
Towards a Tool-based Approach for Microservice Antipatterns Identification

Rafik Tighilt
Université du Québéc à Montréal

Montréal, Québec, Canada
Email: tighilt.rafik@gmail.com

Naouel Moha
Université du Québéc à Montréal

Montréal, Québec, Canada
Email: moha.naouel@uqam.ca

Manel Abdellatif
Polytechnique Montréal

Montréal, Québec, Canada
Email: manel.abdellatif@polymtl.ca

Yann-Gaël Guéhéneuc
Concordia University

Montréal, Québec, Canada
Email: yann-gael.gueheneuc@concordia.ca

Abstract—Microservice architecture has become popular in the
last few years because it allows the development of indepen-
dent, reusable, and fine-grained services. However, a lack of
understanding of its core concepts and the absence of reference
or consensual definitions of its related concepts may lead to
poorly designed solutions called antipatterns. The presence of
microservice antipatterns may hinder the future maintenance and
evolution of microservice-based systems. Assessing the quality
of design of such systems through the detection of microservice
antipatterns may ease their maintenance and evolution. Several
research works studied patterns and antipatterns in the context of
microservice-based systems. However, the automatic identification
of these patterns and antipatterns is still at its infancy. We
searched for re-engineering tools used to identify antipatterns in
microservice-based systems in both academia and industry. The
results of our search showed that there is no fully-automated
identification approach in the literature. In this paper, we aim
to reduce this gap by (1) introducing generic, comprehensive,
and consensual definitions of antipatterns in microservice-based
systems, and (2) presenting our approach to automatically identify
these antipatterns. Currently, this work is still in progress and
this paper aims to present the approach and the metamodel used
for future implementation.

Keywords–Microservices; Antipatterns; Identification.

I. INTRODUCTION

A microservice is defined as a small service, with a single
responsibility, running on its own process, and communicating
through lightweight mechanisms [1], such as representational
state transfer application programming interfaces (REST APIs)
and message brokers. Each microservice in a microservice-
based system fulfills a single business function, manages its
own data, runs on its own process, is managed by a single
team, and is not tied to the system itself for its evolution or
deployment. Microservices are built around business require-
ments, deployed by a fully automated deployment machinery
with a minimum centralized management [2] and are loosely
coupled.

Several major actors of the software industry have adopted
microservice-based systems, such as Netflix and Amazon. The
popularity of this architecture still grows, mainly due to its
dynamic and distributed nature, which offers greater agility and
operational efficiency and reduces the complexity of handling
applications scalability and deployment cycles wrt. monolithic
applications [2]. Software maintenance is one of the most
important fields in the software industry, whether in expenses
or in resources [3].

However, like any other architectural style, microservice-
based systems also face challenges with maintainability and
evolution due to “poor” solutions to recurring design and
implementation problems, called antipatterns [4]. These an-
tipatterns can degrade the overall quality of design and quality
of service of the microservices themselves and the system as
a whole [5].

The nature of microservice systems makes them very
dynamic (multi-language, multi-operating environments, etc.)
[2]. This makes the identification of antipatterns difficult,
especially because there is a lack of automated approaches
in the literature to help fulfil this task.

We contribute to the maintenance and evolution of
microservice-based systems with generic, comprehensive, and
consensual definitions of antipatterns in microservice-based
systems and an automatic tool-based approach for the iden-
tification of antipatterns in these systems. Our automatic tool-
based approach relies on a meta-model we established and
described in this paper. The meta-model covers the needed
information to apply our heuristics and identification rules yet
can be extended for future work.

However, we must overcome some challenges introduced
by microservice-based systems.

1) Microservices are, by definition, independent [2].
Microservice-based systems are deployed on multiple
providers using different tools and configurations.

2) Microservices can be built using different pro-
gramming languages [1]. This makes the identifi-
cation process more challenging compared to single-
language systems.

Thus, for the first step of our work and to validate our
approach, we only consider systems built with the Java pro-
gramming language and using Docker as container technology
as they are among the most popular tools to build microservice-
based systems.

The remainder of this paper is structured as follows.
Section II describes previous work related to microservices
antipatterns cataloguing and identification. Section III out-
lines our methodology for antipatterns identification. It also
introduces our catalogue of microservice antipatterns and the
metrics and hints to identify these antipatterns. Section IV
presents some limitations that we identified in our approach.
Finally, Section V concludes this paper and presents the future
work.

15Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

II. RELATED WORK

In their study, Pahl and Jamdi [6] aim to identify, tax-
onomically classify and systematically compare the existing
research body on microservices and their application in the
cloud. They conducted a systematic mapping study of 21 works
on microservice design published between 2014 and 2016.
They defined a characterization framework and used it to study
and classify the works. Their study reports a lack of research
tools supporting microservice-based systems and conclude
that microservice research is still in a formative stage. The
study results in a discussion of the microservice architectural
style concerns, positioning it within a continuous development
context and moving it closer to cloud and container technology.

In his overview and vision paper, Zimmerman [7] reviews
popular introductions to microservices to identify microser-
vices tenets. It then compares two microservices definitions
and contrasts them with SOA principles and patterns. this
paper compiles practitioner questions and derives research
topics from the differences between SOA and microservices
architectural style. The author conclude his paper with the
opinion that microservices are one special implementation of
the SOA paradigm.

Garriga [8] defines a preliminary analysis framework in the
form of a taxonomy of concepts including the whole microser-
vices lifecycle, as well as organizational aspects. The author
claims that this framework is necessary to enable effective ex-
ploration, understanding, assessing, comparing, and selecting
microservice-based models, languages, techniques, platforms,
and tools. He then analyzed state of the art approaches related
to microservices using this taxonomy to provide a holistic
perspective of available solutions. Additionnaly, the paper
identified open challenges for future research from the results
of litterature analysis.

Soldani et al. [9] identified and compared benefits and
limitations of microservices by studying the industrial grey
literature. They also studied the design and development
practices of microservices to bridge academia and indus-
try in terms of research focus. Marquez and Astudillo [10]
provided (1) a catalog of microservice architectural patterns
from academia and industry, (2) a correlation between quality
attributes and these patterns, (3) a list of technologies used to
build microservice-based systems with these patterns and (4)
a comparative analysis of SOA and microservice architectural
patterns. They did that to determine whether architectural
patterns are used in the development of microservice-based
systems. This work extended their previous work with Osses
[11].

Taibi et al. [12] introduced a catalog and taxonomy of
the most common microservices anti-patterns to identify com-
mon problems resulting from the migration of monolithic
applications to microservice-based systems. Their catalog is
based on the experience of 27 interviewed practitioners. The
authors identified a taxonomny of 20 anti-patterns including
organizational and technical anti-patterns and estimated their
level of harmfulness through a survey. They conclude that
splitting a monolith is the most critical issue.

Borges and Khan [13] selected 5 well known anti-patterns
in microservice-based systems and proposed an algorithm to
automatically detect them. The authors claim that their solution
can avoid common mistakes when deploying microservices-
based projects and can help project managers to get an

overview of the system as a whole. They tested their algorithm
on a well known open source microservice-based project and
revealed possible improvements.

Microservice antipatterns have been discussed in the liter-
ature, but very little work has been done in the field of their
automatic identification. To the best of our knowledge, only
Borges and Khan [13] proposed an algorithm to automatically
identify antipatterns in microservice-based systems. However,
they only identify 5 antipatterns. Our approach do not focus
on the same antipatterns eventhough we may share some.

III. STUDY DESIGN

This section presents the design of our study. First, we
explain the approach we used to construct our research.
Then, we detail the metamodel used to automatically identify
antipatterns in microservice-based systems. Finally, we list the
detection rules for each antipattern.

A. Approach
This section presents our approach to fulfill our objectives.

First, we reviewed the literature and studied 67 open-source
projects to build a catalogue of microservice antipatterns. Sec-
ond, we study each antipattern to provide a concise description
and extract hints of its presence in microservice-based systems
using source-code, configuration files, deployment files and
git repositories. The catalogue and the description of the
microservice antipatterns have been presented in our previous
work [14]. Finally, we build an automated tool-based approach
for the identification of microservice antipatterns.

1) Step 1: Catalogue of Microservice Antipatterns:
a) Literature review: To build our catalog, we reviewed

the literature following the procedures proposed by Kitchen-
ham et al. [15] for performing systematic literature reviews. We
excluded papers not written in English and papers not related
to microservices antipatterns. We obtained a total of 27 papers
describing microservice antipatterns.

We grouped antipatterns having similar definitions under a
single name and excluded antipatterns that are only related to
the organizational structure of the company or too specific and
that cannot be generalized (e.g., the Frankenstein antipattern
that is related to switching from waterfall to agile develop-
ment).

b) Open-source systems review: After reviewing the
literature, we manually analyzed 67 open source systems [16]
to assess the concrete presence of the identified antipatterns in
these microservice-based systems. Table I shows examples of
identified antipatterns inside microservice-based systems.

After reviewing the litterature and the open source
microservice-based systems, we obtained a total of 16 anti-
patterns described below.

1) Wrong Cuts: This antipattern consists of microser-
vices organized around technical layers (Business
layer, Presentation layer, Data layer) instead of func-
tional capabilities, which causes strong coupling of
the microservices and impedes the delivery of new
business functions.

2) Cyclic Dependencies: This antipattern occurs when
multiple services are co-dependent circularly and,
thus, no longer independent, which goes against the
very definition of microservices.

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

TABLE I. EXAMPLES OF IDENTIFIED ANTIPATTERNS IN MICROSERVICE-BASED SYSTEMS

System name Identified antipatterns

ACME Air Manual Configuration, Shared Persistence, Hardcoded Endpoints, No Healthcheck

Cinema microservice Manual Configuration, Hardcoded Endpoints, No Healthcheck

Delivery system Hardcoded endpoints, Local logging, Insufficient monitoring, No Healthcheck

E-commerce microservices sample Manual Configuration, Hardcoded Endpoints, No API gateway, Local Logging

Microservices demo Hardcoded Endpoints, No API Gateway, No API versioning

Beer Catalog Hardcoded Endpoints, Shared Libraries, Multiple Service Instances Per Host

Springboot microservices example Manual Configuration, Hardcoded Endpoints, No Healthcheck

3) Mega Service: This antipattern appears when a
microservice serves multiple business functions. A
microservice should be manageable by a single team
and bounded to a single business function.

4) Nano Service: This antipattern results from a too
fine-grained decomposition of a system in which mul-
tiple microservices work together to fulfill a single
business function.

5) Shared Libraries: This antipattern consists of li-
braries and files (ex. binaries) used by multiple mi-
croservices, which breaks the microservices indepen-
dence as they rely on a single source to fulfill their
business function.

6) Hardcoded endpoints: This antipattern relates to
URLs, IP addresses, ports and other endpoints being
hardcoded in the microservice source code including
configuration files. This may interfere with the load
balancing and the deployment of the microservices.

7) Manual Configuration: This antipattern happens
with configurations that must be manually pushed to
each microservice of a system. Microservice systems
evolve rapidly and their management should be au-
tomated, including their configuration.

8) No Continuous Integration (CI) / Continuous
Delivery (CD): Continuous integration and delivery
are important for microservices to automate repeti-
tive steps during testing and deployment. Not using
CI/CD undermines microservices, which encourages
automation wherever possible.

9) No API Gateway: This antipattern occurs when
consumer applications (front ends, mobile applica-
tions, etc.) communicate directly with microservices.
Each application must know how the whole system
is decomposed and must then manage endpoints and
URLs for each microservice.

10) Timeouts: This antipattern happens when timeout
values are set and hardcoded in HTTP requests, which
leads to spurious timeouts or unnecessary delays.

11) Multiple Service Instances Per Host: This an-
tipattern happens when multiple microservices are
deployed on a single host, which prevents their inde-
pendent scaling and may cause technological conflicts
inside the host.

12) Shared Persistence: This antipattern happens when
multiple microservices share a single database: they
no longer own their data and cannot use the most
suitable database technology for it.

13) No API Versioning: This antipattern happens when
no information is available about a microservice
version, which can break changes and force backward
compatibility when deploying updates.

14) No Health Check: This antipattern occurs when
microservices are not periodically health checked.
Unavailable microservices may not be noticed and
cause timeouts and errors.

15) Local Logging: This antipattern occurs when mi-
croservices have their own logging mechanism, which
prevents the aggregation and analyses of their logs
and may slow down the monitoring and recovery of
a system.

16) Insufficient Monitoring: This antipattern relates to
microservice systems performances/failures, which
are not tracked and cannot help maintain the functions
of the systems.

2) Step 2: Detection of the Microservice Antipatterns: We
present an approach to detect the antipatterns catalogued in
Section III-A1. Figure 1 shows that our approach takes as
input a microservice-based project or a list of microservices
(both either as Git repositories or local source code folders).
Then, from each microservice, it extracts the relevant files
by excluding binaries (e.g., .jar, .exe, .bin files) and vendor
files (e.g., node modules, composer vendor etc.). Then, our
approach splits the extracted files into four categories based
on their extension, content, and programming language:

1) Code: These are source-code files of the microser-
vice. We split these files into programming files (Java,
PHP, Go, etc.), configuration files (XML, JSON,
YAML, etc.), markup files (HTML, CSS, EJS, etc.),
and data files (CSV, GitAttributes, Properties, etc.).

2) Environment: If available, these files store environ-
ment variables for the microservices. Usually in key
value pairs.

3) Deployment: These are deployment scripts for the
microservices (Dockerfiles, docker-compose, etc.).
We do not consider configuration files in this cate-
gory. We only save files directly related to deploy-
ment (Docker files, Docker-compose, etc.).

4) Configuration: These are configuration files for the
microservice (JSON files, XML files, etc.). Source
code files that only contain configuration are also
added to this category. That means that a source code
file “xxx-config.java” will be considered in both the
source code category and the configuration category.

From each category, we can extract some information to build

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

Figure 1. Antipatterns Identification Process Architecture

our model of the microservices, which contains information
needed to apply our detection heuristics to identify antipat-
terns.

B. Metamodel Definition
This section describes the meta-model that we use to en-

capsulate the needed information to identify antipatterns. The
metamodel is divided in 13 components, each one containing
some information related to the systems and the microservices.
The components are as follow:

1) System: This component holds information about the
system itself.

• isGitRepository: True if the provided system to ana-
lyze is a git repository.

• importedAt: The timestamp when the analysis was
performed.

2) GitRepository: If the provided system is in a Git repos-
itory, this component stores information about it.

• url: Repository URL.
• owner: The owner of the Git repository.
• nbContributors: The number of different developers

that contributed to the repository.
• nbCommits: The number of commits to the reposi-

tory.
• branch: Current branch of the repository.
• buildStatus: If available, the build status of the repos-

itory.

3) Microservice: This component stores information about
a single microservice.

• languages: List of programming languages used in a
microservice.

• loc: The number of lines of code for a microservice.

4) Dependency: This component holds information about
a single dependency.

• name: Dependency name.
• source: The source from where the dependency is

installed.
• category: The dependency category (e.g., ORM, Log-

ging, Monitoring, etc.).
• type: The type of the dependency (binary, framework,

library, etc.).

5) Deploy: This component contains generic deployment
information.

• area: If available, the area of the deployment (devel-
opment, staging, production, etc.).

• instructions: List of deployment instructions (e.g.,
Dockerfile commands).

6) Config: This component contains configuration informa-
tion.

• type: The configuration file type.
• path: The path of the configuration file.
• values: Actual configuration key/value pairs.

7) Env: If available, this component contains environment
variables information.

• type: The environment file type.
• values: Actual environment variables key/value pairs.

8) Code: This component holds information about a given
source code file.

• languages: List of programming languages of the
current file.

• mainLanguage: Main programming language used in
the file.

• loc: Lines of code of the file.

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

9) Image: If available, this component holds information
about container images of the system.

• name: Image name.
• type: If available, the image type (e.g., database

system, monitoring,etc.).

10)Server: This component is related to deployment server
information.

• address: Server address.
• port: Deployment port number.

11)HTTP: This component stores information about HTTP
requests.

• sourceFile: File from where the HTTP request was
performed.

• endpointURL: HTTP requests destination endpoint.
• port: HTTP requests port.
• type: The type of the HTTP request.
• parameters: HTTP requests parameters.

12) Database: This component stores information about
database queries.

• dbQuery: The database query string.
• queryType: The type of the database query.
• dbName: Database name.
• dbLocation: Database location address.
• dbUsername: If available, the database user name.
• dbPassword: If available, the database user password.

13) Import: This component stores information about im-
ported packages in the source code.

• package: The imported package.
• path: The imported path.
• fileType: Imported file type.

Figure 2 illustrates the relations between each component
of our metamodel.

C. Detection rules
We now describe the detection rules of our approach for

each antipattern.
1) Wrong Cuts: Microservices have one file type in the

source code and connect to multiple microservices having also
one file type. An example would be a microservice containing
only presentation related code connecting to a microservice
containing only business logic code. We rely on the files
extensions, contents, and programming languages to identify
this antipattern.

2) Cyclic dependencies: Microservices performing API
call to other microservices circularly. We detect this antipattern
using the API calls, endpoints, and dependencies extracted in
our model.

3) Mega Service: Such a microservice has more lines of
code, connects to multiple databases, has a high fan in and
fan out, and has a lot of dependencies compared to other
microservices.

4) Nano Service: Such a microservice has less lines of
code, connects to zero or one database, has a low fan in and
fan out, and has no or a few dependencies compared to other
microservices.

5) Shared Libraries: Multiple microservice source files,
dependency binaries, and libraries are shared between multiple
microservices.

6) Hardcoded Endpoints: REST API calls inside microser-
vices source code, deployment files, configuration files, or en-
vironment files contain hard-coded IP addresses, port numbers,
and URLs. There is no service discovery present in the system.

7) Manual Configuration: Microservices have their own
configuration files. No configuration management tools are
present in the dependencies of the system and no microservice
is responsible of configuration management.

8) No CI/CD: Configuration files and version control
repositories do not contain continuous integration/delivery-
related information. We rely on an extensible list of CI/CD
tools to perform our analysis.

9) No API Gateway: Microservice source code does not
contain signatures of common API gateway implementations
(e.g., Netflix Zuul). No frameworks or related tools are present
in the dependencies of the microservice. API calls are direct
calls to microservices.

10) Timeouts: Timeout values are present in REST API
calls. No signatures of common circuit breaker implementa-
tions (e.g., Hystrix) are present in the source code. No circuit
breaker is present in the dependencies of the microservice.

11) Multiple Service Instances Per Host: We analyze and
compare deployment scripts of all microservices to find the
ones that share the same hosts.

12) Shared persistence: We extract the databases used by
the microservices and then assess if any database is used by
more than one microservice.

13)No API Versioning: Endpoints and URLs do not contain
version numbers. No version information present in the headers
when performing HTTP requests.

14) No health check: No “healthcheck” or “health” end-
point in microservices. No common implementation of health
checks present in the source code (e.g., Springboot actuator).

15) Local Logging: No distributed logging present in
the dependencies. No common logging microservice. Each
microservice has its own log file paths.

16) Insufficient Monitoring: No monitoring framework or
library in the microservices dependencies (e.g., Prometheus).

IV. APPROACH LIMITATIONS

In this section, we discuss the limitations of our approach
and the measures that we took to reduce them.

A. Internal limitations
Although we intensively reviewed the literature to find the

most common antipatterns in microservice-based systems, they
are potentially other antipatterns that we did not include in our
study. Yet, with the antipatterns described in our catalogue, we
aim to establish a foundation for future work. Other researchers
should perform similar reviews to confirm/infirm ours.

The detection rules we established to identify antipatterns
are subject to our interpretation of antipatterns. Mega service
for example is subjective, and can be discussed. However,
we tried to minimize this limitation by considering every
microservice as a part of the system instead of a stand-alone
application. This way, we can say that a Mega service is
relative to the system.

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

Figure 2. Relations between all metamodel components

B. External limitations
Microservice-based systems are volatile. They can be

built using multiple technologies and deployed to multiple
providers. Even though we tried to identify the most common
technologies in the field of microservices, we might have
omitted some. We will minimize this limitation by building
a tool that can be extended by providing more parsers and
deployment environments.

We rely on lists of dependencies and frameworks to identify
some antipatterns. We pre-define these lists by taking the most
widely used technologies in that area, but we do not pretend
to have exhaustive lists. However, we will build the system in
a way these lists can be extended easily to cover more tools
and frameworks.

Even though configuration files are widely written in JSON,
XML, or YAML file formats, they can also be written in the
programming language itself. This may lead us to misconsider
a file and not include it in the configuration category. We
reduce this limitation by not only relying on the file extension,
but also on the file name and its content to do the classification.

V. CONCLUSION AND FUTURE WORK

We describe in this paper our automated approach for the
identification of antipatterns in microservice-based systems.
We provide a list of previously identified antipatterns from the
literature. We detail the meta-model we use in our approach
and we finally define the heuristics and detection rules for each
of the identified antipatterns.

We believe that our approach is robust enough to identify
the described antipatterns yet still extensible and flexible to
evolve with the evolution of programming languages and
antipatterns themselves.

Future work includes first implementing our detection rules
to identify antipatterns in Java microservices to validate and re-
fine our approach. We will validate our approach by manually
analysing the microservice-based systems and calculate preci-
sion and recall for each of the identified antipatterns. Then,
we want to extend our approach to consider multi-language
microservice-based systems. Finally, we aim to empirically
study the effect of these antipatterns on the quality of systems.

REFERENCES
[1] “Microservices: a definition of this new architectural term,” 2019, URL:

https://martinfowler.com/articles/microservices.html [retrieved: August,
2020].

[2] S. Newman, Building Microservices: Designing Fine-Grained Systems.
O’Reilly Media, Inc., Feb. 2015, ISBN: 978-1491950357.

[3] M. Hanna, “Maintenance burden begging for remedy,” Software Mag-
azine, vol. 13, pp. 53–53, Apr. 1993.

[4] D. Taibi and V. Lenarduzzi, “On the Definition of Microservice Bad
Smells,” IEEE Software, vol. 35, pp. 56–62, May 2018.

[5] F. Palma, “Detection of SOA Antipatterns,” in Service-Oriented Com-
puting - ICSOC 2012 Workshops. Springer Berlin Heidelberg, Jan.
2013, pp. 412–418.

[6] C. Pahl and P. Jamshidi, “Microservices: A Systematic Mapping Study,”
in Proceedings of the 6th International Conference on Cloud Computing
and Services Science. SCITEPRESS - Science and and Technology
Publications, Apr. 2016, pp. 137–146.

[7] O. Zimmermann, “Microservices tenets: : Agile approach to service
development and deployment,” Computer Science - Research and De-
velopment, vol. 21, pp. 301–310, Nov. 2016.

[8] M. Garriga, “Towards a Taxonomy of Microservices Architectures,” in
Software Engineering and Formal Methods. Springer International
Publishing, Feb. 2018, pp. 203–218.

[9] J. Soldani, D. A. Tamburri, and W.-J. V. D. Heuvel, “The pains and
gains of microservices: A Systematic grey literature review,” Journal
of Systems and Software, vol. 146, pp. 215–232, Dec. 2018.

[10] G. Marquez and H. Astudillo, “Actual Use of Architectural Patterns in
Microservices-Based Open Source Projects,” in 2018 25th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, Dec. 2018, pp.
31–40.

[11] F. Osses, G. Marquez, and H. Astudillo, “Exploration of academic
and industrial evidence about architectural tactics and patterns in
microservices,” in Proceedings of the 40th International Conference on
Software Engineering Companion Proceeedings - ICSE. ACM Press,
May 2018, pp. 256–257.

[12] D. Taibi, V. Lenarduzzi, and C. Pahl, Microservices Anti-patterns: A
Taxonomy. Springer International Publishing, Jan. 2020, chapter 5,
pp. 111–128, in Microservices: Science and Engineering, ISBN: 978-
3-030-31646-4.

[13] R. Borges and T. Khan, “Algorithm for detecting antipatterns in mi-
croservices projects,” in Joint Proceedings of the Inforte Summer School
on Software Maintenance and Evolution. CEUR-WS, Sep. 2019, pp.
21–29.

[14] R. Tighilt, M. Abdellatif, N. Moha, H. Mili, G. E. Boussaidi, J. Privat,
and Y.-G. Guéhéneuc, “On the Study of Microservices Antipatterns: a
Catalog Proposal,” in Proceedings of the 25th European Conference on
Pattern Languages of Programs, 2020, p. To appear.

[15] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele University, vol. 33, pp. 1–26, Jul. 2004.

[16] M. I. Rahman, S. Panichella, and D. Taibi, “A curated Dataset of
Microservices-Based Systems,” in Joint Proceedings of the Inforte
Summer School on Software Maintenance and Evolution. CEUR-WS,
Sep. 2019, pp. 1–9.

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

