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Abstract—This paper presents the central aspects of a service
based architecture for a distributed event stream processing
system with an emphasis on its components, as well as related
scalability and flexibility considerations. The processing system
architecture is designed based on a well-defined situation-aware
adaptive event stream processing model and a matching scenario
definition language, which allow the definition of such processing
scenarios in a processing system independent way.
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I. INTRODUCTION

Event Stream Processing (ESP) applications play an im-
portant role in modern information systems due to their capa-
bility to rapidly analyze huge amounts of information and to
quickly react based on the results. They follow the approach
to produce notifications based on state changes (e.g., stock
value changes) represented by events, which actively trigger
further processing tasks. They contrast to the typical store
and process approaches where data is gathered and processed
later in a batch processing fashion, which typically involves
a higher latency. Event Stream Processing applications can
achieve scalability even for huge amounts of streaming event
data by partitioning incoming data streams and assigning them
to multiple machines for parallel processing. Due to those
properties, Event Stream Processing based analytical systems
are likely to have a further increasing relevance in future IT
systems. Also, it is likely that future ESP applications will
have to handle even larger amounts of data while taking on
increasingly complex processing tasks to allow for near real-
time analytics to take place.

An example for such a scenario is the detection and tracing
of solar energy production drops caused by clouds shading
solar panels as they pass by [1]. The scenario requires a
processing system to handle large amounts of streaming data
to (1) detect a possible cloud (a possible situation), to (2)
verify the possible situation and (3) to track the changes of
the situation as the cloud moves or changes its size or shape.
For the initial detection of a potential situation, a processing
system needs to analyze the energy production of all monitored
solar panel installations. However, for the second part, the
verification of a potential cloud, only a situation specific subset
of the monitoring data is needed. In the same way, the later
tracking of the situation only requires a situation specific
subset, which may change over time.

In order to handle such large numbers of events, a pro-
cessing system needs to be capable of distributing the pro-
cessing across several machines. A common mechanism for
the distribution is to partition the overall data stream [2].
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When a processing system partitions the incoming data streams
in order to achieve scalability, such a partitioning will be
suitable for the first part of the processing, the detection of a
potential situation as the partitioning is situation independent.
For the later processing part where a situation specific subset
of the incoming data streams is required, a general stream
partitioning scheme based on for example the processing
system load, is not suitable as it does not incorporate the needs
of currently analyzed situations. Here, a dynamic adaptation
mechanism is needed that takes the investigated situations state
into account.

This paper presents the central aspects of a microservice
based architecture for a distributed event stream processing
system that implements the afore mentioned processing model.
The discussions put a specific emphasis on the architectures
components, as well as related scalability and flexibility due to
the realization as microservices based on the OSGi framework.

The remainder of this paper is structured as follows: The
next section discusses the related work, followed by a presenta-
tion of the processing model in Section II to lay the foundation
for Section III which discusses the goals of the here presented
processing system architecture. Section IV then presents the
architecture and its components. Before concluding the paper
in Section VI, Section V discusses several development related
aspects towards the presented architecture.

II. RELATED WORK

Various systems for distributing a processing system in
order to provide the needed scalability exist like Aurora* and
Borealis [3][4]. Aurora* for example starts with a very crude
data stream partitioning in the beginning and tries to optimize
its processing system over time based on the gathered resource
usage statistics [5]. Furthermore, various approaches have been
proposed which employ adaptive optimizations to handle load
fluctuations by utilizing the dynamic resource availability of
cloud computing offerings like [6][7][8] in order to scale
on demand. Other approaches introduce new operators which
allow for an adaptive partitioning or query plan execution. For
example the Flux operator [9] allows for a dynamic partitioning
of state-full operators during run-time in order to flexibly scale
a stream processing system to handle varying processing loads.
An even more flexible version is the Eddy operator which
was proposed by Avnur et al. [10]. The Eddy operator allows
for a continuous reordering of the operators in a query plan
during run-time. The approach considers the query plan as
a task where tuples need to be routed through the operators.
Within this model, the Eddy operator allows a per-tuple routing
decision thus allowing for a fine-grained control of the actual
query graph during run-time. An application of the Eddy
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operator to continuous queries exists with the Continuous
Adaptive Continuous Queries over Streams (CACQ) [11].

In general, the here discussed systems are capable of setting
up distributed stream processing based on given queries and
to optimize the system to provide the required processing
capacity and response times. However, the systems have
no mechanisms to adapt deployed stream queries based on
detected situations and situation changes as they have no
knowledge of the overall analytical task that deployed a given
stream query.

III. PROCESSING MODEL AND LANGUAGE

We approach the outlined problem by defining a situation-
aware adaptive stream processing model together with a
matching scenario definition language to allow the defini-
tion of such processing scenarios for a scenario independent
processing system [12][13][14]. The requirements for the
definition of the model and language are the result of an
analysis of several scenarios from two application domains,
telecommunications network and Smart Grid monitoring.

The designed model defines situation aware adaptive pro-
cessing in three main phases (Figure 1):

e Phase 1: In the Possible Situation Indication phase,
possible situations are detected in a large set of stream-
ing data, were the focus lies on the rapid processing
of large amounts of data, explicitly accepting the
generation of false positives and duplicate notifications
over precise calculations.

e  Phase 2: The Focused Situation Processing Initializa-
tion phase determines whether an indicated possible
situation needs to be investigated or if it can be
ignored, for example because the situation was already
under investigation. If a potential situation needs to be
investigated, a new situation specific focused process-
ing is started.

e Phase 3: In the Focused Situation Processing phase,
possible situations are first verified and then an in-
depth investigation of the situation including the adap-
tation of the processing setup based on interim results
is possible.

Based on our processing model we defined the Scenario
Processing Template Language (SPTL), which allows the
specification of processing templates based on the concepts of
the processing model in an implementation independent way.

The SPTL allows the specification of the needed processing
steps for each phase of the processing model. To allow the
specification, it embeds several other languages:

e  SPARQL [15] is used as the query language to retrieve
background knowledge on the monitored system.

e MVEL [16] is used as an expression and scripting
language.

e DROOLS [17] is used to specify the actual stream
processing rules.

Furthermore, the SPTL allows the specification of variables
which can be embedded and into the sub-languages in order
to share processing results. Moreover, simple procedural state-
ments can be made in SPTL.
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In order to evaluate the processing model and language,
a processing system prototype was developed. The following
sections discuss the architecture of this processing system.

IV.  ARCHITECTURE GOALS AND RESULTING
ARCHITECTURE DECISIONS

The two main aspects considered for the design of the here
presented architecture are the scalability and the flexibility of
the architecture. With regard to the scalability, the following
aspects were considered:

e Handling of a large set of input streams that need to
be monitored for potential situations.

e  Detection and processing of many parallel situations.

The other main aspect considered is the flexibility with
regard to the replacement and adaptation of components during
development and while testing:

e Adaptability of components: The replacement of com-
ponents in order to test and evaluate new concepts
( interfaces came from shared library ensuring that
interface changes can be made at one central place )

e  Local and distributed operation: The integration with
local test environment on developer system, as well
as integration with a distributed test environment and
the later deployment in a productive environment

While the mentioned aspects regarding the scalability of
the processing system were also considered for the design of
the processing model, the second aspect was only considered
for the design of the processing system architecture. Thus,
this paper focuses the discussions on the second aspect, the
flexibility of the architecture.

V. PROCESSING SYSTEM ARCHITECTURE

The overall processing system was subdivided into several
components (Figure 2), each with distinct functionality. For
the communication between the components interfaces were
defined, which depending on the communication need are
implemented as synchronous service based interactions or
asynchronous message based interactions.

The following discussion will first outline the functionality
of the supporting components. Then the four main components
implementing the processing model are presented.

A. Background Knowledge Base (KB)

The processing model defines, that background knowledge
on the monitored system can be retrieved for the set-up of
the possible indication stream processing, as well as the later
focused situation processing. The KB component provides
access to this background knowledge. As the processing model
only allows read only queries against the KB, the component
can easily be scaled out onto multiple machines.
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Figure 1. Three phases of the Processing Model
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Figure 2. Architecture: Module View [14]

B. Scenario Processing Template Repository Manager (SPTR)

The SPTR is responsible for reading scenario processing
templates specified in the SPTL, parsing them and performing
an initial validation of the provided templates. The loaded
templates can then be retrieved by the provided Scenario
Processing Template Repository Service.

1) Event Stream Manager (ESM): The ESM allows other
components to request data streams where the data streams can
be live data streams or historic data delivered as a steam. When
a component requests a certain data stream, the ESM responds
with a handle to a messaging channel where the requesting
component then subscribes to in order to receive the requested
data stream.

2) Result Receiver (RR): The RR receives final or interim
processing results in order to deliver them to a foreign system.
As such different implementations of this component exist for
a simple testing environment, where results are written to file
or a live system where the results are for example forwarded
to a decision support system.

Aside from the discussed components, there are further
supporting components like the Event Stream Processing mod-
ule or a module providing user defined scenario specific
extensions. These components are used as shared libraries,
providing an implementation of common functionality for the
active components.
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Based on these supporting components, the afore men-
tioned processing model is implemented. In order to allow for a
distributed operation, the processing model itself is distributed
across the following four components, each with a distinct
functionality defined by the processing model:

C. Possible Situation Indication Processing Manager (PSIPM)

The PSIPM implements the functionality to instantiate a
static stream processing network based on a provided stream
processing topology specification. As such it interacts with
the Event Stream Manager (ESM) where it subscribes to the
required event streams. As the processing model does not allow
any access to background knowledge during the indication
stream processing, the PSIPM does not need access to the
KB.

D. Focused Situation Processing Manager (FSPM)

The FSPM implements the actual situation specific anal-
ysis by providing the means to instantiate multiple situation
focused processing tasks upon request. Each processing task
investigates a single situation by implementing an iterative
processing mechanism where each of these iterations follows a
fixed process involving a preparation, a stream processing and
a reasoning phase in order to conclude on interim processing
results and to define the adaptation of the processing instance
for the next iteration. The actual processing within each step is
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specified by the user in the corresponding scenario processing
template.

As multiple parallel processing tasks are executed in paral-
lel, a synchronization between these instances is realized based
on the Area Registration mechanism discussed in Section V-F.

The two afore discussed components, PSIPM and FSPM,
both implement the actual stream processing tasks within this
processing model. As they are decoupled from the rest of the
processing system except from a very limited set of well-
defined services, the stream processing can be implemented
based on various technologies, based on the actual require-
ments from a given application domain. While the current
implementation of these components utilizes JBoss Drools
Fusion [17], an alternative implementation could for example
utilize an Apache Spark [18] based cluster to realize the stream
processing and thereby greatly enhance the scalability of the
processing system.

E. Processing Manager (PM)

The PM acts as a stateful overseer component for the three
phases of the processing model. It thus coordinates the initial
set-up of the processing system for a given scenario. Further,
for Phase 2 it implements the decision process regarding
the instantiation of new situation specific processing tasks.
The actual stream processing needed for Phase 1 and 3 are
delegated to separate components.

For the initial set-up of processing tasks, the PM retrieves
the list of available scenario processing templates from the
SPTR component, executes the contained definitions for the
Phase 1 processing (possible situation indication processing)
to generate the stream processing topology definition for the
given scenario. Once the topology was generated, the PM
hands the topology definition to the PSIPM which in turn
instantiates the topology and starts with the stream processing.
When handing over the topology description, the PM also
provides the PSIPM with a handle for a messaging channel
where the PM listens for generated possible situation indication
events published by the PSIPM upon the detection of a new
possible situation.

When the PM receives a new possible situation indication
event, it needs to decide if the event regards a new possible
situation or an already investigated situation. The decision
is implemented by the PM based on a set of user defined
rules from the corresponding scenario processing template.
Furthermore, the system needs to keep track of already active
situation processing tasks and the situations under investiga-
tion. This tracking is implemented through an area registration
mechanism which also acts as the main synchronization point
for the processing system (discussed in the next section). If
the PM decides that a new possible situation was detected, it
requests the instantiation of the new Focused Situation Process-
ing instance from the FSPM. If the event was deemed related
to an existing situation, the PM delegates the event to the
corresponding, already running, Focused Situation Processing
Instance.

F. Area Registration Manager (ARM)

The processing model defines the Area Registration mech-
anism as the central synchronization mechanism between the

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

processing Phase 2 and 3. An Area Registration is defined as
a tuple consisting of two sets of nodes, the Locked Area LA
and the Focus Area F'A combined with the time frame ¢f of
the registrations validity and a reference to the owner of the
registration, a Focused Situation Processing Instance fpi:

ar = (LA, FL,tf, fpi)

The processing model then requires that at all nodes of
any Locked Area LA may only be owned by a single Area
Registration within the registration’s validity time frame ¢f.
Based on this mechanism, the processing model implements
the synchronization between multiple parallel processing tasks.
This synchronization is implemented by the ARM which keeps
track of all active registration and is the single component
with the authority to grant new area registrations. As such, the
ARM is a crucial component for the whole processing system
making its efficient implementation essential for the scalability
of the overall processing system. For the current prototype,
a simple Java based implementation of the ARM exists.
However, for larger systems, a more optimized version which
also considers for example the partitioning of the registrations
in order to provide a distributed implementation should be
considered. As all access to this component is also well-defined
through a limited number of service based interactions, such a
replacement would have no impact on the other components.

VI. DEVELOPMENT CONSIDERATIONS

We based the processing system on the OSGi module
framework where typically each component from the archi-
tecture became an OSGi bundle. Aside from the separation of
the components as OSGi bundles, the OSGi framework also
allowed for service based interactions between these bundles.
This allowed the development of the processing system as
an at first non distributed version running in a single Java
Virtual Machine while for later distributed deployments, the
OSGi Remote Services could be used. As distributed message
based communication was not supported by OSGi at the
time the system was implemented, we utilized the integration
mechanism presented in [19].

Moreover, OSGi allowed for the replacement of compo-
nents during runtime, which eased the development of the
processing system and resulted in a more robust system with
regard to the handling of service or component availabilities
as components and services where often removed and replaced
during runtime even while developing the system on a local
machine.

Even though this approach allowed the development of
a component based system, one of the larger challenges
during the early versions of the processing system was the
lack of traceability between components. This in particular
with regard to the asynchronous message based interactions.
We mitigated this problem by enforcing data types for the
messaging integration which allowed for a limited traceability
based on the data types.

In order to ensure that some basic functionality of the sys-
tem was given even after larger changes, automatic integration
tests where implemented as part of the build process for a
small set of test scenarios. These tests turned out to be very
fragile during the early development as still concepts of the
model and language changed frequently. However, they also
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ensured that even after a change in the processing model, the
processing system was still capable to provide the processing
capabilities needed for some basic scenarios, thus allowing
for more confidence in the processing system even as larger
changes occurred which regarded multiple components.

VII. CONCLUSIONS

The paper presents a highly modular service based archi-
tecture for realizing a processing system for situation-aware
adaptive event stream processing. The architecture distributes
the main parts of the situation aware processing model into
four components, each with distinct functionalities. Further all
supporting functionality is provided by separate components.
All interactions between the components are defined either as
service based or message based interactions which allows the
components to be replaced independently.

By using the OSGi framework for the development of the
processing system prototype we were able to develop this
highly modularized, service based system locally in a single
Java Runtime while retaining the possibility to distribute the
prototype later based on the OSGi Remote Services.

Due to the design of the architecture together with the
usage of the OSGi framework for the implementation, we
could achieve the afore mentioned goals, for the development
and testing of the system to allow for an easy adaptability of
components in order to develop details of processing model
and allow for integration into different environments, as well
as allowing for a local and distributed mode to ease the
development.
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