SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

Keep it in Sync! Consistency Approaches for Microservices
An Insurance Case Study

Arne Koschel
Andreas Hausotter

Hochschule Hannover
University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science
Hannover, Germany
Email: arne.koschel@hs—hannover.de
Email: andreas.hausotter@hs—hannover.de

Abstract—Microservices is an architectural style for complex
application systems, promising some crucial benefits, e.g. better
maintainability, flexible scalability, and fault tolerance. For this
reason microservices has attracted attention in the software
development departments of different industry sectors, such as e-
commerce and streaming services. On the other hand, businesses
have to face great challenges, which hamper the adoption of
the architectural style. For instance, data are often persisted
redundantly to provide fault tolerance. But the synchronization
of those data for the sake of consistency is a major challenge.
Our paper presents a case study from the insurance industry
which focusses consistency issues when migrating a monolithic
core application towards microservices. Based on the Domain
Driven Design (DDD) methodology, we derive bounded contexts
and a set of microservices assigned to these contexts. We discuss
four different approaches to ensure consistency and propose a
best practice to identify the most appropriate approach for a given
scenario. Design and implementation details and compliance
issues are presented as well.

Keywords—Microservices; Consistency; Domain Driven Design
(DDD); Insurance Industry.

I. INTRODUCTION

A current trend in software engineering is to divide soft-
ware into lightweight, independently deployable components.
Each component can be implemented using different tech-
nologies because they communicate over standardized network
protocols. This approach to structure the system is known as
the microservice architectural style [1].

As a study from 2019 (see [2]) shows, the microservice
architecture style is already established in many industries
such as e-commerce. However, this is not the case for the
insurance and financial services industry. Therefore, as part
of ongoing cooperation between the Competence Center In-
formation Technology and Management (CC_ITM) and two
regional insurance companies, the research project Potential
and Challenges of Microservices in the Insurance Industry
was carried out. The goal was to examine the suitability
of microservice architectures for the insurance industry. The
CC_ITM is an institute at the University of Applied Sciences
and Arts Hanover. Main objective of the CC_ITM is the
transfer of knowledge between university and industry. The
cooperating insurance companies currently both operate a

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

Moritz Lange
Sina Gottwald

Hochschule Hannover
University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science
Hannover, Germany
Email: moritz.lange@stud.hs-hannover.de
Email: sina.gottwald@stud.hs-hannover.de

service-oriented architecture (SOA). Over time, however, it has
become apparent that this architectural style is not suitable for
some parts of the system and a finer subdivision (microser-
vices) would be advantageous. A specific example for such a
part of the system is the Partner Management System,
which was transferred into a microservice architecture in the
context of our research.

This paper presents a case study based on our research
project. The case study focuses on consistency issues when
implementing a microservice architecture. Therefore it de-
scribes how the monolithic architecture of the Partner
Management System was divided into several microser-
vices, which problems occur regarding the data consistency
across the microservices and presents different approaches
to solve these issues. Implementation details and insurance
specific topics such as special compliance requirements are
presented as well.

We organize the remainder of this article as follows: After
discussing related work in Section II, we present the domain
and requirements of the Partner Management System
in Section III. Afterwards, Section IV shows how we split the
system into microservices, discusses compliance aspects and
describes the benefits the new architecture offers. Section V
provides details about technical aspects of this architecture.
In Section VI we evaluate the outcomes with a focus on
consistency aspects. Section VII discusses general approaches
to ensure consistency in microservice architectures and how
these approaches can be applied to get a suitable consis-
tency solution for the Partner Management System.
Section VIII summarizes the results and draws a conclusion.

II. RELATED WORK

Our research is based on the literature of well-known
authors in the field of microservices, especially the ground
works of Fowler and Lewis [1] as well as of Wolff [3]. For
the practical parts of our research, mainly the elaborations
of Newman (see [4]) were used. Moreover, we found valu-
able ideas (also) w.r.t consistency in the patterns work from
Richardson [5]. Additional helpful microservices migration
patterns are, for example, presented in [6] and some as well
in [7]. Especially for the migration of the legacy application,

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

the contribution of Knoche and Hasselbring (see [8]) was
consulted. As a study from 2019 shows (see [2]), microservice
architectures are barely found in the insurance and financial
services industry in Germany. Therefore, results from other
industries had to be used for our research (for example [9]).

Although the basic literature is extensive, not too much
scientific research has been done about synchronizing ser-
vices. Because microservices should use independent database
schemes and can even differ in persistence technology, the
traditional mechanisms of replicating databases (see, e.g.,
Tanenbaum and Van Steen [10, chap. 7]) cannot be applied as
well. Instead, ideas and patterns from other areas of software
engineering had to be transferred to the context of microser-
vices.

So, in addition to general microservices research, more
fundamental concepts of operating systems (e.g., [11]) and
object-oriented programming (e.g., [12]) were considered by
our research. Furthermore, ideas of general database research
like the SAGA-Pattern [13], which was already applied to
microservices by Chris Richardson [5], were considered as
well. Event-based approaches like event sourcing, described
by Fowler [14], were also applied to microservices within our
research.

From a microservices design perspective, domain-driven
design (DDD) from Evans [15], is currently considered to be a
best practice to find suitable so called bounded contexts, which
can form a functional basis for microservices. Going further
than many microservices-based systems, we put a special
emphasis on compliance aspects, when designing the bounded
contexts. Since insurance companies are highly supervised by
the government (in Germany: Federal Financial Supervisory
Authority (BaFin)), several compliance rules apply for them,
for example “Supervisory Requirements for IT in Insurance
Undertakings (in German: VAIT [16])”.

Previous work has already evaluated the outcomes of the
research project mentioned in the introduction (see [17]). How-
ever, the project and the evaluation only partially discussed
the issues of consistency. In particular, it missed a fair bit of
implementation details. Not discussed in [17] by us at all, are
the aforementioned compliance aspects for our microservice
design. For this reason, we have focused on those topics after
the completion of the initial project, for example, with thesis
work, that dealt with the issue of consistency in context of
the project results as well a another work, which dealt with
compliance aspects during service design.

In total, the present article is as such a significantly ex-
tended and updated version of our previous work, especially in
the details for service boundaries, service compliance aspects,
system architecture, and example implementation details [18].

III. DOMAIN AND REQUIREMENTS OF THE PARTNER
MANAGEMENT SYSTEM

As mentioned in the introduction, one part of our research
was migrating a system for managing partners of an insurance
company - the Partner Management System. In this
context, partners are defined as natural or legal persons who are
in relation to the insurance company (e.g., clients, appraisers,
lawyers or other insurance companies). Additional to personal
information, a partner may also have information on communi-
cation, bank details, business relations and relations with other
partners.

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

<<Entity>>
NaturalPerson

- firstname : String

- title : String <<Entity>>
- gender : String T
- job : String 9
- birthdate : String - legalForm : String
o) 1 *
<<Value Object>> <<Entity>> .
I
PartnerContract Partner P ar:::re:‘ﬁts: 'J_:‘;t;:i o
n a 1
_contractiD : Sting [| - partnerld : String R s
- type : String * 1| -name : String typoliSHing
+ operation0() : void <L1 1
. <<Value Object>>
S Objec_t»_ PartnerBankAccount
PartnerCommunication
o - bankCode : String
={peoileD: ?‘”’Tg - accountNumber : String
- adressType : String - typeOfUse : String
?1
1
<<Value Object>>
Communication
<<Value Object>> <<Value Object>>
Address Telephone
- street : String - type : String
- houseNumber : String - nubmber : String
- city : String
- postCode : String

Figure 1. Simplified Model of the Overall Domain.

For introducing the overall domain, figure 1 shows a
simplified model according to which the SOA service currently
used by the partner companies was modelled. The presented
model is strongly based on the reference architecture for
German insurance companies (VAA) [19], which describes the
monolithic way to implement the Partner Management
System.

At its core, the system is a simple CRUD (Create, Read,
Update, Delete) application that manages the entity Partner
and its properties, even though the implementation as a single
SOA service seems suitable at first glance.

Since the Partner Management System is a funda-
mental service of an insurance company, many other parts of
the overall system are interested in the managed data. However,
not all consumers of the Partner Management System
are interested in the same subset of the data. Furthermore,
some consumers should not have access to some data for
security reasons. For example, the service that collects the
monthly premiums does not need access to a client’s birth
date or profession. These conditions result in a complex
implementation of access rights and varying levels of stress for
different parts of the Partner Management System. An
efficient scaling is not possible. The Partner Management
System is an atomic deployment unit that scales as a whole
and fails as a whole.

Especially the inefficient scaling is critical in the case of
partner companies, since the SOA service is implemented as a
mainframe-based application that can only be scaled at great
expense. Therefore, the partners use the low occupancy during
the night to slowly persist all new datasets collected during the
day so as not to overburden the mainframe-based application.
However, in practice this approach makes crashes at night
extremely critical as the entire system does not work all night
and only few people are available to fix the problem.

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

The major issues of the current implementation of the
Partner Management System are obviously a relatively
poor flexibility, scalability and fault tolerance. In addition, the
access rights management is so complex that a legally com-
pliant implementation is difficult. This makes a microservices
approach attractive for this use case.

IV. ANALYSIS OF THE MICROSERVICE
ARCHITECTURE

In order to overcome the aforementioned limitations of the
current Partner Management System, we designed a
microservices-based approach. This section explains how the
system has been split into independent services and presents
the resulting benefits.

A. Dividing the Domain with DDD Strategic Design

In the context of our research, we used the principles
of strategic design (see [15, Part IV]) as part of domain-
driven design (DDD) to split the domain. Figure 2 shows the
decomposition of the analysis model presented in the previous
section.

<<Entity>> -
<<Value Object=>
NaturalPerson — PartnerContract
- firstname - Strin SR -
_iitle : String g LegalPerson - contractD : String
y . = - Stril
-gender: String ~legalForm : String type]
-job - String + ion0() - void
- birthdate : String N
1
N * Entity=> <<Entity>>
<<Value Object>> [~ | <
PartnerPartnerRelation 1 Hariney Haiinen
B . * - partnerld : String - partnerld : String
RS C 1 | -name : String -name : String
PARTNER-SERVICE CONTRACT-SERVICE
COMM-SERVICE ACCOUNT-SERVICE
<<Entity>> <<Entity>>
Partner Partner
- partnerld :VStling _ partnerld - String
-name : String ~name : String
<<Value Object>> 1
Address J;
- street - String
- houseNumber : String <<Value Object=> <<Value Object>>
_city - String PartnerCommunication PartnerBankAccount
- postCode : String -typeOfUse : String - bankCode : String
- adressType : String -accounthumber : String
<<Value Object=> 7 - typeOfUse : String
Telephone 1 Y
~type : String <<Value Object=>
- nubmber : String [Communication

Figure 2. Bounded Contexts in the Microservice Architecture

It can be seen that the domain has been split into four
bounded contexts. Bounded contexts are the central concept
of strategic design. Vaughn Vernon (see [20]) describes it
as an environment in which a specific language (ubiquitous
language) is spoken and certain concepts are defined. Therfore,
a bounded context is a conceptual boundary within which a
particular domain model is applicable. In relation to Figure 2,
this is shown by the fact that there are several separate
models of the Partner, one for each bounded context. Every
bounded context has a slightly different understanding of the
entity Partner. For example, while for one context the

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

Partner is a contractor, for another he is a bank account
holder. In order to determine the presented contexts, we heav-
ily discussed the domain and its processes with developers,
architects and insurance domain experts. One technique that
was used for this is event storming.

After we found the bounded contexts according to strategic
design principles, the contexts were mapped to microservices.
Leading microservices experts such as Chris Richardson [5] or
Martin Fowler and James Lewis [1] recommend defining the
microservices along the bounded contexts. This means that
each bounded context should be implemented by one or more
microservices. As figure 2 shows, in the case of the Partner
Management System, a bijective mapping from bounded
contexts to microservices was chosen. The system was
divided into partner-service, contract-service,
comm-sevice and account-service.

B. Compliance Aspects for Dividing the System

In addition to the better manageability of the business com-
plexity as well as the more efficient scalability gained through
the cut, the finer subdivision of the Partner Management
System is also advantageous from a compliance point of
view. This section describes the special requirements that
insurance companies in Germany have to comply with and
how these can be implemented by the designed microservice
architecture.

TABLE I. Protection Level of Personal Data according to [21]

Pr(;}::é;on Personal data... Example l}fgree of

...which have been Data visible in the minor
A made freely available telephone book or on

by the persons social media platforms.

concerned.

...whose improper Restricted public files minor
B handling is not or social media not

expected to cause freely accessible.

particular harm, but

which has not been

made freely accessible

by the person

concerned.

...whose improper Income, property tax, manageable
C handling could damage administrative offences.

the person concerned

in his social position or

economic

circumstances

("reputation”).

...whose improper Prison sentences, substantial
D handling could criminal offences,

significantly affect the employment

social position or evaluations, health data,

economic seizures or social data.

circumstances of the

person concerned

(“existence”).

...whose improper Data on persons who major
E handling could impair may be victims of a

the health, life or criminal offence,

freedom of the person information on witness

concerned. protection program.

German insurance companies are supervised by the Federal
Financial Supervisory Authority (BaFin) who published the
“Supervisory Requirements for IT in Insurance Undertakings”
[16]. These include instructions to comply with the basic
principles of information security (confidentiality, integrity,

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

availability) since insurance companies are considered as a
critical infrastructure in Germany. This means that they are
essential for society and economy and therefore more worthy
of protection. Since 2018 the General Data Protection Reg-
ulation (GDPR) is enforceable for processing personal data
as well. This also means that companies need to ensure data
protection and privacy.

The microservice architecture divides the overall system
into multiple independent components. Therefore, it allows to
implement different protection levels for every microservice.
This perfectly fits with the well known security engineer-
ing principle of compartmentalization [22]. In case of the
Partner Management System, it allows us to meet the
legal requirements according to [21], which are shown in
Table I, more easily. It can be distinguished between more
sensitive data requiring a higher security level like contract or
bank details and data that is more uncritical like the name and
telephone number of a person.

The microservice architecture of the Partner
Management System only processes data belonging
to protection levels A to C. Data like the address, telephone
number and bank details of a person aren’t as critical as, e.g.,
health data. Since the processed data in our system would
cause less damage to the person affected if protection of the
data would fail, there is no need to implement a protection
level as strong as it should be for more critical data. But in
general, due to the division in microservices we are able to
map each service to the appropriate protection level.

V. DESIGN AND IMPLEMENTATION OF THE
MICROSERVICE ARCHITECTURE

After the previous section presented the functional design
of the microservice architecture, this section shows the tech-
nical design and some implementation insights.

A. The Technical Microservice Architecture

Taking the bounded contexts found as input, the next step
is the overall technical design of the microservice architecture.

Based on the technical specifications of the insurance
companies involved, the resulting microservices are designed
to be implemented as REST web services (see figure 3)
in Java using the Spring framework. As mentioned before,
each microservice should have its own data management,
realized here as dedicated PostgreSQL databases. Instances of
a microservice share a database (cluster). partnerId and
name are kept in sync across all microservices using REST
calls of the partner—-service.

Parts of the Netflix OSS stack are used for the system
infrastructure: Netflix Eureka as a service discovery and Netflix
Zuul as an API gateway. Zuul also provides the web fron-
tend of the application, which is realized as a single-page
application using Angular]JS. The ELK stack (Elasticsearch,
Logstash and Kibana) is set up for monitoring and logging.
All shown components of the architecture are deployed in
separate Docker containers and connected by a virtual network
using Docker Compose. In combination with the stateless
architecture of the microservices, it is possible to run any
number of instances of each microservice.

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

B. Integrating Services into the Microservice Architecture

Given the technical architecture of the overall
microservices-based system, we now provide deeper technical
details of particular microservices. Therefore, this section
provides code snippets to show how services are integrated
into the microservice architecture and how fault-tolerant calls
between services are implemented.

@EnableEurekaClient
@SpringBootApplication
public class Application {
public static void main(String[]
SpringApplication
.run (Application.class,
}
}

args) |

args) ;

Listing 1. Registration with Eureka Service Registry

To integrate a microservice into the microservice architec-
ture from figure 3, it only needs to be registered with Eureka
under a specific name. As a result, the API gateway (and any
other microservice) can find instances of the microservice at
runtime and use the provided REST endpoints. Fortunately, as
listing 1 shows, Spring (Cloud Netflix) provides an easy way
to register a microservice with Eureka.

As the listing shows, the class with the main method needs
to be annotated with @EnableEurekaClient. In addition
(not shown in the listing), the address of Eureka and the name
under which the microservice should be registered must be
stored in the application.properties file. As a result,
the instance of the microservice now registers with Eureka
when starting up. Note: In practice, there will usually be a
federation of Eureka instances to ensure their availability.

C. Implementing Network Calls

Since network calls (to other microservices) can fail, it is
useful to implement a fault tolerance mechanism. In our case,

sending logs
e T S 3 am»
: logstash -
elasticsearch
REST (sync of partnerld and name)
— - —

register
s - N -
1 partner- contract- account- comm-
V. service service service service
service-
registry
(Eurze) REST REST REST REST
.y
I
I
| y— -
lookup api-gateway (Zuul)

HTTPS

4

AngularJS-Frontend | kibana

Figure 3. Technical Design of the Microservice Architecture

10

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

we used the Retry library from Spring. Just like the Eureka
integration it is available via a simple annotation.

NaturalPerson createNP (NaturalPerson p) {
NaturalPerson savedInDB = repository.save (p);
distribNP (p) ;
log.info ("A natural person was created.");
return saved;

}

@Retryable (value={Exception.class}, maxAttempts=5)
void distribNP (NaturalPerson p) throws Exception({
//network call

dataDistributionService.update (savedInDB);

}

@Recover

void recover (Exception e, NaturalPerson p) {
//Rollback transaction to ensure
//consistency and notify somebody

//that something went terribly wrong.

}

Listing 2. Network Call with Retries

Listing 2 shows simplified parts of the implementation of
the partner-service. Every time a new person is created,
the change must be propagated to the other services via a
synchronous network call. Since the successful execution of
this call is a critical factor for consistency in the system,
it makes sense to secure this call with a fault tolerance
mechanism. The @Retryable annotation ensures that the
annotated method is called several times if an exception occurs
during execution. Listing 2 shows an implementation of five
attempts to send the data to the other microservices. If an
exception also occurs after the fifth time, the method annotated
with @Recover is called instead.

D. Design of the microservices

This section presents the internal architecture of the mi-
croservices. The services are implemented in Java using the
Spring Framework. Parts of the partner-service serve
as an example to show the general architecture of the services.

Figure @4 shows the architecture of the
partner-service. It follows a layered architectural
style. Each layer will be explained in the following.

E. Routing Layer

The routing layer is the one that inter-
acts with the consumers of the service. With
the annotation @RestController on the

NaturalPersonController, the Spring Framework
creates an instance of the class and delegates incoming
HTTP requests to its methods. Each of the methods in the
NaturalPersonController is responsible for a REST
endpoint. The functional scope of the controller is limited to
the CRUD operations and an interface to search for natural
persons based on certain properties.

the NaturalPersonController,
LegalPersonController and a
PartnerRelationsController to provide the
remaining functionality of the partner-service.
Since the routing layer responds to incoming HTTP requests,
it is responsible for encoding and decoding objects. In our

In addition to
there is also a

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

<<RestContoller>> .
NaturalPersonController Routing
Layer
-npService : MaturalPersonService
+ createMP(Ip : MaturalPerson) : MaturalPerson
+getNP(partnerlD : long) : NaturalPerson
+ updateNP(parinerlD - long, np : NaturalPerson) - NaturalPerson
+ deleteMP(partneriD : long) : ResponseEntity<Void>
+findNPs(search - HashMap<String, String=) - List<NaturalPerson>
1
e e e e o Q7T
<<Service>> Busi
NaturalPersonService usiness
Logic
- npRepository : NaturalPersonRepository Layer
- logger : Logger
+ createNP(Ip : NaturalPerson) - NaturalPerson
+ gethP(partneriD : long) : NaturalPerson
+ updateNP(np : NaturalPerson) : NaturalPerson
+deleteNP(lp : NaturalPerson) - void
+findMPs(search : HashMap<String,String=) : List<MaturalPerson>
,,,,,,,,,,,,,,,,,,,,,, | e e e e m e m =
1
VV Persistence
<<Repository>=> Layer

! NaturalPersonRepository 1

<<interface>>
JpaSpecificationExecutor

<<interface=>
PagingAndSortingRepository

Figure 4. Architecture of the Partner-service

implementation, the objects are serialized as JSON. The layer
is also responsible for catching exceptions from the business
logic layer and translating them into HTTP status codes.
In summary, the routing layer is an HTTP facade for the
business logic.

F. Business Logic Layer

Classes in the business logic layer are provided with
the annotation @Service. As a result, they are managed
by the Spring Framework and can be used in other
contexts using Spring’s dependency injection mechanism.
For example, the NaturalPersonController gets
an instance of the NaturalPersonService injected
to communicate with the business logic layer. As the
name suggests, the business logic layer implements the
business logic. In our implementation, the business logic is
limited to some input validation and the communication
with the persistence layer. Another responsibility of
the layer is to log domain events. In our case, this is
done with the SLF4J logging framework provided by
Spring. In addition to the NaturalPersonService,
there is also a LegalPersonService and a
PartnerRelationsService to provide the remaining
functionality of the partner-service.

G. Persistence Layer

The responsibility of the persistence layer is to commit
run-time-objects to the database and convert persistent data to
run-time-objects. Again, the dependency injection mechanism
of Spring is used to give the layer above access to the
functionality. The persistence layer is implemented using
Spring Data JPA and is therefore limited to the definition of
an interface with the annotation @Repository. Managed
entity classes must be annotated with @Entity. For the
search functionality described above and the possibility

11

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

to sort search results, the repository is extended with
another two interfaces from Spring Data JPA. For clarity,
the methods of the persistence layer are not shown in
figure 4. The exact description of Spring Data JPA can be
found in the documentation of the Spring Framework.
In addition to the NaturalPersonRepository,
there is also a LegalPersonRepository and a
PartnerRelationsRepository. Each repository
is responsible for a specific database table.

VI. CHALLENGES OF THE MICROSERVICE ARCHITECTURE

Looking at the architecture described in section IV, it looks
like the microservice architecture can solve the problems of
the currently implemented monolithic system. In particular, the
scalability and fault tolerance of individual parts of the system
are a crucial advantage compared to the current implemen-
tation. The system can adapt to the changing load during the
day, eliminating the need for risky nightly batch jobs. With the
benefits of finer granularity however, there are also many new
challenges that need to be mastered. One major challenge, for
example, is the distributed monitoring and logging, which is
handled by the ELK stack. As already mentioned, another key
challenge is the consistency assurance across the services. This
means the synchronization of the partnerId and name,
which serves as an example for the application of our research
results.

As mentioned briefly in Section IV, the synchronization is
realized by REST calls of the partner-service. When-
ever a partnerId or name record is created, deleted or
changed, the partner-service distributes this information
to the other services in a synchronous way. This means
that the partner—service is responsible for ensuring the
consistency of the overall system. Furthermore, the devel-
opment team of the partner-service is responsible for
not corrupting the other contexts by changing the data model
of Partner. This approach is known as Customer/Supplier
pattern (described by Evans [15]) in the context of DDD. If it
is likely that the data model changes, an anticorruption layer
should be considered.

Even if, e.g., the partner—-service is unavailable, the
other services can still resolve foreign key relationships to
partner data, because they keep a redundant copy. Moreover,
the system reduces service-to-service calls, because other
services don’t need to call the partner—-service on every
operation. This ensures loose coupling of services, which is a
key aspect of microservice architectures [1].

The synchronization of partnerId and name is a critical
part of the application, which is why its implementation needs
to be closer discussed. Since the goal of the first phase of the
project was building the architecture in general, a synchronous
solution was chosen for simplicity. This has several drawbacks:

e Fault tolerance. If the partner-service crashes
during synchronization, some services might not be
notified about the changes. Conversely, if another
service is not available for the partner-service,
it will not be notified as well. This is due to the
transient characteristic of REST calls.

e Synchronicity. After a change of partnerId or
name, a thread of the partner—-service is in
a blocked state until all other services have been

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

notified. Because multiple network calls are necessary
for the synchronization, the response time of the
partner-service is affected. Since microservices
should be lightweight, a large number of network calls
and busy threads are a serious problem.

o Extensibility. Extensibility is a key benefit of the
microservices approach. In the current implementa-
tion, the partner—service holds a static list of
services that need to be notified upon a change of
partnerId or name. If a new service is added
to the system, which is interested in partner data,
the partner—-service must be redeployed. Ad-
ditionally, the bigger the number of services to
notify gets, the more the response time of the
partner-service is impaired.

As part of our research, further alternative solutions were
explored, which will be discussed in the next sections.

VII. CONSISTENCY ASSURANCE IN THE PARTNER
MANAGEMENT SYSTEM

In order to find a suitable solution for the specific prob-
lem of synchronizing partnerId and name, the general
approaches have to be examined.

A. General approaches

The central research question is how a change of master
data can be propagated to other interested services without
breaking general microservices patterns like loose coupling
and decentral data management. Especially the latter makes
this a major challenge: Because the data stores and schemas
should be separated, the standard mechanisms of synchronizing
databases cannot be used here.

Based on our research, there are four possible solutions for
synchronizing redundant data in microservices:

e Synchronous Distribution. One approach is that the

owner of the data distributes every change to all
interested services. As discussed in section VI, our mi-
croservice architecture already follows this approach.
To provide loose coupling however, the addresses of
services to be notified should not be contained in the
master service’s code. A better solution is to hold
those addresses in configuration files, or even better,
establish a standard interface where services can reg-
ister themselves at runtime. For example, an existing
service registry (e.g., Netflix Eureka) can be used to
store the information which service is interested in
which data. This approach roughly corresponds to the
Observer-Pattern of object-oriented software develop-
ment, where the subject registers at the observer to get
synchronously notified when changes are made.
As already discussed, notifying a large number of
interested services might cause significant load of the
service containing the master data. This can become
a disadvantage. The distribution takes place in a syn-
chronous fashion however, directly after the change
of data itself. This means that this solution provides a
high degree of consistency among services as long as
the requests don’t fail.

e Polling. Another solution is to relocate the responsi-
bility of synchronizing the redundant data to the inter-
ested services themselves. A straightforward approach

12

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

is to periodically ask for new data using an interface
provided by the service containing the master data.
Based on timestamps, multiple data updates can be
transferred in one go. The size of the inconsistency
window can be controlled by each interested service
independently via the length of the polling interval.
However, despite being consistent in the end, the time
frame in which the data sets might differ is a lot larger
than the one when using a synchronous solution. This
model of consistency is known as eventual consistency
(see [23)).

e Publish-Subscribe. To completely decouple the ser-
vice containing the master data from the other ser-
vices, a message queuing approach can be utilized.
On every data change, an event is broadcasted on
a messaging topic following the Publish-Subscribe-
Pattern. Interested services subscribe to this topic,
receive events and update their own data accordingly.
Multiple topics might be established for different
entities. If the messaging system is persistent, it even
makes the architecture robust against service fail-
ures. This approach is suitable for the resilient and
lightweight nature of microservices. It must be noted,
however, that it also falls in the category of eventual
consistent solutions - until the message is delivered
and processed, the system is in an inconsistent state.
For example, the SAGA-Pattern uses this approach to
distribute information about changes.

e Event Sourcing. Instead of storing the current appli-
cation state, for some use cases it might be beneficial
to store all state transitions and accumulate those to
the current state when needed. This approach can
also be used to solve the problem of distributing
data changes. Upon changes in master data, events
are published. Unlike the Publish-Subscribe solution
however, the history of all events is persisted in a
central, append-only event storage. All services can
access it and even generate their own local databases
from it, each fitting their respective bounded context.
This solution provides a high degree of consistency:
Each data change can be seen immediately by all other
components of the system. It must be noted that a
central data store, which microservices try to avoid,
is introduced. This weakens the loose coupling and
might be a scalability issue - the append-only nature
of the data storage enables high performance though.

If none of the consistency trade-offs above is bearable, this
might be an indicator that the determined bounded contexts are
not optimal. In some cases, contexts are coupled so tightly that
keeping data redundantly is not feasible. In this case, it should
be discussed if the contexts and therefore also services can be
merged. Furthermore, if this issue occurs in several parts of
the architecture, it should be evaluated whether a microservices
approach is the right choice for this domain.

B. Best practice for synchronizing partner data

The discussion in the previous section has shown that some
approaches tend to guarantee a stronger level of consistency
than others. This means that before all non-functional require-
ments can be considered as decision criteria, the required
consistency degree of the underlying business processes must

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

sending logs -
T o -
: logstash elasticsearch

delivers delivers
subscribes subscribes

:_ partner- contract- account-
\'2 service service service
service-
registry
(Eureka)

publishes delivers

changes

comm-
service

REST REST REST REST

api-gateway (Zuul)

T HTTPS '

AngularJS-Frontend | kibana

Figure 5. Partner Management System: Publish Subscribe Solution

be examined. This can be done by first specifying the possible
inconsistent states and then combining them with typical use
cases of the system.

In case of the Partner Management System, only
the partner data, containing the partnerId and name of
every partner, is saved in a redundant fashion. Combining these
with the CRUD-operations, the following inconsistent states
are possible:

e A new Partner might not yet be present in the
whole system.

e partnerId or name might not be up-to-date.

e A deleted Partner might not yet be deleted every-
where.

We combined these inconsistent states with typical
use cases and business processes in which the Partner
Management System is involved, like sending a letter via
mail or a conclusion of an insurance contract.

The result of this examination is that the partner man-
agement of insurance companies is surprisingly robust against
inconsistent states. This is mainly due to the reason that the
business processes itself are already subject to inconsistency:
If a customer changes his or her name, for example, the
inconsistency window of the real world is much larger than
the technical one (the customer, e.g., might not notify the
insurance company until several days have passed). The postal
service or bank already needs to cope with the fact that the
name might be inconsistent. The discussion of other potential
situations brought similar results. This makes sense because
the business processes of insurance companies originated in a
time without IT, which means that they are already designed
resilient against delays and errors caused by humans. Cases
where the customer notices the delay (e.g., a wrong name on
a letter) are rare and justifiable.

13

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

The combination of the inconsistent states and the use
cases of the Partner Management Systemrevealed that
a solution which promotes a weaker consistency model is
acceptable — no approach has to be excluded beforehand. So,
the choice of a synchronization model is only influenced by
the non-functional requirements.

The analysis of the partner domain showed that the main
non-functional requirements are loose coupling, high scalabil-
ity and easy monitoring. Especially because of loose coupling,
the Publish-Subscribe-Pattern is the most viable solution.

Figure 5 shows how the Publish-Subscribe solution can
be used to synchronize partnerId and name. On every
change of the partner data, an event is broadcasted by the
partner-service. The other services subscribe to this
topic and receive those events and update their own data
accordingly. Technically, the topic could be implemented by,
for example, RabbitMQ and a standardized messaging protocol
like AMQP.

VIIL

This paper has presented a microservice case study
from the insurance industry. The challenges of the existing
Partner Management System were identified and dis-
cussed. The paper gave insights into the design process of
the new microservice architecture, presented implementation
details and discussed further (insurance-specific) topics such
as special compliance requirements. In addition, the new
challenges arising from the microservice architecture were
discussed and the implementation, which was initially de-
veloped during our research project, was critically reviewed
with regard to consistency. The general solutions for the
synchronization of data in distributed systems were pointed out
and a (more suitable) alternative to the current implementation
was determined.

CONCLUSION AND FUTURE WORK

The next steps will be to complete the implementa-
tion of the publish-subscribe approach for the Partner
Management System with the described technologies.
Prior to take the system into operation, it must be compre-
hensively tested under real-world conditions. In our recent
research a test strategy tailored to the requirements of the
industry partner was designed and implemented. This strategy
comprises several steps, i.e. interface tests, web interface tests,
load and performance tests, which are performed within so-
called ’layers’. These layers represent different test environ-
ments, up to an infrastructure which is similar to the production
environment. To exploit the potential of the strategy it is
reasonable to integrate the tests into a CI/CD (continuous
integration / continuous delivery) pipeline as part of the
pipeline’s test stage. After completing the implementation
of the Partner Management System, the tests of the
system will be performed based on the test strategy.

To demonstrate the approach for finding a suitable con-
sistency assurance solution, the example of the Partner
Management System is sufficient. To further underpin our
findings, however, they need to be applied to more complex
examples.

REFERENCES

[1] M. Fowler and J. Lewis, “Microservices a definition of this new ar-
chitectural term,” https://martinfowler.com/articles/microservices.html,
March 2014, [retrieved: 05, 2020].

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

H. Knoche and W. Hasselbring, “Drivers and barriers for microservice
adoption—a survey among professionals in germany,” Enterprise Mod-
elling and Information Systems Architectures (EMISAJ), vol. 14, 2019,
p. 10.

E. Wolff, Microservices: Flexible Software Architecture.
Wesley Professional, 2016.

S. Newman, Building microservices: designing fine-grained systems.
O’Reilly Media, Inc., 2015.

C. Richardson, Microservices Patterns: With examples in Java.
ning Publications, 2018.

A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and T. Lynn,
“Microservices migration patterns,” Software: Practice and Experience,
vol. 48, no. 11, 2018, pp. 2019-2042.

A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architec-
ture Enables DevOps: Migration to a Cloud-Native Architecture,” IEEE
Software, vol. 33, no. 3, 2016, pp. 42-52.

H. Knoche and W. Hasselbring, “Using microservices for legacy soft-
ware modernization,” IEEE Software, vol. 35, no. 3, 2018, pp. 44-49.

W. Hasselbring and G. Steinacker, “Microservice architectures for scala-
bility, agility and reliability in e-commerce,” in 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). IEEE,
2017, pp. 243-246.

A. S. Tanenbaum and M. Van Steen, Distributed Systems: Pearson New
International Edition - Principles and Paradigms. Harlow: Pearson
Education Limited, 2013.

A. S. Tanenbaum, Modern Operating Systems.
Prentice Hall, 2009.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns -
Elements of Reusable Object-Oriented Software. Amsterdam: Pearson
Education, 1994.

H. Garcia-Molina and K. Salem, “Sagas,” vol. 16, no. 3. ACM, 1987.

M. Fowler, “Event Sourcing,” https://martinfowler.com/eaaDev/Event
Sourcing.html, December 2005, [retrieved: 05, 2020].

E. J. Evans, Domain-driven Design - Tackling Complexity in the Heart

Addison-

Man-

New Jersey: Pearson

of Software. Boston: Addison-Wesley Professional, 2004.
“Versicherungsaufsichtliche Anforderungen an
die IT (VAIT) (2019) vom 20.03.2019,”

https://www.bafin.de/SharedDocs/Downloads/DE/Rundschreiben/
dl_rs_1810_vait_va.html, March 2019, [retrieved: 05, 2020].

M. Lange, A. Hausotter, and A. Koschel, “Microservices
in Higher Education - Migrating a Legacy Insurance Core
Application,” in 2nd International Conference on Microservices
(Microservices 2019), Dortmund, Germany, 2019, https://www.conf-
micro.services/2019/papers/Microservices_2019_paper_8.pdf,
[retrieved: 05, 2020].

A. Koschel, A. Hausotter, M. Lange, and P. Howeihe, “Consistency for
Microservices - A Legacy Insurance Core Application Migration Exam-
ple,” in SERVICE COMPUTATION 2019, The Eleventh International
Conference on Advanced Service Computing, Venice, Italy, 2019,
https://www.thinkmind.org/index.php?view=article&articleid=service_c
omputation_2019_1_10_18001, [retrieved: 05, 2020].

GDV, “The application architecture of the insurance industry — appli-
cations and principles,” 1999.

V. Vernon, Implementing domain-driven design.
2013.

“Schutzstufenkonzept des LfD Niedersachsen,”
https://www.lfd.niedersachsen.de/technik_und_organisation/schutzstufen/
schutzstufen-56140.html, October 2018, [retrieved: 05, 2020].

A. Roland, “Secrecy, technology, and war: Greek fire and the defense
of byzantium, 678-1204,” Technology and Culture, vol. 33, no. 4, 1992,
pp. 655-679.

W. Vogels, “Eventually Consistent,” Commun. ACM, vol. 52,
no. 1, Jan. 2009, pP- 40-44. [Online]. Available:
http://doi.acm.org/10.1145/1435417.1435432, [retrieved: 05, 2020]

Addison-Wesley,

14

