
Teaching Microservices in the Private Cloud by Example of the eduDScloud

Dominik Schöner, Arne Koschel, Felix Heine

Faculty IV, Department of Computer Science
University of Applied Sciences and Arts

Hannover, Germany
Email: dominik.schoener@hs-hannover.de

Email: arne.koschel@hs-hannover.de
Email: felix.heine@hs-hannover.de

Abstract—Cloud computing has become well established in pri-
vate and public sector projects over the past few years, opening
ever new opportunities for research and development, but also for
education. One of these opportunities presents itself in the form
of dynamically deployable, virtual lab environments, granting
educational institutions increased flexibility with the allocation of
their computing resources. These fully sandboxed labs provide
students with their own, internal network and full access to all
machines within, granting them the flexibility necessary to gather
hands-on experience with building heterogeneous microservice
architectures. The eduDScloud provides a private cloud infras-
tructure to which labs like the microservice lab outlined in this
paper can be flexibly deployed at a moment’s notice.

Keywords–education; private cloud; virtual lab; microservices;
SOA; eduDScloud.

I. INTRODUCTION

After cloud computing in general and private cloud com-
puting in particular crested the ‘Peak of Inflated Expectations’
in Gartner’s 2010 Emerging Technologies Hype Cycle [1], the
technology has become widely accepted by and used not only
in the industry. But due to the versatility of its basic concepts,
cloud computing not only offers opportunities for commercial,
but for educational and research applications as well.

At institutions focussing on education and research, it is
not uncommon that computing resources for use by individual
students or groups are very limited, with most resources only
being available in the form of shared, pre-installed environ-
ment, often used by multiple lectures at a time. While this
essentially reduces cost for hardware and personnel, it also
requires very restrictive permissions to be imposed on student
accounts, in order to prevent users from affecting each other,
effectively limiting the possibilities for exercises and projects.

When teaching microservices meanwhile, granting students
administrative access to certain systems can be essential in
allowing them to gather first-hand experience on the effects of
changes to system and network configuration. For scenarios
like these, cloud computing can offer a way to provide
labs individual, virtual machines (VMs) and networking in
sandboxed environments on dynamically assignable and ex-
pandable resources, which can easily be repurposed between
lectures or labs.

An example of this is the eduDScloud (educational data
analytics and service-oriented architecture cloud), which is
used at the University of Applied Sciences and Arts Hannover
in lectures and labs on data analytics and distributed systems.

This paper describes the architecture of the eduDScloud using
the example of a virtual lab developed for teaching service-
oriented and especially microservice architectures.

The remainder of this paper is structured as follows: Sec-
tion II summarises related research followed by an overview of
the requirements posed by a microservice lab scenario in Sec-
tion III. The system’s architecture is described in Section IV,
with Section V detailing the setup of the microservice lab itself
and the technologies used therein. In Section VI, the findings
of this paper are then summarised, before an outlook on future
research is given in Section VII.

II. RELATED WORK

The scenarios in which institutions make use of cloud
computing in their educational programmes are becoming ever
more diverse. Ranging from generic, collaborative Software-
as-a-Service (SaaS) platforms like Google’s G Suite for Ed-
ucation [2], to specialised platforms, e.g., for teaching high-
performance computing [3] or R and Scilab [4].

Other platforms like CloudIA, proposed in [5], offer
a combination of SaaS, Platform-as-a-Service (PaaS) and
Infrastructure-as-a-Service in a single system, capable of run-
ning in a hybrid cloud context, scaling out to Amazon Web
Services as needed. Their focus in PaaS lies within the on-
demand deployment of individual VMs using a self-service
portal accessible by students and lecturers. But without the
concept of combining them into labs with customised, internal
networking, it is impractical to use for the purpose of setting
up a fully featured microservices lab.

III. REQUIREMENTS

To reach the goal of providing students with a virtual
hands-on lab for exploring both classic service-oriented, as
well as microservice architectures a number of requirements
(labelled RQ1 through RQ8 for easier reference) must be met
by different parts of the overall system. While many of these
are imposed by the services scenario itself, some also originate
from the infrastructure surrounding the cloud itself.

Although there is no single, agreed upon, complete defi-
nition of the term microservice, many authors agree that the
autonomy and technology heterogeneity of microservices is
a key requirement to providing lose coupling and ease of
deployment [6] [7]. Offering these two characteristics in a lab
requires it to run multiple machines (RQ1) to which students
have full root access (RQ2), allowing them to either install

36Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

Figure 1. Schematic overview of the eduDScloud’s overall architecture, detailing the connectivity between individual virtual labs (blue) and common services
(green) within a lecture. The pfSense nodes (orange) can optionally also act as gateways to the internet or other internal networks.

arbitrary components or deploy containers (e.g., Docker) for
individual microservices.

When providing users with extensive privileges like the
aforementioned root level access, it is crucial to keep each
virtual lab instance from adversely affecting others (RQ3),
while still enabling full network access between its machines,
as well as those of the students (RQ4). Additionally, it should
be possible to create limited connectivity between individual
labs for integration exercises (RQ5) and reset a lab instance
in case of fatal misconfiguration (RQ6).

Since the focus of the microservices lab is on teaching
service-oriented architecture (SOA) in general and microser-
vice architectures in specific, it should also provide technolo-
gies for service discovery, monitoring and resilience (RQ7).

In order to reduce administrative efforts necessary to create
and run arbitrary number of lab instances, the system should
integrate with pre-existing authentication infrastructure (e.g.,
Lightweight Directory Access Protocol (LDAP)) (RQ8).

IV. SYSTEM ARCHITECTURE

The eduDScloud in its current implementation is based
on VMware vCloud Director (vCD) [8] and accompanying
products like ESXi (Hypervisor) and vSphere, due to pre-
existing infrastructure and experience using this technology
stack. As this introduces certain platform-specific limitations
and requirements, the architectural concept of the eduDScloud
system (see Figure 1) has been designed such as to prevent a
vendor lock-in. This is achieved by avoiding dependencies on
platform-specific features where possible, keeping the concept
and major parts of lab setups – especially the virtual machines
themselves – portable between different vendors.

A lab in vCD is reflected in the form of a vApp, which
consists of one or more VMs (RQ1) and their networking –
including internal networks as well as connectivity to external
networks. Each lab therefore has its own internal network
connecting its VMs to each other (RQ3) without any of
them being directly accessible from outside the lab. The only
exception to this is a pfSense-based [9] gateway VM present in
all eduDScloud labs, which acts as a gateway and OpenVPN
server, allowing students to join the internal network and
providing access to the internet (RQ4).

Connectivity between otherwise independent vApps can be
provided by addition of a CommonServices vApp to a lecture,

which will create site-to-site VPN connections to all other
labs in the lecture. While CommonServices can itself provide
additional services, its pfSense instance also allows connected
labs to offer services using network address translation (RQ5).

Both vCD and pfSense allow the use of authentication
providers (RQ8) – like the LDAP infrastructure present at
the University of Applied Sciences and Arts Hannover– with
the eduDScloud using the permission system within vCD to
manage authorization as the directory is provided as read-
only resource. Permissions for individual vApps are then
synced to the respective pfSense instances using a Java client
which accesses the vCD API. As an alternative approach,
authorization could be handled completely via LDAP – even
if the directory used for authentication is read-only – by
employing an intermediary identity and access management
solution like e.g. Keycloak [10], which is controlled by the
eduDScloud administrators.

All vApps are instantiated from templates stored in a
catalogue, which can be shared between lectures as necessary.
Each template represents a full snapshot of all VMs that are
part of a lab, making it easy to deploy additional instances
as well as reset existing ones to their original state in case
of a fatal misconfiguration (RQ6). As an alternative to this
potentially destructive operation, which would result in a loss
of all work which has not been backed up beforehand, it is also
possible to create snapshots of deployed lab instances before
performing risky operations.

V. MICROSERVICES LAB

The lab created for teaching microservices is comprised of
seven VMs in total, not counting the obligatory gateway VM.
While the Services-ESB VM is an artifact of the same lab also
being used in general SOA exercises, the other six VMs are
either dedicated for use with a microservice architecture based
on the Netflix Open Source Software stack (Netflix OSS) [11]
or at least intended for dual-use to save resources.

A. Netflix OSS Stack
With regards to open source microservice stacks, Netflix

OSS is mentioned by [7] for its easy accessibility on the
implementation side through Spring Cloud Netflix and pro-
viding many features catering specifically to the needs of
microservice architectures. For the sake of reduced complexity

37Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

Figure 2. Diagram of the virtual microservices (MicS) lab showing all VMs and their connectivity with services and networks outside of the lab.

in an educational context, the components can be reduced to
a set of four core technologies, crucial for teaching the basic
characteristics of microservices (RQ7):

• Eureka — Provides a registry which can be used
by services to locate other available services; checks
availability via heartbeat.

• Zuul — The gateway to the entire service architec-
ture; transparently routes requests to available service
instances discovered through Eureka.

• Turbine — A stream aggregator used to collect metrics
from all currently running service instances and make
them available to Hystrix.

• Hystrix — Increases the architecture’s resilience by
offering circuit breaking capabilities [6] [12] to trigger
fail-fast behaviour for services monitored via Turbine;
helps prevent errors in monitored services from cas-
cading across the entire system.

Additional components like Archaius (remote configura-
tion) and Ribbon (load balancer) could be included for certain
specific exercise tasks, but would exceed the scope of an
introductory lab. Especially Ribbon also provides only very
limited advantages in a lab environment, as Zuul already
provides basic, round-robin load balancing.

B. VM Configuration
As can be seen in Figure 2, three of the seven VMs in the

microservices lab setup are general purpose VMs (Services-01
through Services-03). These VMs contain a basic installation
of a Linux system along with a preconfigured application
server (Glassfish) and can be increased or decreased in number
as required by exercises and projects. While the application
server is intended for use in exercises targeting conventional,
SOAs based on the use of an enterprise service bus (ESB),
these machines can also be used as fully reconfigurable and
customisable hosts for individual microservices.

For this purpose, all systems offer a privileged (sudoer; root
level access) and an unprivileged user account each, to both of
which the students have full access (RQ2). This allows them
to not only deploy services to the application server, but also
install completely independent technology stacks on each host,
e.g., running a Java service using PostgreSQL on one and a
.NET Core service backed by a MongoDB on another. While
the privileged account is needed for the necessary changes

to the system, unprivileged user accounts are to be used to
actually run the individual tools and services, teaching students
some of the basic best practices in server administration.

One of the fully pre-configured VMs (Services-ZTH) in the
setup is used to run a Zuul as well as a combined Turbine and
Hystrix instance, whose configuration in a simplified lab envi-
ronment can be considered trivial. The only changes necessary
is the addition of new services to the list of monitored ones
as students deploy them to their lab.

An additional, stand-alone VM (Services-Eureka) acts as
the service registry, running a pre-configured Eureka instance,
which is already hooked up with Zuul. In addition, this
machine also offers basic preparations for deploying Archaius
and Ribbon, should specific projects or exercises require them.

To facilitate source code versioning as well as automated
build and deployment processes, the Services-Tools VM – in its
most basic configuration – acts as a Subversion and git host.
Depending on the deployment toolchain [13] chosen for the
lab, it can quickly be set up to run a choice of build and test
automation tools like Jenkins or Travis CI. When the lab is run
with a focus on conventional SOA meanwhile, this host also
acts as a database server, allowing Services-ZTH and Services-
Eureka to be shut down in order to save resources.

The last VM in the lab’s line-up is Services-ESB, which – in
its current configuration – runs an instance of the Talend ESB,
capable of deploying OSGi containers via Apache Karaf. This
combination of ESB-based SOA and technologies focused on
microservices within a single lab allows lecturers to not only
teach these concepts independently from each other, but also
in tandem, e.g., in the form of integration challenges.

C. First Experiences with the Lab

The current setup running at the University of Applied
Sciences and Arts Hannover includes total of 28 cores (48
threads), having access to 512 GB of RAM and 40 TB of
storage for the actual cloud itself. The management server,
which is running infrastructure services like vCloud, vSphere,
vShield (networking), pfSense (DNS and DHCP) and a backup
solution called Veeam [14], is equipped with 4 cores (8
threads), 32 GB of RAM and 4 TB HDD storage. For backups,
additional space is supplied by a QNAP storage array providing
an additional 8 TB of disk space, to which snapshots of the
management VMs and lab templates are written.

38Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

Due to the number of VMs contained within a single
instance of the virtual microservices lab, the number of cores
in the initial hardware setup has turned out to quickly become
an issue. With between three to four students per group and
each VM (except for the pfSense instance) using two virtual
cores (vCores) each, a lecture with 25 students needs about
one hundred vCores in total. This makes it impractical to run
multiple lectures in parallel on the current hardware, which
can be partially alleviated by temporarily suspending labs of
other lectures for the duration of certain exercise sessions.

Some issues that occurred during the exercises themselves
were, that OpenVPN – used to connect with the virtual
lab environments internal network – requires administrative
permissions on the client system. Since providing students with
root level access to shared pool systems is infeasible, a custom
script had to be implemented in order to allow unprivileged
users to run OpenVPN using custom configurations and tem-
porarily modify the clients’ DNS configuration.

VI. CONCLUSION

The eduDScloud provides a solid, scalable private cloud
solution for hosting virtual labs used in teaching microservices
and other topics from the field of computer sciences. It
allows students to gain hands-on experience by providing them
with root access to virtual machines and networks within a
sandboxed environment. At the same time, it grants lecturers
and tutors the ability to devise more complex exercise tasks
with a minimum of administrative work as new labs can easily
be instantiated from pre-built templates.

A specialised lab setup has been presented as an example
for a virtual lab running on the eduDScloud, used to teach
concepts of SOA in general and microservices in specific.
This lab provides students with a preconfigured stack for
ESB-based service development as well as running the Netflix
OSS stack to showcase microservice-specific technologies and
patterns. The presence of both stacks in a single lab, along with
the interconnectivity of deployed lab instances also opens up
opportunities for integration exercises between student groups,
which represent a common real-world use case for service-
oriented architectures.

VII. FUTURE WORK

While the eduDScloud is already capable of scaling out
across multiple servers, its current implementation limits it
to private cloud capabilities. This can become especially
challenging when, e.g., due to scheduling issues, a high
number of lab instances has to run in parallel, potentially
exceeding the computing resources of the available hardware.
To alleviate these issues, upcoming projects include migrating
the eduDScloud towards a hybrid cloud concept, allowing it
to scale out using public cloud resources on demand, while
maintaining privacy protection for sensitive applications.

Part of this migration is the evaluation of open-source virtu-
alisation platforms and frameworks such as Proxmox [15] and
especially OpenStack [16], as the latter would allow seamless
integration with various public cloud providers. Switching to
one of these solutions would also allow for the entire stack of
the eduDScloud to be running solely on open-source software,
as VMware components are currently the only proprietary,
closed-source part of the system.

In addition to this, further research topics include the
development of new lab concepts for other fields of computer
science, increasing the platform’s resilience and improving
resource scheduling. The latter is currently handled manually
and is planned to be automated by synchronising it with a
live schedule for labs and lectures, and integrating it with a
reservation platform to handle projects and other activities.

ACKNOWLEDGEMENT

The authors would like to thank the students which were
part of the combined bachelor and master project during the
winter and summer semester 2016/2017 for their contribution
to the implementation of the eduDScloud.

REFERENCES
[1] J. Fenn. 2010 Emerging Technologies Hype Cycle is

Here - Mastering The Hype Cycle. [retrieved: 2018-01-05].
[Online]. Available: https://blogs.gartner.com/hypecyclebook/2010/09/
07/2010-emerging-technologies-hype-cycle-is-here/ (2010)

[2] Google. Higher Ed G Suite — Google for Education. [retrieved: 2018-
01-05]. [Online]. Available: https://edu.google.com/higher-ed-solutions/
g-suite/

[3] S. S. Foley, D. Koepke, J. Ragatz, C. Brehm, J. Regina, and J. Hursey,
“Onramp: A web-portal for teaching parallel and distributed comput-
ing,” Journal of Parallel and Distributed Computing, vol. 105, 2017, pp.
138–149.

[4] K. Chine, “Learning math and statistics on the cloud, towards an ec2-
based google docs-like portal for teaching / learning collaboratively with
r and scilab,” in 2010 10th IEEE International Conference on Advanced
Learning Technologies. IEEE, 2010, pp. 752–753.

[5] F. Doelitzscher, A. Sulistio, C. Reich, H. Kuijs, and D. Wolf, “Private
cloud for collaboration and e-learning services: From iaas to saas,”
Computing, vol. 91, no. 1, 2011, pp. 23–42.

[6] S. Newman, Building Microservices, 1st ed. Sebastopol: O’Reilly &
Associates, 2015.

[7] E. Wolff, Microservices: Grundlagen flexibler Softwarearchitekturen,
1st ed. Heidelberg: dpunkt.verlag, 2016.

[8] VMware. Deliver Virtual Data Centers — vCloud Director —
VMware. [retrieved: 2018-01-05]. [Online]. Available: https://www.
vmware.com/products/vcloud-director.html

[9] Rubicon Communications. pfSense - World’s Most Trusted Open
Source Firewall. [retrieved: 2018-01-05]. [Online]. Available: https:
//www.pfsense.org

[10] I. Red Hat. Keycloak. [retrieved: 2018-01-05]. [Online]. Available:
http://www.keycloak.org

[11] Netflix. Netflix Open Source. [retrieved: 2018-01-05]. [Online].
Available: https://netflix.github.io

[12] S. J. Fowler, Production-ready microservices: Building standardized
systems across an engineering organization, first edition ed. Beijing
and Boston and Farnham and Sebastopol and Tokyo: O’Reilly, 2016.

[13] T. Hunter II, Advanced Microservices: A Hands-on Approach to Mi-
croservice Infrastructure and Tooling, 1st ed. New York: APRESS,
2017.

[14] Veeam Software. Veeam Availability for the Always-On Enterprise.
[retrieved: 2018-01-05]. [Online]. Available: https://www.veeam.com

[15] Proxmox Server Solutions GmbH. Proxmox - powerful open-
source server solutions. [retrieved: 2018-01-05]. [Online]. Available:
https://www.proxmox.com/en/

[16] OpenStack Foundation. Openstack Open Source Cloud Computing
Software. [retrieved: 2018-01-05]. [Online]. Available: https://www.
openstack.org

39Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

