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Abstract— Recently, You Look Only Once, version 3
(YOLOv3) approach has been presented as a more efficient
solution in the process of object detection. Despite the fact that
YOLOv3 can obtain faster and more accurate results than
other approaches, it needs to be used in a system with a single
powerful Graphics Processing Unit (GPU). However,
sometimes, there is a need to process multiple real-time object
detection algorithms concurrently on a single GPU, where each
object detection algorithm receives a live stream from a
camera. It is challenging to have concurrent object detection
from live streams on a single GPU. In this paper, we propose a
two-step solution to this problem. In the first step, our goal is
to provide a model to optimize memory usage and, in the
second step, we propose a multi-thread approach that uses
YOLOv3 to perform real-time object detection on multiple,
concurrent, live streams on a single GPU. In this approach,
GPU resources are optimally used. The proposed approach is
evaluated on a public dataset and the result shows
improvements in performance by an average of 12% in
Central Processing Unit (CPU) usage and 13% in frames per
second (FPS) compared to the YOLOv3.

Keywords-Real-Time Object Detection; YOLO; Multi-Thread
Approaches.

I. INTRODUCTION

Recent researches in the field of object detection based
on Convolutional Neural Network (CNN) methods such as
Region-CNN (R-CNN) [1], Faster R-CNN [3], YOLO [2],
YOLOv2 [4] and YOLOv3 [5] have shown improvements
when compared with other detection methods which focus
on traditional detection [8][11]-[13]. Generally in object
detection methods, the following steps are performed: 1)
feature extraction of images [7][9], 2) classification
[1][14][15] and 3) localization [6][10]. Recent approaches,
such as YOLOv3, detect objects using the conventional
system with a single GPU. YOLOv3 uses YOLOv2 as a
base structure along with 53 convolutional layers. YOLOv3
is more powerful and faster than YOLOv2 because it uses
the GPU in a more efficient way.

Although the YOLOv3 is more accurate than other
approaches, it needs to be executed in a system with a single
powerful GPU. In addition, in some applications, it is
desired to use CNN’s potential for concurrent, real-time
object detection. Hence, an efficient hardware
implementation along with an efficient network design are
required. It is challenging to leverage this approach for

concurrent, real-time object detection. For example, in some
real-world applications, such as concurrent real-time
inference on a GPU server in a commercial system, the
available computing GPU resources are limited in terms of
memory. In this case, each object detection approach
receives a live stream from a camera and all processing is
performed on a GPU. The main problem is system resources
such as memory, CPU, and GPU when using them
concurrently for real-time detection scenarios.

Alternative methods suggest using multiple GPUs in
parallel. To solve this problem, in this paper, a model
(network architecture design) is proposed, which uses
YOLOv3 for concurrent real-time objection detection on a
single GPU server using a multi-thread architecture. Our
purpose is to provide an optimized architecture that
significantly decreases memory usage while at the same
time increasing the number of object detection outputs.
Therefore, this architecture makes possible use of multiple
YOLOv3s on a single GPU server with low memory usage
and high speed in detection performance. We have
implemented the proposed model on the Nvidia Quadro
p5000 with Linux customized by Nvidia by the Compute
Unified Device Architecture (CUDA) architecture. The
result shows improvements in performance by an average of
12% in CPU usage and 13% in FPS compared to the
YOLOv3.

The paper is organized as follows. In Section 2, related
works are discussed. Problem description and methodology
are presented in detail in Section 3. In Section 4, the
experimental result is presented. The conclusion is drawn in
Section 5.

II. RELATED WORK

Convolutional neural networks offer significant
improvements for applications such as image classification,
object detection [30], face detection [24], segmentation [31]
and object tracking [32][19]. Traditional methods for object
detection have focused on Scale-Invariant Feature
Transform (SIFT) such as the Fast Point Feature Histograms
(FPFH) [20] and Normal Aligned Radial Features (NARF)
[21] that are used in 3D image registration. Classification
methods are also used for object detection and include
nearest-neighbor methods [22] and support vector machines
[23].
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More recent methods using convolutional neural
networks [29] such as YOLO [2], YOLOv2 [4] and
YOLOv3 [5] object detection approaches have shown more
improvement in comparison with traditional computer
vision methods such as methods based on SIFT [16]. Using
deep learning-based strategies [33], these methods provide
significant speed advantages over R-CNN (for example, 45
frames per second in YOLO on an Nvidia Titan-X GPU).
Although convolutional neural networks require a training
process, they can be applied for general challenges. They
can also be used along with fewer hardware resources.

Despite an increase in speed, there is a gap between
software and hardware implementations [34] due to high
power consumption. In fact, there is a need to implement
hardware along with an efficient neural network design in
order to exploit CNN’s for low-power. Some research exists
on real-time processing using multi-core architectures and
GPUs. Methods such as the Gaussians Mixture Model
(GMM) for background modeling are used in [17] based on
such architectures. In the GPU architecture, Nvidia has
provided GeForce, Quadro and Tesla/Fermi series with
different performance ranges. In [25], a hardware
architecture for real-time object detection using depth and
edge information is proposed. In [26], an analytical
framework (OPTiC) is proposed for partitioning optimal
CPU-GPU co-execution on systems. In [27], a GPU-based
floating real-time object detection system is proposed.
Based on the results in this paper, using GPU instead of
CPU can increase speed and improve performance. Using
convolutional neural networks in other applications like
Internet of Things (IoT) and mobile edge computing is
discussed in [28]. In this paper, real-time multiple object
tracking is implemented on an Nvidia GPU architecture.

There has been a very limited number of works on
concurrent real-time object detection on multiple live
streams. In this paper, we try to provide an optimized
architecture to concurrently detect objects on multiple
cameras. In this architecture, YOLOv3 is used as a
backbone approach to detect objects. We conducted
experiments to evaluate the approach. In the next section,
we describe the methodology.

III. PROBLEM DESCRIPTION AND METHODOLOGY

In this section, we discuss two improvements in the
performance of the YOLO in regards to the process of
object detection. In the first subsection, we present the new
architecture model which changes the structure of YOLO in
the object detection process to reduce the number of
unnecessary computations and conversions in the object
detection process. In the second subsection, we provide a
multi-thread approach for performing real-time object
detection on multiple live streams concurrently. Using these
two improvements, we achieve increased efficiency in the
object detection process using YOLOv3.

A. The Architecture of the Model

In this subsection, we plan to explain the network
architecture of the object detection process. Before we start

to discuss the model, we need to describe the architecture of
the object detection process in YOLOv3. Then, we discuss
the problems of the architecture. Finally, we provide a
model as a solution to overcome these problems.

The main architecture of the YOLOv3 is depicted in
Figure 1. This architecture includes an object detection
process using YOLO on the darknet framework. As shown
in Figure 1, there are computing and converting processes.
All of the computing processes are done on the GPU side
and the converting processes are conducted on the CPU
side. The process is started with converting RGB (red,
green, and blue) image as a three dimensions matrix to the
YOLO image using a function. The YOLO image is a two
dimensions matrix that contains RGB values for each pixel.
The main function of the object detection is done using
YOLO on a converted YOLO image. The output of the
detection is a vector of coordinates for each detected object.
As previously mentioned, YOLOv3 uses a conventional
neural network to detect objects. Since in this paper our goal
is to discuss the architecture of the object detection process,
we avoid the explanation of the YOLOv3 method in detail.
Finally, the CPU converts the YOLO image to RGB image
format.

Although the YOLOv3 can obtain more accuracy and
speed compared to other approaches, it needs to be used in a
system with a powerful single GPU. Also, there are
unnecessary computations and conversions in the object
detection process in the Darknet framework. Here, we
provide an improved model to optimize the process of the
detection using the YOLO in the Darknet framework. We
call the improved model MvcYOLO. The MvcYOLO model
is presented in Figure 3. In this model, we change the
detected coordinates using YOLO detection algorithm and
eliminate the unnecessary conversion at the last step of the
Darknet framework. For each detected object, there is a
coordinate point which describes the center of each object
and two scales as the percentage of the specified object's
length and width. These coordinates are produced with
YOLO. In this step, we intervene in the normal process of
YOLO and calculate new coordinates instead of drawing
detected regions by using YOLO provided coordinates. For
this propose, we calculate the left corner, length, and width
of the detected region using the information of provided
coordinates by YOLO. As mentioned before, in YOLO
detection, we have the points that belong to the center of
each detected object and two percentage of length and width
in every detected object. In this process, we convert YOLO
detection coordinates to our desired coordinates. Our
purpose is to draw regions obtained from detected objects
on the RGB image directly. In fact, YOLO makes the
additional computations with drawing detected regions on
the YOLO image and then unnecessary converts the YOLO
image to RGB image. So, to achieve more efficiency, we
prevent drawing regions by YOLO on YOLO image and re-
draw regions using the new estimated coordinates directly
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Figure 1. The architecture of the object detection process in YOLOv3.

on the OpenCV RGB image. Finally, we consider new
coordinates to draw regions on RGB image directly using
the estimated coordinates. These extra calculations and
conversions may be considered little, but we obtain
improvements in terms of CPU usage by eliminating them.
The results are discussed in the next section.

B. Multi-thread Approach to Handle Concurrent
Surveillance Videos

The second part of our improvements is focused on the
GPU usage per YOLO object. Each YOLOv3 object in the
Darknet framework uses 1.70 GB GPU memory. This
means that we can handle a surveillance video with 1.70 GB
GPU memory. Because the GPU memory is limited in the
GPU cards, it is a costly process to cover a large scale of
surveillance cameras. This paper provides a multi-thread
approach to handle concurrent surveillance videos with each
YOLOv3 object. As mentioned before, if each surveillance
camera works with a YOLOv3 object, 1.70 GB GPU of
memory is needed to be assigned to it. As a result, it
requires a lot of GPU memory for performing real-time
object detection on multiple live streams concurrently.

To solve this problem, in this paper we present a multi-
thread approach as a solution to handle concurrent
surveillance videos. In this approach, a pre-processing and a
post-processing step are added to the YOLO object. In the
pre-processing step, a multiplexer for fragmentation of live
streams is applied. In the post-processing also, a de-
multiplexer is used to re-fragmentation and assembling the
frames of each live stream. An overview of the approach is
depicted in Figure 2.

Figure 2. An overview of the multi-thread approach.

As shown in Figure 2, the input and output of YOLO are
defined as YIn and Yout. There are a multiplexer and a de-
multiplexer at the beginning and at the end of the process. In
the multiplexer, in each live stream, a frame of every four
frames is selected. Thus, there are intervals of four frames
in each live stream. In the next step, the frames are passed to
detect objects using YOLOv3. In this way, frames of four
live streams are fragmented and are passed separately to the
YOLOv3 algorithm to detect the objects. The output of the
YOLOv3 algorithm is a video that contains every four video
frames. This fragmentation process works as a multi-thread
approach. To investigate the efficiency, we evaluated the
approach using experiments and the results are presented in
the next section.

IV. EVALUATION METHODOLOGY AND EXPERIMENTS

In this section, we evaluate the methodology and
experiments in two subsections. The first subsection
discusses the experiment environment. The second
subsection presents experiments to evaluate the proposed
model and approach in Section III by describing an
architecture structure.

A. Experiment Environment

In this section, we evaluate the performance of the
proposed model and architecture in the previous section.
First, we prepare an experiment to compare the efficiency
between the YOLOv3 and MvcYOLO. Our evaluation is on
a dataset of 2D MOT 2015 containing 30 videos with FPS
30 and different qualities resolution (1280×720, 1920×1080
and 3840×2160 pixels). This benchmark contains video
sequences in different environments. The properties of a
video analysis server used as a test server are presented in
Table I.

TABLE I. THE PROPERTIES OF VIDEO ANALYSIS SERVER.

CPU Intel core i9-7940X 14 core/ 28 thread
GPU Nvidia Quadro p5000 16GB

RAM 32 GB DDR4

Disk 256 NVM Express SSD
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Figure 3. The architecture of the object detection process in MvcYOLO model.

B. Experimental Evaluation of the Model

As discussed before in this section, in order to evaluate
the proposed model MvcYOLO, we make an experimental
comparison between the original YOLOv3 and MvcYOLO.
Our focus is on system resources like CPU, GPU, RAM and
FPS values. CPU is one of the critical resources in this area
because it performs the main conversion steps in the darknet
framework. As previously mentioned, we prepare 10 videos
in a different range of quality. The results are presented in
Figure 4 in three-line graphs denoted as a, b, and c. The first
line graph (a) compares the CPU usage percentage between
original YOLOv3 and MvcYOLO in different video
qualities. Overall, the CPU usage increases over the video
qualities during the increasing computational power for
handling large size of frames. The CPU usage in the
MvcYOLO is lower than YOLOv3 overall video qualities.
The bigger drop of CPU usage was seen on 4k video
quality. We conclude that MvcYOLO has a better
performance on high-quality videos.

The second line graph (b) uses the frame rate as a
criterion for evaluation. The FPS is the frequency at which
consecutive images, called frames, appear on a display. The
FPS is compared in two models and the result shows the
average of FPS values in the two approaches. It can be seen
that the FPS of MvcYOLO was far higher than the original
YOLOv3. The MvcYOLO improves FPS of high-quality
video frames 13 to 26 in comparison to the original
YOLOv3 approach. However, the MvcYOLO uses lower
computational power in terms of CPU and RAM resources
in each frame. As illustrated in the results, CPU usage has a
high correlation with FPS. In 720p, the FPS value of
YOLOv3 and MvcYOLO are 28, while this amount
decreases steeply to 26 and continues to decline but more
gradually to 13 in 4k video quality on YOLOv3 approach.
In contrast, the FPS amounts of MvcYOLO declined more
steeply to 26 in 1080p and 4k video qualities.

The third line graph (c) shows the average RAM usage
in terms of GB over different video qualities in each
approach. MvcYOLO uses less RAM than YOLOv3

because of doing less computation in the conversion process
while improvements are not significant. Changes in RAM
usage of YOLOv3 and MvcYOLO are approximately the
same in each video quality.

C. Experimental Evaluation of the Multi-Thread Model

In the second part of the evaluation, our goal is to
consider the proposed model in the previous section with a
multi-thread approach as a solution to handle concurrent
surveillance videos. As discussed in Section III, to obtain
more efficiency in YOLO, we need to use a multi-thread
architecture. So, we performed experiments to find the
optimal number of cameras. Based on the result, 8GB GPU
memory could handle a maximum of four surveillance
cameras simultaneously. This paper provides a multi-thread
approach to handle a minimum of four surveillance cameras
over each YOLOv3 object and supports 16 cameras for 8GB
GPU memory. The reason for choosing four cameras is the
thread scheduler of the operating system and CPU power of
the analysis server.

We call the multi-thread approach Multi-MvcYOLO.
We compare MvcYOLO and Multi-MvcYOLO in three
metrics of CPU usage, FPS and RAM usage. The results are
depicted in Figure 5. Based on the results, it can be seen that
CPU usage of Multi-MvcYOLO sharply decreased in each
video quality especially on high-quality videos. In Multi-
MvcYOLO the value of FPS is less compared to MvcYOLO
because of performing four videos as multi-threads.
However, Multi-MvcYOLO needs much more RAM than
the others due to the thread scheduling process that uses
extra RAM for scheduling.

As mentioned before, Multi-MvcYOLO handles four
videos on a single YOLOv3 instance while YOLOv3 cannot
handle more than one video on an object instance. Each
YOLOv3 object instance uses approximately 1.70 GB from
GPU memory. Since GPU memory is so costly, Multi-
MvcYOLO approach uses optimal GPU memory and
handles more surveillance cameras over a normal GPU card.
Interestingly, Multi-MvcYOLO has better performance
compared with YOLOv3 over the video qualities.
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Figure 4. A comparison between original YOLOv3 and MvcYOLO in different video qualities on a) The CPU usage percentage b) FPS and c) RAM Usage

Figure 5. A comparison between original MvcYOLO and Multi-MvcYOLO in different video qualities on a) The CPU usage percentage b) FPS and c) RAM
Usage

V. CONCLUSION AND FUTURE WORK

In the existing systems, it is necessary to use a powerful
single GPU when applying YOLOv3 to detect objects.
However, sometimes, there is a need to process multiple
real-time object detection algorithms concurrently on a
single GPU, where each object detection algorithm receives
the live stream from a camera. In these cases, to reduce
memory usage and other resources, we proposed solutions
in two steps. In the first step, we provided a model for
optimal memory usage and in the second step, we proposed
a multi-thread approach that uses YOLOv3 to perform real-
time object detection on multiple live streams concurrently
on a GPU. This way, GPU resources are optimized to solve
the limited memory issue. Experimental results show that
the proposed approach can reduce memory consumption and
increase performance by an average of 12% in CPU usage
and 13% in FPS compared to the original YOLOv3. As
future work, we are planning to improve MvcYOLO in
terms of load balancing and network overhead on a large
scale of camera surveillance environments.
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