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Abstract—Model-based very deep Convolutional Neural Networks
(CNN) have achieved great success in Single Image Super-
Resolution (SISR) work. However, most of the super-resolution
models based on deep convolution networks can not fully utilize
the hierarchical features of the original low-resolution images.
In order to improve the quality of the high-frequency details of
the reconstructed super-resolution image, we proposes a super-
resolution method for Residual Dense Generative Adversarial
Networks (RDGAN). We use the Generative Adversarial Net-
works (GAN) as our main model structure and the residual-
dense block as the basic building blocks of the generator, which
makes the network pay more attention to the extraction of low-
resolution image hierarchical features. Then, we fully exploit the
hierarchical features from all the convolutional layers. Finally,
we use perceptual loss as our loss function to get finer texture
details and more realistic photo effects. Experiments show that
our method can achieve significant improvement in the quality
of high-frequency detail reconstruction at high magnification.

Keywords–CNN; Single Image Super-Resolution; Generative
Adversarial Networks.

I. INTRODUCTION

The task of estimating a High-Resolution (HR) image from
its Low-Resolution (LR) counterpart is called Single Image
Super-Resolution (SISR) [1], which has received significant
attention and progress in recent years. Super-Resolution (SR)
has direct applications in computer vision, such as image/video
enhancement, medical image processing [2][3], face recogni-
tion [4] and image generation [5].

Image SR is an ill-posed problem. The ill-posed character
of the under-constrained SR problem is especially pronounced
for high upscaling factors. Recently, a large number of SISR
methods have been proposed to solve this underdetermined
problem, including interpolation-based [3][6], reconstruction
methods [7], and learning-based methods [8][9]. Most CNN-
based methods [10][11] attempt to minimize pixel-wise the
Mean Square Error (MSE) between the ground truth image
and the reconstructed HR image. This strategy calculates the
pixel-wise image difference and maximizes the Peak Signal-
to-Noise Ratio (PSNR), which is a common measurement for
evaluating the SR algorithm. In these cases, the high-frequency
details of some sharp edges and textures in the SR image are
still blurred and smooth in appearance, which is significantly
different from the ground truth image.

In order to solve these drawbacks, Ledig et al. [12]
proposed a GAN-based network. This enhances the invariance

of the pixel field change. However, for a very deep network,
only using Residual Networks (ResNets) and jump connections
can not fully utilize the LR image information. Inspired by
Zhang et al. [13], we use Residual Dense Block (RDB) as the
basic component of our generator and we use Local Residual
Learning (LRL) in order to make full use of the hierarchical
features of LR. In this paper, we proposes a deep learning
SISR method, which uses enhance Residual Dense Generative
Adversarial Network (RDGAN) to improve the reconstruction
quality of high-frequency edges and textures in the SR images.
At the same time, we minimize the perceptual loss so that the
generated images have photo realistic textures.

The rest of this paper is organized as follows. Section
II addresses the related works in the literature. Section III
describes the method. Section IV describes the experiments.
We conclude the paper in Section V.

II. RELATED WORKS

In order to solve the Single Image Super-Resolution prob-
lem, early algorithms [14][15] have been mainly based on
sampling interpolation techniques, but these methods show
considerable limitations in predicting the texture details of the
image.

Recently, the CNN-based [16] approaches have shown
excellent performance. Dong et al. proposed Super-Resolution
Convolutional Neural Networks (SRCNN) [10], which train
a 3 layer deep fully convolutional network end-to-end to
achieve excellent SR performance. Kim et al. [17] used a
very deep CNN network (20 weight layers) to achieve better
performance and visual effects. In particular, they showed skip-
connection and recursive convolution alleviate the burden of
carrying identity information in the super-resolution network.
In [18], Lim et al. propose the Enhanced Deep Residual
Networks (EDSR) with better performance than SRResNet.
Johnson et al. [19] proposed perceptual loss functions based on
high-level features extracted from pretrained networks, which
can reconstruct finer details compared to the per-pixel loss.
Recently, Generative adversarial networks [20] have shown
excellent results in many computer vision problems including
SISR. Ledig et al. [12] used GAN to get photo-realistic natural
images, which have better visually implausible performance
than any other state-of-the-art methods. The authors propose
a perceptual loss function constructed by both an adversarial
loss and a perceptual content loss based on high-level features
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Figure 1. Examples of residual block, dense block and residual dense block. ”+” means element-wise summation operation. ”concat” means
concatenation operation. ”bottleneck” in dense block which produces k feature-maps.

extracted from pre-trained Visual Geometry Group (VGG)
networks.

III. METHOD

A. Network selection
Many research works [21][22] show networks that perform

satisfactory in image generation, classification, and feature
extraction and they are equally superior in image super-
resolution. Among them, GANs, ResNets and DenseNets are
successfully applied to image super-resolution tasks [23][24].

GANs: Following Goodfellow et al., we define a discrimi-
nator network DθD that is optimized in an alternating manner
with the generator network GθG to solve the adversarial
minimum-maximum problem:

min
θG

max
θD

EIHR∼ptrain(IHR)[logDθD (I
HR)]+ (1)

EILR∼pG(ILR)[log(1−DθD (GθG(I
LR))]

where θG and θD represent the parameters of the generator
and the discriminator, IHR and ILR represent the ground truth
image and the low resolution image. The general idea is that
it allows people to train a generative model G, the purpose
of which is to fool the discriminator D that can distinguish
between the real image and the generated image. With this
approach, our generator can learn to create solutions that are
highly similar to real images. This encourages perceptually
superior solutions residing in the subspace, the manifold, of
natural images.

ResNets: The main idea is to use a residual learning frame-
work to ease the training of very deep networks. Let a single
image x0 go through a L-layer convolutional network. Each
layer corresponds to a non-linear transformation H`(·), where
` represents the index of the layer. Let x` be the output of `-th
layer. The traditional convolutional network generally uses the
output of the `th layer as the input of the (`+1)-th layer, which

can be expressed as: x`+1 = H`+1(x`). Unlike traditional
CNNs, ResNets implements a residual block that sums up
the identity mapping of the input to output of a layer, where
the output can be depicted as: x`+1 = H`+1(x`) + x`. This
process eases the convergence during training. The structure
of ResNets is shown in Figure 1(1).

DenseNets: The obvious difference between DenseNets and
ResNets is that ResNets is a summation, while DenseNets is a
concatenation. DenseNets enhances the transmission efficiency
of information and gradients in the network. Each layer can
directly get the gradient from the loss function and directly
get the input signal, so that it can train deeper networks. The
dense connection was introduced among memory blocks and
dense blocks. Consequently, the feature maps of all previous
layers are treated as separate inputs by connecting them to a
single tensor [x0, x1, ..., x`], while their own feature maps are
passed as input to all subsequent layers. Layer `+1 receives the
feature maps of all previous layers and can be expressed as:
x`+1 = H`+1([x0, x1, ..., x`]). Figure 1(2) shows an example
of dense block construction.

RDBs mainly integrates the residual blocks and the dense
blocks. The structure difference is obvious in Figure 1(3).
Let Fl−1 and Fl represent the input and output of the `-th
RDB, respectively, and they all have G0 feature maps. In our
experiment, we set G0 to 128. In the `-th RDB, the output of
the c-th convolutional layer can be formulated as:

F`,c = σ(W`,c[F`−1, F`,1, ..., F`,c−1]) (2)

where σ represents the Rectified Linear Unit (ReLU) activation
function. W`,c is the weight of the c-th convolutional layer.
For convenience, we ignore the bias term. In our work, we set
the number of convolution layers in each RDB to 9. We use
these layers to extract continuous memory. Then, connect all
the feature maps extracted earlier. Inspired by MemNet [25],
we introduce a 1×1 convolutional layer to adaptively control
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Figure 2. Architecture of Generator and Discriminator Network

the output information. Finally, the number of feature maps
becomes G0. This step can be expressed as:

F`,m = HLFF ([F`−1, F`,1, ..., F`,9]) (3)

where HLFF represents a function of the 1*1 convolution
layer. Finally, use the principle of residuals to achieve local
residual learning. The output of the `-th RDB can be expressed
as:

F` = F`−1 + F`,m (4)

B. Basic network architecture
The entire network structure of the generator is presented

in Table I. We set up sixteen RDBs and each RDB is set as
described above. In order to prevent the loss of LR images
detail, we removed the pooling layer and the BN layer, then
connected the outputs of all RDBs, with 1×1 convolution
kernels to fuse feature maps and add residuals connect to retain
more details. More details can be seen in Figure 2. This model
can accept the input of LR images of any size, obtain the SR
image of a given scaling factor α through the whole generator,
and upgrade the image quality through continuous optimization
of the generator and discriminator.

C. Loss function
The loss function we use is the same as Ledig et al.

[12], combining pixel-wise loss and vgg19 loss [19] based
on the high-level features extracted from the pre-trained 19
layer VGG networks. Given the high resolution ground truth
image IHR, the corresponding low resolution image ILR and
the image ISR generated by our network, the loss function can
be defined as follows:

Lpercep(I
HR, ISR) = λM × LM (IHR, ISR) + (5)

λV × LV (IHR, ISR)
where LM (IHR, ISR) is pixel-wise loss and LV (I

HR, ISR)
is vgg19 loss. λM and λV are scaling hyperparameters. In our
work, we set λM to 1 and λV to 0.006.

TABLE I. ARCHITECTURE DETAILS FOR 4× RDGAN GENERATOR. NOTE
THAT EACH ”CONV” LAYER SHOWN IN THE TABLE CORRESPONDS THE

SEQUENCE RELU-CONV.

Layers Output size Residual DenseNet Feature-maps

Convolution W×H 3×3 conv 64
RDB(1-16) W×H Bottleneck × 9 64
Concat W×H Connect 1024(64×16)
Convolution W×H 1×1 conv 64
Convolution W×H 3×3 conv 64
Summation W×H 3×3 conv 64
Convolution W×H 3×3 conv 256
Upscale 2W×2H PixelShuffle 64
Convolution 2W×2H 3×3 conv 256
Upscale 4W×4H PixelShuffle 64
Convolution 4W×4H 3×3 conv 3

pixel-wise loss: It is the Euclidean distance between the
generated image ISR and the ground truth image IHR. Pixel-
wise loss is defined as follows:

LM (IHR, ISR) =
1

SWH
‖IHR − ISR‖2 (6)

where SWH is the size of the target image. This loss is added
to achieve smoother textures from the ground truth image.

vgg19 loss: It is the Euclidean distance between the feature
maps generated by the loss network. When given the pre-
training network φ and a series of convolutional layers C
and the feature map of each convolutional layer on C is
Si ×Wi ×Hi, we can define vgg19 loss as follows:

LV (I
HR, ISR) =

∑
i∈C

1

Si ×Wi ×Hi
‖φi(HR)− φi(SR)‖ (7)

where Si×Wi×Hi represent the size of the respective feature
map in the VGG networks.

adversarial loss: In addition to the perceptual loss described
above, we also add the adversarial loss to the perceptual loss.
This encourages our network to preserve more textures on
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TABLE II. QUANTIFIED PERFORMANCE OF DIFFERENT SUPER-RESOLVED METHODS ON BENCHMARK DATA, WHICH IS MEASURED BY (PSNR [DB],
SSIM). [4× UPSCALING].

Set5 Bicubic Aplus [26] SRCNN [10] VDSR [17] DRCN [27] SRGAN [12] RDGAN
PSNR
SSIM

28.42
0.8104

30.28
0.8603

30.07
0.8627

31.35
0.8838

31.53
0.8854

29.40
0.8472

31.70
0.8903

Set14
PSNR
SSIM

25.99
0.7027

27.32
0.7491

27.18
0.7503

28.01
0.7674

28.02
0.7670

26.02
0.7397

28.13
0.7872

BSD100
PSNR
SSIM

25.96
0.6675

26.82
0.7087

26.68
0.7101

27.27
0.7251

27.23
0.7233

25.18
0.6688

27.39
0.7290

Urban100
PSNR
SSIM

23.14
0.6577

24.32
0.7183

24.52
0.7221

25.18
0.7524

25.14
0.7510

-
-

25.68
0.7712

natural images. It optimizes parameters by minimizing the
generative loss LGAN defined based on DθD (GθG(I

LR)),
which means the probability of the discriminator that the
reconstructed images GθG(I

LR) is a natural HR image:

LGAN =

N∑
n=1

−logDθD (GθG(I
LR)) (8)

Finally, our loss function can be expressed as:

L(IHR, ISR) = Lpercep(I
HR, ISR) + (9)

λGAN × LGAN (IHR, ISR)

We set λGAN = 0.001. After doing this, we get the images
with more natural textures and more realistic details.

IV. EXPERIMENTS

A. Training Details
The train and validation datasets were sampled from

DIV2K datasets [28]. DIV2K datasets were obtained from
[29][30]. The train dataset has 800 images and the valida-
tion dataset has 100 images. We obtained the LR images
by downsampling the HR images using bicubic kernel with
downsampling factor r=4. This corresponds to a 16× reduction
in image pixels. We test the performance on four standard
benchmark datasets: Set5 [31], Set14 [32], BSD100 [33],
Urban100 [34].

All the experiments were implemented by means of Python
3.6 and PyTorch [35] on a NVIDIA 1080Ti GPU. For training,
we use the Red-Green-Blue (RGB) input patches of size
128×128 from LR images with the corresponding HR patches.
Note that we can apply the generator model to images of
arbitrary size as it is fully convolutional. We train our model
with the ADAM optimizer [36] by setting β1=0.9. The learning
rate was initially set to 0.0001 and decreased by a factor of
10 after 50 epoches. We alternate updates to the generator and
discriminator network, which is equivalent to k=1 as used in
Goodfellow et al. [20]. A mini-batch size of 5 was set during
the training. It takes about one days to train RDGAN.

B. Evaluation on benchmark datasets
We train all models with 400 epochs. The training process

stopped after no improvements of the loss was observed after
350 epoches. We present the quantitative evaluation results of
our RDGAN on public benchmark datasets in Table II. We

compare the proposed method with the state-of-the-art methods
including Aplus [26], SRCNN [11], SRGAN [12], VDSR [17]
and DRCN [27]. For comparison, the SR results are evaluated
with PSNR and Structural Similarity (SSIM) [37] on Y channel
(i.e., luminance) of transformed YCbCr space. Our RDGAN
shows significant improvement compared to other models. We
also provide the qualitative results in Figure 3. We can see
that the method we propose produces relatively sharper edges,
while other models may produce ambiguous results.

V. CONCLUSION

In this work, we proposed a very deep Residual Dense
Generative Adversarial Network (RDGAN) for Single Image
Super-Resolution, where RDBs are used as basic modules for
the generator network. By using the new generator network
architecture, we maintain the accuracy of the reconstructed
image while maintaining the visual quality of the super-
resolution image. In terms of the loss function, we retain the
confrontation loss, which makes the generated image retain
full detail and more realistic in terms of visual perception.
We evaluated our method on a large number of datasets and
the results show that our RDGAN can achieve good results in
Single Image Super-Resolution.
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