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Abstract—Following our recent work on mixed Poisson-White
Spike noisy image restoration, we present a multi-convex opti-
mization model to address the fundamental problem of Poisson
blind image deconvolution (BID). This problem is encountered
in a special application of X-ray radiography in hydro-tests,
which also plays an important role in advanced tomographic
imaging. We utilize a combined two-dimensional Square Cauchy-
Gaussian distribution, whose parameters are totally unknown, to
characterize the base structure of the convolution kernel. A new
prior density function for the convolution kernel is proposed
by integrating the structure density into a Kullback-Leibler
divergence. The multi-convex optimization model is derived by
a joint maximum a posteriori estimation (MAP) procedure, into
which local estimation and expectation maximization algorithm
are involved to gain convexity and solvability. To solve the
proposed model numerically, a block coefficient descent based
algorithm is to be proposed, in which majorization-minimization
algorithm and Barzilai-Borwein estimation along with alternating
direction minimization of multipliers are utilized to promote the
computational efficiency. Numerical results show the effectiveness
of our proposed algorithm, as well as its adaptivity.

Index Terms—Poisson blind image deconvolution; Square
Cauchy distribution; Multidirectional fractional-order derivatives;
Multi-convex; Combined 2-dimensional Square Cauchy-Gaussian
distribution

I. INTRODUCTION

We consider a photon-limited BID problem encountered in
a specific application of flash X/γ-ray radiography (FXR) for
hydrodynamic experiments [1] [2], which serves as crucial
preprocessing in advanced FXR imaging, especially in 2-
dimensional (2D) and 3-dimensional (3D) tomographic recon-
struction. Till now, the existing methods of digital radiograph
processing are commonly non-blind or based on known Gaus-
sian kernel under the classical Gaussian noise assumption.
In applications, however, due to physical and geometrical
limitations of the digital radiography system, the acquired data
suffer many types of perturbation other than the Gaussian ones.
Besides a typically signal-dependent component, i.e., photon
shot or Poisson noise [3]–[5], it is noteworthy that heavy-
tailed very impulsive components must be taken into account
for better understanding both the system blur and the noise as
well [6], [7] and [4].

The rest of this submission is organized as follows. In
Section 2, we present a new noisy degraded image model and
then introduce briefly the modeling procedure of our proposed
hybrid regularization model for Poisson BID. In Section 3, we

introduce in brief our main idea on how to solve the proposed
model numerically. An experimental result is shown to validate
our approach. More details on the numerical scheme and
additional experimental results will be present on site. Section
4 concludes this submission.

II. PROPOSED MODEL

In applications, due to the type and amount of the con-
tamination, it is difficult to present an accurate noise model,
and most studies are built upon a common or oversimplified,
signal-independent choice, i.e., additive white Gaussian noise.
In this study, we pay more attention to two kinds of non-
Gaussian perturbation. In fact, Poisson noise can be intro-
duced to the intensity image by the counting process at the
scintillator and the CCD array, which is a typical example
of signal-dependent noise, and more familiar to fluorescence
microscopy, positron emission tomography and astronomy.
Moreover, a special case of impulsive behavior has to be con-
sidered. Indeed, there always exists a large number of radiation
particles in high energy radiography, although not irradiated
directly, reaching the CCD detector and contaminating the
image. This perturbation can also be produced by secondary
scattered neutron and gamma radiation hitting the detector
even endowed with sophisticated shielding [8]. The struck
pixels are displayed as white spikes, which are generally hold
much bigger signal counts than those of neighboring pixels
and more frequently observed in the dark or extremely low
contrast areas.

A highly valued aspect of high energy radiography is the
ability to resolve fine details in the high-density object, and
resolution depends on the size of the radiographic source spot
[9]. Various techniques and definitions have been proposed for
measuring and characterizing the spot size at different labo-
ratories, from which a general conclusion can be drawn that
heavy-tailed distributions, including two-dimensional Cauchy
distribution and Square Cauchy distribution, also known as
Quasi-Bennett distribution and Bennett distribution [9], re-
spectively, are more physically realistic than the Gaussian one
to characterize the source spot, although their parameters are
still very hard to measure or determine in good accuracy. It
is shown in [10] that the Cauchy distribution and Gaussian
distribution are of Lévy-stable type. On the other end, to
model the detector response or simulate X-ray scattering in
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X-ray radiography, it is notable that Cauchy distribution can
also be deduced theoretically from the assumption of isotropic
radiation [11].

In this section, we address the Poisson BID problem in
the image space. We adopt the one-dimensional mixture
of Poisson and Square Cauchy (MPsC) distributions [4] to
characterize the noise in radiographic data, and extend the
MPsC denoising method to address the Poisson BID problem.
To better condition the deblurring process, our main idea
is introducing a combined two-dimensional Square Cauchy-
Gaussian distribution with unknown parameters to approxi-
mate the basal structure of the unknown blur kernel, and then,
integrating it into a Kullback-Leibler (KL) divergence (see [4]
and references therein) to construct our prior kernel density
function.

Let f, u, k, w, b : Ω → [0, 1] be the recorded noisy blurred
image, the source image, the blur kernel, and the additive
Square Cauchy noise, and the background, respectively. Ω =
(−1, 1)2 denotes the image domain. In applications, one may
assume that b is the mean of a known Poisson distribution.
Assuming a convolution blur model for a linear radiographic
system, we propose the following noisy degraded image model

f = Poisson(k ∗ u+ b) + w
.
= z(u, k) + w, (1)

in which z is a realization of Poisson distributed random
variable Z with PDF given by

PU,KZ (z; k ∗ u+ b) =
(k ∗ u+ b)ze−(k∗u+b)

z!
, (2)

k is the blur kernel, ∗ denotes the two-dimensional lin-
ear convolution operator, w is a realization of square
Cauchy distributed random variable, whose PDF is given by
PW (w;σ2

w) =
2σ3
w

π(σ2
w+|w|2)2 , σ

2
w > 0, w ∈ R.

Proper formulations of both the latent image prior and the
blur prior are crucial to the success of BID methods. In our
context, the convolution kernel k is regarded as realization
of a random variable K, whose PDF is assumed to be
unknown, except it can be characterized by a heavy-tailed
mixture of Lévy-stable distributions [9] [10]. For convenience
of discussion, in the follow we consider a combined 2-
dimensional Square Cauchy-Gaussian distribution with PDF
Bk(x; ΘB) =

∑2
i=1 γipi(x;σ2

i ), x ∈ Ω as prior structure of
the kernel, where p1 and p2 are defined by

p1(x;σ2
1) =

σ2
1

π(σ2
1 + |x|2)2

, p2(x;σ2
2) =

1

2πσ2
2

exp

(
−|x|

2

2σ2
2

)
,

(3)
respectively, the denotation ΘB represents the set of param-
eters γ1, γ2, σ

2
1 , σ

2
2 . γi ≥ 0 is a mixture ratio satisfying

γ1 + γ2 = 1.
We then utilize the KL divergence to measure the differ-

ence between the unknown kernel k and the basel structure
Bk(x; ΘB), and define a prior constraint on the blur kernel k
given by PK(k) ∝ e−JK(k) with

JK(k)(x) = k(x)[ln k(x)− lnBk(x; ΘB)− 1] +Bk(x; ΘB).
(4)

In terms of the prior constraint on the source image, we
employ the combined first order TV and multidirectional
FOTV of [12]–[14] to define a gradient’s sparsity enhancing
PDF of the source image, which is given in the Gibbs form
as

PU (u) ∝ e−JU (∇u,∇αu), JU (∇u,∇αu)=g1|∇u|+g2|∇αu|,
(5)

where α ∈ (1, 2] denotes the order of multidirectional
fractional-order derivatives in the Grünwald-Letnikov sense,
g1(x) and g2(x) are defined as the same spatially adaptive
functions in [4]. The multidirectional FOTV or FOTV4 [13]
[4] is utilized to promote the selectivity of edges, and suppress
more perturbation in the image as well.

Under these presumptions, our BID problem is then trans-
lated into recovering the latent image u and degradation kernel
k from a single observation f with (1), (3), (4) and (5).
Introduce denotation Θ = {σ2

w} ∪ ΘB . In our context, we
also assume that all the parameters in Θ are unknown.

III. NUMERICAL ALGORITHM IN BRIEF

Taking advantage of variational Bayesian and MAP princi-
ples, we will propose a multi-convex variational framework
for the Poisson BID problem, into which an expectation
maximization (EM) scheme is incorporated to estimate directly
the parameters of the kernel structure as well.

In brief, we will report the modeling processes of the pro-
posed variational Bayesian framework, in which some modi-
fications, such as local approximation for the blur image and
EM estimation for kernel structure parameters, are involved to
gain solvability and convexity. Moreover, the convexity of the
proposed optimization model is validated. As for the numerical
algorithm for our proposed model, a block coefficient descent
(BCD) [15] [16] based algorithm of the Gauss-Seidel type is
to be present, in which majorization-minimization algorithm
[17] [18] and Barzilai-Borwein estimation [19] along with
alternating direction method of multipliers (ADMM) [20] are
utilized to promote the computational efficiency. We use a
localized structural similarity (SSIM) index to perform quan-
titative assessment on our methods.

Fig. 1. Left: A synthesized noisy blurred image. Center: A restored image by a
comparison algorithm. Right: A restored image using our proposed algorithm.

Numerical results have shown the effectiveness of the pro-
posed algorithm. In Figure 1, we present an example on BID,
in which the left image is a synthesized noisy blurred image,
obtained by convoluting with a combined Square Cauchy-
Gaussian kernel and then adding a mixed Poisson-Cauchy
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noise (SSIM=0.4581). The center image (SSIM=0.7275) is ob-
tained by a comparison algorithm, or median filter injunction
with a shock filter. The right one (SSIM=0.9407)is obtained
by our proposed algorithm.

IV. CONCLUSION

A novel multi-convex optimization framework was proposed
for blind deblurring images degraded by Lévy-stable blurs and
contaminated by high-level non-Gaussian noises. Numerical
results showed the effectiveness of the proposed algorithm on
deblurring and denoising simultaneously, as well as adaptivity
and quality. Learning based methods may be introduced in
some future work to further promote the performance of our
proposed method.
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