mapping representing the estimator

is usually formulated as the solution of a constrained or un-

constrained optimization problem. The optimization problem

is defined, so that the estimation error is minimized in some

sense. This is also dependent on how the estimated values

are used in a given signal processing application. However,
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Figure 1. The mapping of parameters to measured signals, and the inverse
mapping of measurements to the estimated parameter values.

the resulting optimization problem may not have any solution,

for example, since some important knowledge is missing, or

it may be too complex to be solved effectively. In such a

case, the estimator can be constrained to be a linear filter.

This greatly limits the implementation complexity, although

the optimality can now be only considered within the class

of linear filters. The solution of the optimization problem can

be sometimes found analytically in a closed-form, otherwise

it must be obtained numerically.

The solution of the optimization problem answers one of the

following two questions, depending on the application, i.e.:

1) “Which from several defined values the parameter has?”

2) “How big is the parameter value?”

The first question is central in detection theory, and it is also

closely related to the optimum decision and the hypothesis

testing problems. The second question is the subject of this

tutorial, i.e., it defines the point estimates of the parameter

within estimation theory. The parameter estimates can be also

obtained as ranges of values, however, the interval estimates

are not considered in this tutorial.

If the parameters vary in time, they are referred to as signals

in engineering applications of statistical signal processing. In

mathematics, the term, process, instead of signal is usually

preferred, and the parameter estimation is studied as one of the

tasks of statistical inference. In data science, the longitudinal

data in discrete time are referred to as sequences or time-series,

and the estimation problems are referred to as data mining.

In general, there are three levels of statistics that can be

obtained for the measurements as indicated in Figure 2. In par-

18Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-142-8

SIGNAL 2024 : The Ninth International Conference on Advances in Signal, Image and Video Processing



ticular, the parametric and non-parametric descriptive statistics

are used in characterizing and summarizing the measurements

in observational studies. In order to estimate the values of

hidden parameters, which cannot be observed directly, the

inferential statistics require using more sophisticated methods

as discussed above. Finally, the causal inferences are used to

determine, for example, the counterfactual outcomes and other

cause-effect relationships, which is, however, beyond the scope

of this tutorial.
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Figure 2. The three levels of statistically processing the measurements.

A random signal at any particular time instant is a random

variable. The processing of continuous time signals can exploit

derivatives, whereas differences are used for signals in discrete

time (the time discretization does not automatically replace

derivatives with differences). The important consideration in

estimating the parameter values is whether their prior prob-

ability distribution is known; in such a case, the parameters

can be considered to be random, and the Bayesian inference

methods are used. Otherwise, without any prior knowledge,

the unknown parameters must be treated as being non-random

(i.e., deterministic). There are, however, many situations when

some prior parameter statistics are known (e.g., the mean and

the variance), or their probability distribution is known par-

tially; these cases must be considered individually as they do

not constitute the case of random nor non-random parameters.

There are generally four basic types of the parameter

estimation problems depending whether the prior probability

distribution of the parameter to be estimated is known or not,

and whether the estimator is general (i.e., unconstrained), or

it is a linear filter or a transformation.

The rest of this tutorial is organized as follows. The problem

of finding the best possible estimator for a random parameter

minimizing so-called risk function is outlined in Section II. It

includes the Minimum Mean-Square Error (MMSE) and the

Maximum a Posteriori (MAP) estimators. If the prior distribu-

tion of the parameter is not known, it must be treated as being

non-random as explained in Section III. This case includes

the Minimum Variance Unbiased (MVUB), the Maximum

Likelihood (ML), the Least Squares (LS) and the moment-

based estimators. For these estimators, the Cramer-Rao Lower

Bound (CRLB) of their performance has been defined. Linear

estimators of random and non-random parameters are con-

sidered in Section IV and Section V, respectively. Additional

solved problems are provided in Section VI. The relevant

textbooks and the topics and problems, which are not covered

in this tutorial are summarized and discussed in Section VII.

Finally, Section VIII concludes the paper.

II. GENERAL ESTIMATION OF RANDOM PARAMETERS

Consider first the case of a general estimation of a continu-

ous or discrete random parameter, P, having the known prior

Probability Density Function (PDF), fP(p), or the Probability

Mass Function (PMF), PrP(p), respectively. The parameter P

is observed as the value (or multiple values), X(P), repre-

senting the system being considered, i.e., it is crucial that

the dependence of X on P is known. It is then possible to

derive the statistical dependence of X on P represented by the

conditional density, fX |P(x|p), or the conditional probability,

PrX |P(x|p), respectively. The estimator converts the measure-

ments, X(P), to the parameter estimates, P̂(X), which are

used in a given application. The application dictates how to

define the estimation errors, µ(P̂(X),P). The overall process

is summarized in Figure 3.

P̂(X) µ(P̂(X),P)
applicationestimator

parameter
estimate
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P X(P)

(observed)
measured

value
parameter estimation error

quantification of

Figure 3. A formulation of the parameter estimation problem.

Since the parameter, P, is assumed to be random, the

function, µ(P̂,P), quantifying the estimation error, (P̂− P),

is a random variable. In order to minimize the estimation

error for any value of P (which is unknown), the optimum

estimator minimizes the mean value, or so-called the risk,

E
[
µ(P̂,P)

]
, where E[·] denotes expectation. For instance, the

MMSE estimator minimizes the risk, EX ,P

[
µ(P̂(X),P)

]
=

EX ,P

[
(P̂(X)−P)2

]
, whereas the probability that the error

is greater than a threshold, ∆, assumes the risk function,

EX ,P

[
µ(P̂(X),P)

]
= Pr

(
|P̂(X)−P|> ∆

)
, as illustrated in Fig-

ure 4.

(P̂−P) 00

1

µ(P̂,P) = (P̂−P)2
µ(P̂,P) =

{
0 |P̂−P|< ∆

1 |P̂−P| ≥ ∆

−∆ +∆ (P̂−P)

Figure 4. The two examples of risk function for designing estimator, P̂(X).

In particular, the optimum estimator of a random parameter,

P, minimizes the general risk function,

EX ,P

[
µ(P̂(X),P)

]
=

∫
{X}

∫
{P}

µ(P̂(x), p) fX ,P(x, p)dpdx. (1)

The risk (1) is minimized, if and only if,

P̂opt = argminP̂(x) EX ,P

[
µ(P̂(x),P)|X = x

]
. (2)

Remark 1. The expressions presented here assume that P

and X are scalar random variables; the extension to random

vectors is (usually) straightforward.
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A. The MMSE Estimator

Substituting the MMSE function, µ(P̂,P) = (P̂−P)2, into

(1) above, the MMSE estimator is defined as,

P̂MMSE(x) = EP[P|X = x] =
∫
{P}

p fP|X (p|x)dp

=

∫
{P} p fX ,P(x, p)dp

fX (x)
=

∫
{P} p fX |P(x|p) fP(p)dp∫
{P} fX |P(x|p) fP(p)dp

.
(3)

Hence, if no measurements are available at all, the optimum

MMSE estimator is, P̂MMSE = EP[P] = P̄ (the mean of P).

Example 1. The signal samples, x(i), i = 1,2, · · · ,n represent

the sum of a random, but otherwise constant parameter, P,

having the uniform PDF over the interval, (0,d), and a zero-

mean stationary white Gaussian noise, w(i), having the known

variance, σ2
w. The noise samples, w(i), and the parameter, P,

are independent. Find the MMSE estimate of P.

Solution: 1. For P = p, the measured signal, x(i) = p+w(i),

has the conditional PDF,

fX |P(x|p) =
n

∏
i=1

fW (x(i)− p)

=
1

√

(2πσ2
w)n

exp

(

− 1

2σ2
w

n

∑
i=1

(x(i)− p)2

)

.

(4)

The prior PDF of the parameter, fP(p) = 1
d

, for p ∈ (0,d), and

0, otherwise. Thus, the PDF of X is,

fX (x) =

∫ ∞

−∞
fX |P(x|p) fP(p)dp =

1

d

∫ d

0

n

∏
i=1

fW (x(i)− p)dp

=Cn exp

(

− 1

2σ2
w

(

nx̃2 −
n

∑
i=1

x2(i)

))

×

×
(

Q

(

− x̃

σw

√
n

)

−Q

(
d − x̃

σw

√
n

))

(5)

where Cn = (d
√

n)−1(2πσ2
w)−(n−1)/2, Q(u) =

∞∫
u

1√
2π

e−t2/2 dt

(the Q-function), and, x̃ = 1
n

n

∑
i=1

x(i), so the MMSE estimator,

P̂MMSE(n) =

∫ ∞

−∞
p fP|X (p|x)dp

= x̃− σw√
n

Q̇
(

− x̃
σw

√
n
)

− Q̇
(

d−x̃
σw

√
n
)

Q
(

− x̃
σw

√
n
)

−Q
(

d−x̃
σw

√
n
) , g(x̃,n).

(6)

For streaming data, the online MMSE estimator is obtained

assuming a recurrent evaluation of the arithmetic average, i.e.,

x̃ =
1

n

n

∑
i=1

x(i) =
x(n)

n
+

n−1

n

1

n−1

n−1

∑
i=1

x(i)

︸ ︷︷ ︸

x̃(n−1)

. (7)

The corresponding circuit is shown in Figure 5. �

z−1

1
n

n−1
n

g(x̃,n)
x(n) P̂MMSE(n)x̃(n)

d σw

nuisance
parameters

Figure 5. The MMSE estimator for streaming data from Example 1.

The nuisance parameters that appeared in Figure 1 and

Figure 5 are the parameters that affect the measured sig-

nal, however, they are otherwise irrelevant in the application

considered. Consequently, the nuisance parameters can be

estimated, and these estimates simply ignored. Alternatively,

the estimated nuisance parameters can be substituted into the

estimator of the parameters of interest; this method is referred

to as an adaptive estimation. The third strategy often used in

practice is to eliminate the random nuisance parameters, N,

from the distribution of the measurements, X(P,N), i.e.,

P̂MMSE =

∫
{P}

p

∫
{N}

fP,N|X (p,n|X = x)dn

︸ ︷︷ ︸

fP|X (p|X=x)

dp = EP[P|X = x] .

(8)

The average MMSE estimator (8) is then considered to be

good enough, for any specific values of N.

Omitting the derivations and proofs, the MMSE estimates

have the following properties.

• The estimation error of the MMSE estimator has zero-

mean, i.e., the MMSE estimates are unbiased:

E
[
P̂MMSE(X)−P

]
= 0 ⇒ E

[
P̂MMSE(X)

]
= E[P] . (9)

• The estimator variance can be expressed as,

var
[
P̂MMSE−P

]
= E

[(
(P̂MMSE−P)−E

[
(P̂MMSE−P)

])2
]

= var[P]−var
[
P̂MMSE

]
.

(10)

• The estimation error is uncorrelated with (i.e., orthogonal

to) an arbitrary function of X , i.e.,

cov
[
P̂MMSE(X),g(X)

]
= cov[P,g(X)]

= E
[
P̂MMSE(X)g(X)

]
−E
[
P̂MMSE(X)

]

︸ ︷︷ ︸

E[P]

E[g(X)] . (11)

Consequently, cov
[
P̂MMSE −P,g(X)

]
= 0, and for g(X) =

P̂MMSE(X),

cov
[
P̂MMSE −P, P̂MMSE

]
= 0. (12)

Remark 2. The unbiased estimator does not suffer from a

systematic error. Moreover, the estimator quality is generally

quantified as the variance of its estimation error.

Theorem 1 (Gauss-Markov theorem). Let P and X be the

vector of parameters to be estimated, and the vector of

measurements, respectively. If P and X are jointly Gaussian,
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i.e., P and X are Gaussian with the means, P̄, and, X̄, and the

covariance matrices, var[P], and, var[X], respectively, then,

P̂MMSE(x) = P̄ + H(x− X̄), H = cov[P,X]var−1[X] . (13)

The covariance matrix of the estimation error is,

var
[
P̂MMSE −P

]
= var[P]−cov[P,X]var−1[X]cov[X,P] . (14)

Example 2. Let, x(t) = A + w(t), be an observed signal over

the time interval, t ∈ (0,T ), where A is a normally distributed

random variable with known mean, Ā, and known variance,

σ2
A, and w(t) represents a zero-mean Additive White Gaussian

Noise (AWGN) having the known variance, C0. Estimate the

value of A from the measured signal, x(t).

Solution: 2. Assuming Gauss-Markov theorem, after some

straightforward derivations, the estimator is obtained as,

ÂMMSE =
C0

Tσ2
A +C0

Ā +
σ2

A

Tσ2
A +C0

∫ T

0
x(t)dt. (15)

In addition, if T σ2
A ≫C0, then the estimator can be simplified

as,

ÂMMSE =
C0 Ā

T σ2
A

+
1

T

∫ T

0
x(t)dt. (16)

�

Example 3. The samples received in a data packet of N

symbols are expressed as, x(i) = ps(i) + w(i), i = 1,2, . . . ,N,

where p represents the channel attenuation, s(i) is transmitted

modulation symbol, and w(i) is the sample of an AWGN.

Discuss how to estimate the channel attenuation, p.

Solution: 3. The attenuation, p, is usually a complex-

valued zero-mean Gaussian random variable. Since estimating

unknown p while also detecting unknown s(i) at the same

time is not possible, the first n out of N data symbols are

usually reserved for so-called pilot symbols, which are known

at the receiver. For example, let s(i) = s0, for i = 1, . . . ,n. Then,

the received symbols, ps0, have zero mean, and the variance,

E
[
|ps0|2

]
= E

[
|p|2
]
|s0|2, and Gauss-Markov theorem can be

used to estimate, ps0, i.e., to estimate, p. �

B. The MAP Estimator

If P is a discrete random variable, then it is meaningful to

define its estimation error as,

µ(P̂,P) =

{
0 P̂ = P

1 P̂ 6= P.
(17)

The corresponding risk is equal to the probability of error, i.e.,

E
[
µ(P̂(X),P)

]
= Pr

(
P̂(X) 6= P

)
= 1−Pr

(
P̂(X) = P

)
. (18)

This yields the MAP estimator,

P̂MAP(X) = argminpi
E[µ(pi,P)|X = x]

= argmaxpi
Pr(P = pi|X = x) .

(19)

If P is a continuous random variable, then the estimation

error can be defined as,

µ(P̂,P) =

{
0 |P̂(X)−P|< ∆

1 |P̂(X)−P| ≥ ∆.
(20)

If ∆ in (20) is small, i.e., the probability that P̂ is close to P

is large, then,

P̂MAP(X) = argmaxP̂ fP|X (P̂|X = x)

= argmaxP̂ fX |P(x|P̂) fP(P̂)
(21)

where fX |P(x|P̂) represents the likelihood function. In practice,

the maximum can be obtained by assuming the derivatives, i.e.,
d

dP
fX |P(x, P̂) fP(P̂) = 0, or, d

dP
log( fX |P(x, P̂) fP(P̂)) = 0.

III. GENERAL ESTIMATION OF NON-RANDOM

PARAMETERS

The estimators introduced in the previous subsection require

that the prior statistical description of the parameters to

be estimated is completely known. If this is not the case,

then the parameters can treated as being non-random. The

caveat is that the estimator of a non-random parameter, P,

is often much more difficult to find, and it may not even

exist. For example, assuming the MMSE criterion, minimizing

the risk, E
[
µ(P̂(X),P)

]
=

∫
{X}(P̂(X)−P)2 fX (x,P)dx, yields

correct, but otherwise useless solution, P̂ = P. Figure 6 shows

the examples when the optimum estimator (in the sense of

minimizing the average risk) exists, and when it does not exist.

E{µ(P̂(X),P)}

P

P̂1

P̂2

P

E{µ(P̂(X),P)}

P̂2

P̂1

Figure 6. The examples when the optimum estimator exists (left), and when
it does not exist (right).

The estimation of a non-random parameter, P, generally

relies on knowledge of the statistical dependence of the

measured values, X , i.e., on the parameterized PDF or PMF,

fX (x,P), or, PrX (x,P), respectively, which must satisfy,
∫
{X}

fX (x,P)dx = 1, or, ∑
x∈{X}

Pr(X = x,P) = 1, ∀P. (22)

A. The MVUB Estimator

The minimum variance unbiased (MVUB) estimator of a

non-random parameter, P, is unbiased, i.e., E
[
P̂
]

= P, for ∀P.

The variance of the estimation error of an unbiased estimator

is,

var
[
P̂(X)−P

]
= E

[
(P̂(X)−P)2

]

︸ ︷︷ ︸

MSE

= var
[
P̂(X)

]
. (23)

Consequently, the MVUB estimator minimizes the MSE equal

to the variance of P̂. However, the MVUB estimator may not

exist, i.e., there may be no such function of X having the

smallest variance for any value of P, as shown in Figure 6.

There are several important notions to describe the asymp-

totic accuracy of the estimators of non-random parameters. In

particular, the CRLB defines the minimum achievable variance
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of any unbiased estimator of a non-random parameter, P. It is

mathematically formulated as,

var
[
P̂
]
≥ 1

J(P)
(24)

where Fisher information, J(P), is computed as,

J(P) = E

[(
∂ ln fX (x,P)

∂P

)2
]

= E

[

−∂2 ln fX (x,P)

∂P2

]

. (25)

Note that, ln fX (x,P), represents the log-likelihood function,

and showing the equality between the two expectations in (25)

requires a derivation.

The estimator is said to be efficient, provided that it is unbi-

ased, and it attains the CRLB defined in (24). Furthermore, the

estimator is said to be consistent, provided that the variance,

var
[
P̂
]
, is decreasing with the number of measurements, X .

Remark 3. There may be estimators that are slightly bi-

ased, but which have the variance smaller than the CRLB.

For example, the estimator design can be constrained as,

E
[
|P̂−P|

]
< ∆, to allow that it may possibly be unbiased.

The trade-off between the bias and the variance frequently

appears in training the machine learning models. Moreover,

the consistency guarantees that collecting more data samples

improves the estimator accuracy, which is also useful for

machine learning.

B. The ML Estimator

The MVUB estimator may not exist, or it is difficult to find.

However, given the measurement, X = x, unless we are very

unlucky, it is meaningful to choose the estimate of P to be the

value with the largest likelihood, i.e.,

P̂ML(X) = argmaxP̂ fX (x, P̂), or

P̂ML(X) = argmaxP̂ PrX

(
X = x, P̂

)
.

(26)

The estimator (26) is referred to as the ML estimator.

The ML estimator has the following properties.

• If the efficient estimate exists, then it is the ML estimate.

• If the efficient estimate does not exist, then the ML

estimate is neither guaranteed to have the minimum

variance, nor to be unbiased.

• The ML estimator is asymptotically unbiased as well as

asymptotically efficient.

• The ML estimator is invariant to any function, g(P), i.e.,

the ML estimate of g(P) can be obtained as,

ĝML(P) = g(P̂ML). (27)

Remark 4. Even though the ML estimator may not be unbi-

ased, it is generally very attractive for its simplicity to obtain

it. Moreover, if all the values of P are a priori equally likely,

then the ML estimator and the MAP estimator are identical.

Example 4. There were x errors detected in a binary sequence

of n bits. Assuming that the errors are independent, and they

occur with the probability, P, decide whether the estimator

P̂ = x/n of P is the MVUB estimator.

Solution: 4. The variance of the estimator, P̂ = x/n, is,

var
[
P̂
]

= P(1− P)/n. The probability of x errors occurring

among n bits is, Pr(X = x,P) =
(

n
x

)
Px(1 − P)n−x, so that

∂
∂P

lnPr(X = x,P) = n
P(1−P)

(
x
n
−P
)
. Since the estimator, P̂ =

x/n, can be shown to be unbiased, and E

[(
∂ lnPr(X=x,P)

∂P

)2
]

=

var
[
P̂
]−1

, the estimator is indeed the MVUB estimator. �

Example 5. The N samples of an unknown constant a were

sampled in a zero-mean AWGN with an unknown variance,

σ2. Find the ML estimate of a.

Solution: 5. Assuming, x(i) = a+w(i)e, the joint PDF of N

observed samples is,

fX (x,a,σ) =
1

√

(2πσ)N
exp

(

− 1

2σ

N

∑
i=1

(x(i)−a)2

)

. (28)

The ML estimates of the unknown parameters, a and σ,

respectively, must satisfy,

∂ ln fX (x, âML, σ̂ML)

∂âML
=

1

σ̂ML

N

∑
i=1

(x(i)− âML)
!
= 0

∂ ln fX (x, âML, σ̂ML)

∂σ̂ML
= −N

2

1

σ̂ML
+

1

2σ̂2
ML

N

∑
i=1

(x(i)− âML)2 !
= 0.

(29)

Solving these two equations for âML and σ̂ML, their estimators

become,

âML =
1

N

N

∑
i=1

x(i), and

σ̂ML =
1

N

N

∑
i=1

(x(i)− âML)2.

(30)

The estimate, âML, has the mean, E[âML] = 1
N ∑N

i=1 E[x(i)] =
1
N ∑N

i=1 a = a, and the variance of estimation error,

E
[
(âML −a)2

]
= 1

N2 ∑N
i=1 var[x(i)] = 1

N2 ∑N
i=1 σ = σ/N. On the

other hand, for the estimate, σ̂ML, E[σ̂ML] = σ N−1
N

, i.e.,

E[σ̂ML] 6= σ. Hence, the ML estimate of σ is only asymp-

totically unbiased, and the variance of estimation error,

E
[
(σ̂ML −σ)2

]
= σ2 2N−1

N2 becomes asymptotically (for large

N) equal to the CRLB, 2σ2/N, proving that the ML estimator

of σ is asymptotically efficient. �

Many practical scenarios involve measurements in an

AWGN. Specifically, in discrete time, assume the measured

samples, x(i) = g(p) + w(i), where g(·) denotes a non-linear

function, and w(i) is a zero-mean AWGN with unknown

variance. The ML estimate of P is then,

P̂ML = argminP̂

N

∑
i=1

|x(i)−g(P̂)|2. (31)

Similarly, in continuous time, assume the observed signal,

x(t) = g(t, p) + w(t), over the time, t ∈ (0,T ), where g(t, p)
is a signal dependent on P = p, and w(t) denotes a stationary

zero-mean AWGN with unknown variance. The ML estimate

of P is then,

P̂ML = argminP̂

∫ T

0
|x(t)−g(t, P̂)|2 dt. (32)
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Example 6. Find the ML estimate of a constant phase shift, θ,

of the unmodulated carrier signal, x(t) = Acos(ωct +θ)+w(t),

received over the time, t ∈ (0,T ), and assuming that, ωcT ≫ 1.

Solution: 6. The ML estimate of θ is,

θ̂ML = argminθ̂

∫ T

0
(x(t)−Acos(ωct + θ̂))2 dt

≈ argmaxθ̂

∫ T

0
x(t)cos(ωct + θ̂)dt

= ∠

∫ T

0
x(t)e−jωct dt

︸ ︷︷ ︸

X(ωc)

.

(33)

Alternatively,

∂

∂θ̂ML

ln fX (x,A,ωc, θ̂ML)
!
= 0

⇒
∫ T

0
x(t)sin(ωct + θ̂ML)dt = 0.

(34)

The corresponding implementations are shown in Figure 7.

The bottom circuit in Figure 7 is a Phase-Locked Loop (PLL).

It uses the output signal of a Voltage-Controlled Oscillator

(VCO) to recover the carrier signal in order to enable the

coherent detection of transmitted data symbols. �

x(t) ∫ T
0

VCO

sin(ωct + θ̂ML)

−sin(ωct)

θ̂ML

∫ T
0

∫ T
0

x(t)

Re{X(ωc)}

Im{X(ωc)}

∠
cos(ωct)

Figure 7. The two ML estimators of phase shift, θ, of the unmodulated
noisy carrier signal, x(t).

C. The LS Estimator

It may be sometimes impractical or impossible to obtain

the distribution of the measurements, X . However, if a rea-

sonably good model, g(P), of X(P) can be obtained, so that,

X(P) ≈ g(P), then, the optimum estimator of the non-random

parameter, P, can be defined as,

P̂opt(X) = argminP̂ µ
(
X ,g(P̂)

)
. (35)

The corresponding LS estimator is obtained by assuming N

measurements, Xi, and the error function,

µ
(
X ,g(P̂)

)
=

N

∑
i=1

vi

(
Xi −g(P̂)

)2
(36)

where vi are the weights to (de-)emphasize the measurements.

For time-continuous measurements, x(t), the LS estimator

is,

P̂LS = argminP̂

∫ T

0

(
x(t)−g(t, P̂)

)2
dt. (37)

If the parameter, P, is continuous, the minimization of

(35) or (37) can be performed by differentiation, and then

numerically findings the root of a non-linear function.

Remark 5. The LS estimator corresponds to the ML estimator,

provided that the measurement noise is AWGN.

D. The Moments Based Estimator

Both the ML and the LS estimators may be too complex

to implement, since they require finding the extremum of

a generally non-linear function. An alternative approach for

estimating the non-random parameter is to match its statistical

moments. In particular, the n-th general moment of a random

variable, P, is defined as,

gn(P) = EP[Pn] =
∫
{P}

pn fP(p)dp, or

gn(P) = EP[Pn] = ∑
p∈{P}

pn Pr(P = p) .
(38)

If the measurements are stationary, i.e, they have the same

moments, the n-th moment, gn(P), can be estimated from N

measurements, xi, as,

ĝn(P) =
1

N

N

∑
i=1

xn(i). (39)

Subsequently, the estimate of P is obtained by using the

inverse function, g−1
n , i.e.,

P̂ = g−1
n

(

1

N

N

∑
i=1

xn(i)

)

. (40)

Remark 6. In practice, the moments order, n, is typically

assumed to be small, since it is more difficult to reliably

estimate higher-order moments, and the estimation error in-

creases with n. The estimator (40) is unbiased, and consistent,

i.e., limN→∞ ĝn(P) = gn(P), however, there are otherwise no

guarantees about its optimality. Note also that although the

parameter, P, may be a random variable, its distribution is

unknown, and thus, for the purpose of its estimation, it is

considered to be non-random.

IV. LINEAR ESTIMATION OF RANDOM PARAMETERS

The general estimation strategy is to seek an optimum func-

tion to minimize the mean estimation error, i.e., the risk. This

requires a full statistical description of measurements, X , as a

function of the unknown parameter, P. Such a dependence is

normally expressed as the conditional distribution, fX |P(x|p),

or the conditional probability, Pr(X |P), when P is considered

to be a random variable, and the parameterized distribution,

fX (x;P), or the parameterized probability, Pr(X ;P), when P is

non-random.

Provided that only some statistics of the parameter, P, are

known, such as its mean and the variance, they are sufficient
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to define an optimum linear estimator. Such an estimator is

simply a linear filter, which can be written as,

P̂(X) = a + HX (41)

where X is the vector of measurements, P is the vector of

parameters to be estimated, and P̂(X) is the vector of the

estimates. The vector a and the matrix H represent the filter

coefficients, which are independent of the actual values, P,

and, X. Consequently, given the statistics of X and P, such as,

E[X], var[X], E[P], var[P], and cov[P,X]), the task is to find

the optimum filter coefficients, a, and, H.

A. The LMMSE Estimator

The Linear MMSE (LMMSE) estimator is unbiased, i.e.,

E
[
P̂(X)

]
= E[P], or, E

[
P̂(X)−P

]
= 0, where 0 denotes the

all-zeros vector. For the scalar, P, the LMMSE estimator

minimizes the variance, var
[
P̂(X)−P

]
= E

[
(P̂(X)−P)2

]
. In

case of the vector, P, the LMMSE estimator minimizes the

correlation matrix,

var
[
P̂(X)−P

]
= E

[
(P̂(X)−P)(P̂(X)−P)T

]
. (42)

Remark 7. The square matrix, A, is minimized, provided that

it is positively semi-definite, i.e., uT Au ≥ 0, as well as uT Au

has the minimum value for some non-zero vector, u.

The LMMSE estimation minimizes the variance matrix,

var
[
P̂(X)−P

]
. It is straightforward to show that the minimum

occurs, when,

a = P̄−HX̄, and, H = cov[P,X]var−1[X] (43)

requiring only knowledge of P̄ = E[P], X̄ = E[X], var[X], and

cov[P,X]. The LMMSE estimate is then computed as,

P̂LMMSE(X) = P̄ + H(X− X̄). (44)

The LMMSE estimator has the following properties.

• The estimates are unbiased, i.e., E
[
P̂LMMSE(X)

]
= E[P].

• The estimation error and the measurements are uncorre-

lated (orthogonal), i.e., cov
[
P̂LMMSE −P,X

]
= 0.

• The estimation error and the estimate are uncorrelated,

i.e., cov
[
P̂LMMSE −P, P̂LMMSE

]
= 0.

• The variance matrix of the estimate, var
[
P̂LMMSE

]
=

Hvar[X]HT = Hcov[X,P].
• The covariance matrix of the estimation errors is equal

to,

S = E
[
(P̂LMMSE −P)(P̂LMMSE −P)T

]

= var
[
P̂LMMSE −P

]
= var[P]−var

[
P̂LMMSE

]
.

(45)

• The estimator, which is linear, unbiased and orthogonal,

is the LMMSE estimator.

Example 7. The stationary signal, x(t), with a known auto-

covariance, Kx(τ) = E[(x(t + τ)− x̄)(x(t)− x̄)], is sampled at

three time instances, t ∈ {t0−∆t, t0, t0 +∆t}. Find the LMMSE

estimate, ˆ̇x(t0), of the derivative, d
dt

x(t)|t=t0 = ẋ(t0).

Solution: 7. Define the vectors, P = ẋ(t0), and, X = [x(t0 −
∆t),x(t0),x(t0 +∆t)]T . Then, the covariance functions are writ-

ten as, Kx(τ) = Kx(−τ), Kẋ,x(τ) = K̇x(τ), Kx,ẋ(τ) = −K̇x(τ),

Kẋ(τ) = −K̈x(τ), and var[ẋ(t0)] = Kẋ(0). The corresponding

cross-covariance vector,

cov[P,X] = [K̇x(∆t), K̇x(0)
︸ ︷︷ ︸

0

, K̇x(−∆t)
︸ ︷︷ ︸

−K̇x(∆t)

] (46)

and the variance matrix,

var[X] =





Kx(0) Kx(∆t) Kx(2∆t)
Kx(∆t) Kx(0) Kx(∆t)

Kx(2∆t) Kx(∆t) Kx(0)



 . (47)

These expressions can be substituted into, P̂LMMSE(X) = P̄ +
H(X− X̄), and, H = cov[P,X]var−1[X], to get the estimator,

ˆ̇x(t0) = ¯̇x(t0) +
K̇x(∆t)

Kx(0)−Kx(2∆t)
︸ ︷︷ ︸

const

×

(x(t0 −∆t)− x(t0 + ∆t)− x̄(t0 −∆t) + x̄(t0 + ∆t)) .
(48)

�

Example 8. The signal samples, x(i), i = 1,2, · · · ,n, represent

the sum of a random, but otherwise constant parameter, P,

having the uniform probability distribution over the interval,

(0,d), and a stationary AWGN, w(i), with zero-mean, and a

known variance, σ2
w. The noise, w(i), and the parameter, P,

are independent. Find the LMMSE estimate of P.

Solution: 8. Define the vector, X = [x(1), . . . ,x(n)]T , having

the elements, x(i) = P + w(i), so that, X = [1, · · · ,1]T P + W.

The parameter has the mean value, E[P] = d/2, and the

variance, var[P] = d2/12, while the noise, E[w(i)] = 0, and,

var[w(i)] = σ2
w. This yields the LMMSE estimator,

P̂(n) =
nd2

nd2 + 12σ2
w

(

6σ2
w

nd
+

1

n

n

∑
i=1

x(i)

)

. (49)

�

V. LINEAR ESTIMATION OF NON-RANDOM PARAMETERS

If the vector of parameters, P, is non-random, then, E[P] =
P, and, cov[P,X] = E

[
(P−P)(X− X̄)T

]
= 0. Substituting

these expressions into the LMMSE estimator, the solution,

P̂LMMSE = P, is correct, but useless. As for general estimators

of non-random parameters, a different strategy is required.

Assuming a class of linear unbiased estimators, i.e., the

estimators of the form, P̂(X) = a + HX, then,

E
[
P̂(X)

]
= a + HX̄

!
= P, ∀P (50)

and thus, X̄ = DP+r, such that, HD = I, and, a = −Hr. The

matrix, D, and the vector, r, are assumed to be known and

independent of P, where I is the identity matrix. Consequently,

the linear unbiased estimator of P is written as,

P̂ = H(X− r) (51)
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under the constraints,

X̄ = E[X] = DP + r, and, HD = I. (52)

A. The BLUE Estimator

The Best Linear Unbiased Estimator (BLUE) is a linear

estimation with the smallest variance. If the number of mea-

surements (the length of vector, X), is equal to the number of

parameters to be estimated (the length of vector, P), then the

BLUE estimator is defined as,

P̂ = H(X− r), H = D−1. (53)

On the other hand, if the length of vector, X, is greater than

the length of vector, P, which is often the case, then the BLUE

estimator is defined as the one that minimizes the correlation

matrix of the estimation error, i.e.,

S = E
[
(P̂(X)−P)(P̂(X)−P)T

]

︸ ︷︷ ︸

correlation matrix

= var
[
P̂(X)−P

]

︸ ︷︷ ︸

variance matrix

= var
[
H(X− X̄)

]
= Hvar[X]HT .

(54)

Thus, the matrix, S, is equal to the variance matrix of the

estimation error, since the estimator is unbiased, and it also

equal to the variance matrix of the estimate, since P is

considered to be non-random.

Furthermore, if var[X] is independent of P, which is not

always guaranteed, the BLUE estimator, P̂ = H(X − r), is

defined by the matrix,

H =
(
DT var−1[X]D

)−1
DT var−1[X] . (55)

The corresponding correlation matrix is then,

S =
(
DT var−1[X]D

)−1
. (56)

Example 9. The radar determines the distance to a target

using three measurements, x1, x2 and x3. The measurements

are distorted by a zero-mean additive errors, wi, i = 1,2,3.

The correlations between the measurements are dependent

on their separation in time, i.e., (a) if the time separation

is T1, then, r12 = r23 = 0.9, and, r13 = 0.7; (b) if the time

separation is T2, then r12 = r23 = 0.7, and, r13 = 0.4; and

(c) if the time separation is T3, then r12 = r23 = r13 = 0.

Obtain the BLUE estimator of the distance from the three

measurements, and also calculate the mean square error of

the estimate. Assume that the variance of the measurement

errors is, var[wi] = 30 m2.

Solution: 9. In this case, the vector, D, and the variance

matrix of X are defined, respectively, as,

D =





1

1

1



 , var[X] = 30





1 r12 r13

r12 1 r23

r13 r23 1



 . (57)

After substituting the specific values for the correlation co-

efficients, r12, r23, and r13, the matrices, var−1[X], and, the

vector, DT var−1[X], can be computed including the scalar

value, DT var−1[X]D. Subsequently, the estimators and their

mean square errors are obtained for each case of the time-

separation, i.e.,

(a) T1: p̂ = x1 − x2 + x3, S = 24 m2;

(b) T2: p̂ = (x1 + x3)/2, S = 21 m2;

(c) T3: p̂ = (x1 + x2 + x3)/3, S = 10 m2.

�

Remark 8. In Example 9, if the measurements are uncor-

related, the estimate is a simple arithmetic average, and the

estimator variance is the smallest. In other two cases, the un-

equal combining weights account for the non-zero correlations

between the measurements.

VI. ADDITIONAL SOLVED PROBLEMS

Example 10. An unmodulated carrier is measured in discrete

time in the presence of a zero-mean AWGN with an unknown

variance, σ2
w, i.e.,

x(i) = Acos(βi + Φ) + w(i), i = 1,2, · · · ,N (58)

where β is a known angular frequency, which can be assumed

to be, −π < β < π, A is a Rayleigh distributed random

amplitude, and Φ is a uniformly distributed random phase

over the interval, (−π,π). The amplitude, A, and the phase,

Φ, are independent, and let the measured mean received power

be also known. Find the MAP estimate of the phase Φ.

Solution: 10. The amplitude A is a nuisance parameter,

which can be averaged out from the likelihood function,

fX |A,Φ(x|a,φ), of the received signal, x(i). Provided that,
∣
∣
∣
∣

sin(Nβ)

N sin(β)

∣
∣
∣
∣
≪ 1, (59)

the MAP estimate of Φ is obtained as (after some derivations),

Φ̂MAP = −∠(I + jQ) (60)

where

I =
N

∑
i=1

x(i)cos(βi)

Q =
N

∑
i=1

x(i)sin(βi).

(61)

�

Example 11. An unmodulated carrier with unknown ampli-

tude, phase and angular frequency is measured in a zero-mean

AWGN with an unknown variance, σ2
w, i.e.,

x(i) = Acos(βi + φ) + w(i), i = 0,1, · · · ,N −1 (62)

where β ∈ (0,π). Find the ML estimate of all the unknown

parameters, provided that |sin(Nβ)/(N sin(β))|≪1.

Solution: 11. The unknown parameters are: φ, A, β, and σ2
w.

Define the quantities,

k∗ = argmaxk=0,1,··· ,N/2

∣
∣
∣
∣
∣

N−1

∑
i=0

x(i)e−j 2π
N k i

∣
∣
∣
∣
∣

Dk∗ =
N−1

∑
i=0

x(i)e−j 2π
N k∗ i.

(63)
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The corresponding ML estimates are then computed as,

β̂ML =
2π

N
k∗, ÂML =

2

N
|Dk∗ | ,

φ̂ML = ∠Dk∗ , σ̂2
wML =

1

N

N

∑
i=1

x2(i)− 2

N2
|Dk∗ |2 .

(64)

�

Example 12. As shown in Figure 8, the distance from an

object at unknown locations, P1, and, P2, is measured at

multiple spatial locations, xi = (i− 1)∆, i = 1,2, · · · ,N. Find

the LS estimate of the object location.

y

x

∆

P2

P1(i−1)∆

di

0

Figure 8. Determining the object location from multiple distance
measurements.

Solution: 12. Denote the distances,

di = gi(P1,P2) =
√

(P1 − xi)2 + P2
2 . (65)

The estimate, [P̂1, P̂2], of the object location, [P1,P2], is given

by numerically solving the following set of non-linear equa-

tions:

1

N

N

∑
i=1

di

gi(P̂1, P̂2)
= 1

2

N(N −1)

N

∑
i=1

(i−1)di

gi(P̂1, P̂2)
= 1.

(66)

The initial location estimate can be computed as,

P̂1 =
d2

1 −d2
N +(N −1)2∆2

2(N −1)∆

P̂2 = ±
√

d2
1 − P̂2

1 .

(67)

�

Example 13. A non-random discrete time signal, p(i) =
Asin(βi+φ), i = 0,1,2, . . ., is measured in a zero-mean AWGN

with unknown variance, σ2
w. The frequency, β, is assumed to

be known, whereas the amplitude, A, and the phase, φ, are

unknown deterministic quantities. Find the LMMSE estimator

(filter) to suppress the measurement noise at the current time

instant, i = n. Then, simplify the estimator, provided that,

|sin(nβ)/sin(β)| ≪ 1.

Solution: 13. The exact signal estimate and its variance,

respectively, can be derived to be,

p̂(n) =
1

2g(n)sin(β)
×

n

∑
i=0

x(i)(nsin(β)cos((n− i)β)− sin(nβ)cos((i + 1)β)

S(n) =
σ2

w

2g(n)

(

n +
1

2
− sin((2n + 1)β

2sin(β)

)

(68)

where

g(n) =
1

4

(

(n + 1)2 −
(

sin(nβ)

sin(β)

)2

− sin((2n + 1)β)

sin(β)

)

. (69)

If the condition, |sin(nβ)/sin(β)| ≪ 1, is valid, the estimator

and its variance can be approximated as,

p̂(n) ≈ 2

n + 1

n

∑
i=0

x(i)cos((n− i)β)

S(n) ≈ 2

n + 1
σ2

w.

(70)

�

Example 14. A zero-mean discrete-time Gaussian random

signal, v(n), has the auto-covariance, Kv(n) = σ2
va|n|, a > 0.

The signal, v(n), is observed through a non-linear memoryless

circuit having the output signal, x(n) = exp(kv(n)), k > 0.

Find the MMSE estimate, x̂(n), from the past samples, x(i),

i = 1,2, · · · ,n− 1. Note that the random signal, v(n), can be

generated as,

v(n) = av(n−1) + σv

√

1−a2 w(n) (71)

where v(1) = σvw(1), and w(i) is the sample of a zero-mean,

unit-variance AWGN.

Solution: 14. The extrapolated value, x(n), is estimated as:

x̂(n) = (x(n−1))a
exp

(
1

2
k2σ2

v(1−a2)

)

. (72)

The variance of this estimator (predictor) can be found to be,

S = exp(2k2σ2
v)− exp(k2σ2

v(1 + a2)). (73)

�

VII. DISCUSSION

Estimation theory has been established decades ago. It is

now the standard part of the undergraduate and graduate

curricula in most engineering schools. It is then not surprising

that many textbooks are available [1]–[17]. For example, good

explanations of various topics in estimation theory at the

intermediate level are provided in [7]. It should be noted

that only textbooks are provided in the list of references.

The survey of research papers and the state-of-the art are

beyond the scope of this tutorial, which solely focuses on the

fundamental principles of the parameter estimation.
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Moreover, this tutorial could not cover many other important

topics in parameter estimation. For instance, adaptive estima-

tors estimate the values of multiple parameters successively

rather than jointly in order to reduce the complexity. Bayesian

inference relies on simple Bayes theorem; however, in practice,

the underlying distributions cannot be obtained in closed-

form, have many dimensions, or are only known up to a

scaling constant. This requires to use sophisticated numerical

algorithms involving sequential sampling, or approximations.

Furthermore, estimating and predicting the values of time-

dependent parameters is the subject of statistical filtering. It

involves designing, e.g., Kalman filters and its variants, par-

ticle filters, and others. Importantly, signal estimation follows

the same fundamental ideas of parameter estimation.

Computer simulations often perform implicit parameter

estimations. It would be useful to consider the underlying pa-

rameter estimators explicitly as the components of simulations.

This may be straightforward for point estimators, and it is

more challenging for estimating, e.g., posterior distributions.

Unlike statistical inferences, the causal inferences are still

a relatively new topic, which is not always included in

the engineering curricula. Therefore, the textbooks on causal

inferences are also a few and more recent [18]–[22]. A

common strategy for performing causal inferences is to exploit

the parameter inferences. In turn, the causal inference could

enhance the parameter estimation methods.

Mathematical derivations rather than intuitive designs are

often necessary to obtain the estimators, especially when

the measurements are very noisy. Mathematical tractability

for non-linear models can be achieved by assuming function

linearization and other types of approximation. The estimator

derivation translates the estimation problem into the corre-

sponding optimization problem, and a procedure how to solve

the optimization problem. This appears to be in a sharp

contrast with nowadays nearly ubiquitous use of machine

learning algorithms. These algorithms offer the solutions that

are more flexible, but their design is based on intuition

and extensive computer-based experimentation while avoiding

complicated mathematical derivations altogether. Moreover,

these algorithms can be implemented with a few lines of

the Python code. The caveat is that the universal models

used in supervised machine learning require large amounts of

training data, they ignore excessive computational complexity,

and their intuitive and experimental design often completely

obscure their interpretability. This may explain why there are

many computing libraries for machine learning, but only a few

for parameter estimation.

Thus, having specialized, interpretable, but computationally

efficient model-based estimators on one hand, and the uni-

versal, but inefficient model-free machine learning algorithms

lacking the interpretability on the other hand indicates that

there is a need to bring the principles of estimation theory

into machine learning practice. For example, suppressing the

measurement noise and adopting the model constraints by the

means of estimation theory should greatly aid the machine

learning to be either faster, or requiring less training data.

VIII. CONCLUSION

The choice of the appropriate estimator in a given signal

processing scenario is completely dependent on what infor-

mation is available. In particular, the model of measurements

and of signals must be known, so that the statistical description

of measurements and parameters to be estimated can be

obtained in full, or at least partially. For instance, if the prior

distribution of parameters is not known, these parameters are

considered to be non-random, and their estimator may be much

more difficult to find, or may not even exist. The lack of

model knowledge can be replaced by the input-output samples

as in the supervised machine learning. Another important

consideration is how noisy the measurements are.
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