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Abstract—Non-Intrusive Load Monitoring (NILM) can be split
into event detection, classification and energy tracking. Different
algorithms have already been proposed for the respective tasks.
Each algorithm has been verified based on publicly available data
sets to assess its performance. The two types of data sets that
currently exist can be distinguished into two types: laboratory
measurements and data sets from real world environment. In
general, the available laboratory measurements provide data
of individual devices; these are only of limited use for overall
benchmark tests. Measurements, in which several devices have
been active simultaneously, only exist in real scenario datasets.
Nevertheless, the assignment of reference data in real scenarios is
somehow problematic: issues are, for example, the synchroniza-
tion between reference data and measured data, absence or excess
of events and the number of on and off cycles of each device
respectively. Furthermore, the probability distribution of the
devices, as well as long measurement cycles with correspondingly
large amounts of data, but low number of events, are challenging.
Therefore, it is very difficult to compare the current NILM
algorithms. Home Equipment Laboratory Dataset (HELD1) has
multiple switching on and off events of several devices acting
individually and/or simultaneously. Since the individual devices
can be controlled separately, the reference data is available in a
very high quality. Thus, high number of events can be generated
within a short measuring time. In addition, the dataset contains
different complex scenarios of various numbers of appliances.
The objective of this data set is to offer a better basis to enhance
the comparability between the individual NILM approaches.

Keywords–NILM dataset; feature extraction; feed forward neu-
ral net; supervised classification.

I. INTRODUCTION

In the past years, Non-Intrusive Load Monitoring (NILM)
has gained more and more attention. The initial idea of Non-
Intrusive Load Monitoring (NILM) has been to determine
the consumption of individual devices. The visualization of
the amount of power that is consumed by individual devices
[1] should raise the consumers consciousness. NILM in the
Ambient Assisted Living (AAL) context focuses on analyzing
the behavior of persons in need of care to detect critical
situations [2]. NILM can be split into the following aspects:
event detection, classification, and tracking. Depending on the
application, the complexity of the task is quite different. In the
AAL context, a classification of the devices is necessary. To
measure the power consumption of each single device, which
was the primary idea of NILM, it is necessary to track the
power consumption of the individual devices additionally.

Thus, the requirements for data sets vary from task to
task. Apart from fundamental aspects, such as resolution,
sampling rate, and waveform capturing, the reference data are
of utmost importance. The reference data are needed for a
successful training and the evaluation of the algorithms results.

It is extremely important that the reference data are reliable,
otherwise the training of the algorithms will be incorrect. For
example a supervised classifier needs information about the
device and the position of the event. During the evaluation of
the tests, the results will be compared with the reference data.
Inconsistent reference data leads to an unreliable assessment
of the tested algorithms.

Most of the public data sets, e.g., Blued [3], Redd [4] or
UK-Dale [5] have been recorded in real scenarios. In Table I
several public data sets have been compared. The advantage
of such an approach is that the different modalities for the use
of appliances are realistic. However, the use of real scenarios
has drawbacks, too: extremely long periods of time have to
be measured in order to obtain sufficient switching-on and
switching-off cycles for each consumer. And, if the measuring
period is to short, the risk persists that some consumers have
not been switched on or off. Such a situation is particularly
problematic with respect to classification. In the case of
measuring over a very long period like months or years, the
danger, that errors will occur during the generation of reference
data rises. Having measurement campaigns where data have
been sampled at a high rate, the amount of data being generated
over a period of years is enormous. Additional difficulties in
the generation of reference data, rises from complex devices
such as washing machines or dishwashers. It is difficult to
map the reference data of the internal consumers of complex
devices. Therefore, in general, events of these devices are not
marked in the data sets.

Other data sets, such as PLAID [6], WHITED [7] and
COOLL [8]) have been recorded under laboratory conditions.
Here, individual loads are measured independent of each other.
In these data sets, there are no scenarios prevalent where
several devices are operated simultaneously. Nevertheless, the
advantage of these data sets is that many on / off cycles are
available in a short period of time. These data sets enable
a good examination of device-specific properties, especially
since a very high sampling rate of up to 100 kHz has been
applied. However, these data sets are far removed from real
conditions, since only one load was activated at the same time.
Due to fluctuations in the grid and also phase shifts, it is not
possible to simply combine the individual measurements by
superpositioning. Thus, there is no straight forward method to
simulate multiple consumers being active at the same time.

Due to the afore mentioned aspects, our goal has been
to generate a new data set based on real measurements from
real consumers, which are switched on and off randomly by a
personal computer. In the proposed experimental setup, up to
ten different consumers can be active at the same time. The
advantage of this laboratory setup is that the appliances are
switched on and off at a higher frequency than in an ordinary
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utilization. Additionally, it is possible to adjust the frequency
distribution of the switch-on and switch-off cycles of the
individual consumers individually. Combinations of devices
with different power consumption and scenarios, combined
with various numbers of appliances being active at the same
time, were recorded.

TABLE I. COMPARISON OF NILM DATASETS

dataset samplerate
aggregate
measurement

samplerate
ground
truth

duration single/ multiple
devices/ labora-
tory data set

REDD [4] 1sec / 15kHz 3sec 3 to 19 days -/yes/no
BLUED [3] 12kHz event based 8 days -/yes/no
PLAID [6] 30kHz - 5sec yes/no/yes
WHITED [7] 44kHz - 5sec yes/no/yes
COOLL [8] 100kHz - 6sec yes/no/yes
UK-DALE [5] 16kHz 6sec 3-17 months -/yes/no
ECO [9] 1sec 1sec 8 months -/yes/no
SustData [10] 50Hz 50Hz 5 years -/yes/no
HELD1 4kHz event based scenario yes/yes/yes

Since the new data set HELD1 has been recorded under
laboratory conditions, the reference data are available in very
high quality. Current and voltage data are available, along
with reference data consisting of on and off events of the
corresponding device ID. The data set is hosted public and
free to use for anyone; it is hosted at [11].

The paper is structured as follows: The dataset including
the measurement system and scenarios is described in Sec. II.
Feature extraction is presented in Sec. III followed by the
classification in Sec. IV, which introduces a feedforward neural
net. Sec. V presents the results followed by the conclusion in
Sec. VI.

II. HELD1 DATASET

This section describes the measurement system, and the
different measurement scenarios of the HELD1 dataset. In
addition, the power distribution of the existing consumers in
the record is presented.

A. Measurement system
The measuring system, see Fig. 1, has already been

described in detail in [12]. The sampling rate for current
and voltage is 4 kHz. To avoid aliasing, a low-pass filter
with a cutoff frequency of 1.3 kHz is applied before
sampling. The analog-digital converter operates with
16 bits which corresponds to a theoretical resolution of√

2 · 63 A/216 = 0.961 mA being equal to 0.61 W. In
reality, current and voltage measurements have a noise of
≈ 16 mA and ≈ ±2 V when the inputs shorted to ground.
This corresponds to ±8 mA · 230 V = ±1.84 W.

In the HELD1 data set, up to 18 different consumers are
used. Their characteristics are given in Table II. The appliances
are selected simple consumers, which do not have any major
internal load switching.

Some appliances did not work reliably during the measure-
ment campaign, thus, their measurements were excluded from
the dataset. Therefore, the numbering of the devices in Table II
is not continuous.

Some of the used devices are shown in Fig. 2.

Measurement 
box with ADC

Switching Box

PC

Ap.
1

Ap.
10

L1

N

N NL1 L1

Se
ns
or

...
Figure 1. Block diagram of the measurement system; ADC means analog
digital converter, Ap. appliance, L1 phase 1, N neutral line, PC personal

computer

TABLE II. DEVICE LIST

ID Name P(W)

001 Toaster 998
002 Hairdryer (setting 2) 1155
003 Radio 6.2
005 Vacuum Cleaner (red) 424
007 Hair Straightener 56
009 Heat Gun (setting 1) 820
010 Router 9.2
011 Desk Lamp 20
013 Refrigerator (white) 170
014 Refrigerator (blue) 190
015 Fluorescent Lamp 40
016 Light Bulb Box 20
017 Kettle 2100
019 Hairdryer (setting 1) 500
020 Heat Gun (setting 2) 1603
021 Fan 22
022 Multifunction Tool (Dremel R©) 30
023 LED lamp 1

B. Measurement scenarios
The data set is divided into four consecutive measurements:

• Training data (consisting of individual measurements,
100 on / off events per device)

• Test measurement one (max. one device being active
at the same time)

• Test measurement two (up to four active devices being
active at the same time)

• Test measurement three (up to six devices being active
at the same time)

In test measurements, each device was turned on and off
in total 20 times. Additionally during the test measurements,
the devices were randomly switched on and off under consid-
eration of the corresponding scenario. For all scenarios, the
minimum time distance between two events is three seconds.
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Figure 2. Illustration of random selected individual appliances with
corresponding device ID

C. Power distribution of the appliances
In Fig. 3, different power distributions of the consumers

are shown. A few individual consumers (e.g., refrigerator or

Figure 3. Power distribution of the individual consumers

kettle) have two different clusters of power distribution. The
reason can be found in a different power consumption between
the switching on and the switching off steady state in these
appliances. Fig. 4 shows a zoomed extract of Fig. 3 in the lower
power range, due to better visalization. Figures 3 and 4 result
from the training data record, where only one device is active at
the same time. If several devices are active simultaneously, the
overall noise level is increased. This results in larger clusters
of the individual appliances which leads to a higher probability
of overlapping clusters in test dataset two and three.

Most devices can already be separated by P and Q (see
Fig. 3 and 4). However, some clusters show overlapping data,
e.g., the clusters of the hair straightener, multifunction tool
(Dremel R©, radio, LED lamp or the two refrigerators. The idea
is that the distinctiveness of these devices can be improved by
adding the harmonics to the feature space of P and Q.

Figure 4. Detailed illustration of the active and reactive power of the
different devices in the lower power range shown in Fig. 3

III. FEATURE EXTRACTION

Before performing a classification, it is necessary to extract
the different features out of the given data. Most frequently,
active power P and the reactive power Q has been used
as features in context of NILM. Harmonics are used as
additional features to reduce the probability of overlapping
features. Moreover, the use of harmonics benefits from the high
frequency sampling. The harmonics H ∈ R7 are calculated for
each device D as shown in Equ. (1).

HD(ω) =

∫ +∞

−∞
s(t)e−jωt

∣∣∣∣ ω = 50, 100, . . . , 350 Hz (1)

Since more than one load can be switched on at the same
time, the difference between the signal (P , Q, H) before and
after the event is calculated. This principle is visualized in
Fig. 5 with a real power signal. Two windows including 4000
sampling points are used. The 8000 sampling points before
and after the event are not considered. The switching on and

n

P(n)

n

N2 = 8000

N1 = 4000

samples

N2 = 8000

N1 = 4000

......

... ...

Detected event

Figure 5. Representation of the feature extraction based on the real power

off events are handled as two independent features. The result
is a doubling of the clusters in the feature space. In general, on
and off events usually differ only in the sign. This utilization
increases the feature space but does not result in a disadvantage
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during the classification, because switching on and off events
can easily be distinguished.

P (n−) =
1

N1

N1∑
l=1

(P (n− l −N2)) (2)

P (n+) =
1

N1

N1∑
l=1

(P (n + l + N2)) (3)

∆P = P (n+)− P (n−) (4)

The calculation of Q and H is analogous to the calculation of
P which is given in Equ. (2), (3) and (4). The normalization
of the signals is as follows:

P̃D = ∆PD −min(∆PD) (5)

Q̃D = ∆QD −min(∆QD) (6)

H̃D(ω) = ∆HD −min(∆HD(ω)) (7)∣∣∣∣ ω = 50, 100, ..., 350

The individual waveforms P̃ , Q̃, S̃ are combined into the
matrix

X =

 P̃1 Q̃1 S̃1

...
...

...
P̃18 Q̃18 S̃18

 . (8)

The last step in the normalization procedure is as follows:

Y =


1

max(X(·,1)) 0 . . . 0
...

. . .
...

0 0 . . . 1
max(X(·,9))

 (9)

Z = X · Y (10)

Every column m of X is divided by the maximum of the m-th
column of X (Equ. (9) and (10)). X(·,m) means that the m-th
column of the matrix X is used. By multiplication of X and
Y , the matrix Z is calculated.

IV. CLASSIFICATION

In order to generate a reference value for the classification
of HELD1, the individual measurements were used as training
values. The features have been chosen as described in Sec. III.
As classification method, a feedforward net, as shown in Fig. 6,
is applied. During the training phase, the values for weights
w and bias b have been determined. For the training, scaled
conjugate gradient back-propagation [13] has been chosen.

w w
bb + +

Hidden Output
OutputInput

9

200 36

36... ...

Figure 6. Overview of the applied feedforward neural network, whereas
weights are depicted with w and bias with b.

∆P , ∆Q and the first seven harmonics are used as input
of the neural network. Thus, the total input is nine dimensions.

The number of consumers to be distinguished defines the cor-
responding number of dimensions of the output. Additionally,
as on and off events are treated as separate events, the number
of outputs is doubled. In order to find the required size of the
neural network, the number of hidden layers has been varied
between one and 500. The accuracy of the achieved result is
visualized in Fig. 7. The results were obtained by application
of the test measurements ‘0003’, ‘0116’ and ‘0201’. In order
to determine the lower, upper, and average values of the results
for the corresponding number of hidden layers, each neural net
has been trained in total 100 times.
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Figure 7. Result of the classification according to different numbers of
hidden layers

An accuracy of ≈ 90 % can be achieved with about 200
hidden layers (Fig. 7). A further enlargement of the net has
no positive effect on the achieved accuracy and the result of
classification. The variance of results can be explained by the
random initialization of each neural net for every new initiated
training. The optimization problem is not convex, therefore
local minima prevail.

V. RESULTS

The individual classification result of each measurement
file is listed in Table III to VII. Table III shows the results of
test measurement two, where only one device was active at one
time. The overall recognition rate is ≈ 93.15 %. In order to
identify the occurring errors, the results of measurement ‘0076’
are exemplified in Table IV. Target values are plotted in the
columns, whereas the actual values are given in corresponding
row. Each device in this measurement had in total 40 events.
For ID nine, there are only 39 events, since the last event
was immediately before the end of the recorded measurement;
thus no feature could be calculated. In this measurement, six
different consumers were used. The devices with ID 3, 11 and
21 were detected incorrectly. These devices were not included
in the measurement file ‘0076’ but the neural net had been
trained with all available devices.

Since both refrigerators (ID 13 and 14) are showing al-
most similar consumption characteristics, these devices have
been randomly mixed, which leads to an increase of wrong
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TABLE III. CLASSIFICATION PERFORMANCE OF TEST
MEASUREMENT ONE

Measurement File No. of Events Accuracy

0076 240 88.285%
0077 240 87.342%
0078 240 86.611%
0079 240 89.121%
0080 240 87.029%
0117 400 91.729%
0118 400 90.727%
0119 400 88.446%
0120 400 88.722%
0202 400 98.496%
0203 400 97.744%
0204 400 99.499%
0205 400 99.749%

TABLE IV. CONVERSION MATRIX OF THE CLASSIFICATION
RESULTS OF MEASUREMENT ‘0076’

Dev. ID

set
actual 3 5 9 11 13 14 16 17 19 21

3 0 0 0 0 0 0 0 0 0 0
5 0 39 0 0 0 0 1 0 0 0
9 0 0 39 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0
13 0 0 0 1 33 3 0 0 0 3
14 0 0 0 0 17 23 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 39 0 1
19 1 0 0 0 0 0 0 0 38 1
21 0 0 0 0 0 0 0 0 0 0

assignments. All other devices have been identified correctly
with an accuracy of ≈ 97 % in measurement ‘0076’.

TABLE V. CLASSIFICATION PERFORMANCE OF TEST
MEASUREMENT TWO

Measurement File No. of Events Accuracy

0005 400 57.789%
0008 400 52.393%
0009 400 57.868%
0011 400 55.138%
0171 400 59.25%
0172 400 62.907%
0173 400 56.391%
0175 400 59.649%
0192 400 59.649%
0193 400 61.905%
0194 400 66.165%
0195 400 64.16%
0206 400 73.434%
0207 400 68.672%
0208 400 45.614%
0209 400 67.92%
0210 400 66.667%

Table V contains scenario test measurement two with up
to four devices active at the same time. The total recognition
rate is 60.92 %. Table VI shows the results of measurement
‘0194’ exemplarily. Again, the two refrigerators are the major
source of error. The detection rate for the nine remaining
devices in measurement ‘0194’ is 72 %. As several devices
are operated simultaneously, the probability of mis-detection
increased, especially for small consumers.

Table VII presents the results of scenario test measurement
three with up to six devices active at the same time. The overall
recognition rate reveals 58.85 %.

TABLE VI. CONVERSION MATRIX OF THE CLASSIFICATION
RESULTS OF MEASUREMENT ‘0194’

Dev. ID

set
actual 3 5 7 9 10 11 13 14 15 16 17 19 21 23

3 20 0 1 0 0 1 1 0 0 0 0 0 3 14
5 0 36 0 0 0 0 3 1 0 0 0 0 0 0
7 0 0 33 0 0 5 1 0 0 0 0 0 1 0
9 2 0 0 29 0 0 1 0 0 4 0 0 4 0

10 1 0 0 0 25 2 7 0 0 1 0 0 0 4
11 1 0 2 0 0 28 1 0 0 4 0 0 1 3
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 6 22 6 1 0 0 0 4 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 1 1 0 0 29 0 0 0 9
17 0 0 1 0 0 4 1 0 0 0 32 0 2 0
19 3 0 0 0 0 0 0 0 0 4 0 26 6 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE VII. CLASSIFICATION PERFORMANCE OF TEST
MEASUREMENT THREE

Measurement File No. of Events Accuracy

0241 400 58.897%
0242 400 58.145%
0243 400 61.654%
0244 400 58.647%
0245 400 56.892%

VI. CONCLUSION

This paper presents HELD1 as a data set for NILM which
has been recorded under laboratory conditions. The primary
advantage of this data set is the reliable reference data. Further
advantages are the identical probability distribution for all
consumers as well as a high density of events within the
recorded data. This reduces the size of measurement data
and the calculation effort. To the knowledge of the authors,
this is the first data set being published in context of NILM,
that provides measurements under laboratory conditions with
several consumers being active at the same time. Therefore,
the dataset reflects realistic scenarios. For supervised learning,
individual measurements with 100 switch-on and switch-off
cycles are available. A classification procedure using neural
networks for the allocation of first reference values is pre-
sented. In the future, the data set will be supplemented with
further measurements to offer even more different scenarios.
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