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Abstract—The programming of classic software systems is well-
supported by integrated development environments (IDEs).
They are able to give immediate information about syntax and
some logic failures. Although service compositions are widely
used within modern systems, such a support for building service
compositions is expandable. In this paper, we plead for the
building of an IDE for service compositions, which enables
immediate failure feedback during the development. For this,
there is the need for new research activities on occurring
failures and how they can be found. Since most current failure
finding techniques are based on accurate approaches, e.g., state
space exploration, we show in a case study that the application
of accurate techniques is not a suitable solution for IDEs.
In most cases, they are either too time consuming or their
accurate output does not lead easily to the root of a failure. As
a result, we also plead for new advanced analyses of service
compositions.

Keywords–Service Composition; Analysis; Case Study.

I. INTRODUCTION
The function of the Course Evaluation Service at the

Friedrich Schiller University Jena is the evaluation of lec-
tures as well as of complete courses. Especially for the eval-
uation of the latter, the department has to handle complex
questionnaires with high adaptivity. For this case, there is
no standard software, which is able to define, handle, and
evaluate such questionnaires.

As part of the service, we develop a software solution
— coast [1] — which allows handling of more complex
surveys than other survey tools do. This solution is based on
a service-oriented architecture and uses service compositions
to define processes within the system. Figure 1 shows such
an abstract service composition, which handles the logic
during the execution of a survey.

As the research on service-oriented architectures has
passed its 20th anniversary, we expected a wide tool and
development support for service compositions. However, it
is hard to nearly impossible to find lightweight tools that
allow the modeling and execution of service compositions
and give immediate development support. Especially, the de-
velopment support is improvable regarding the programming
support of modern integrated development environments
(IDEs).

We can find some approaches to verify service composi-
tions in form of business processes in the literature. A large
number of those approaches concentrate on the verification
of the soundness property [2], whereas a sound service
composition cannot run into deadlocks or in undesired

double executions of services. Since the soundness property
is defined on the runtime behaviour of the composition, most
algorithms search for undesired behaviour in a simulation. In
other words, they regard the state space of the composition,
whereas the state space defines all possible reachable states.

State space-based algorithms perform accurate analyses
of service compositions since each found fault can appear
at runtime, actually. However, as each fault is a malformed
reachable state, which is caused by an error within the ser-
vice composition, finding exactly that error given a specific
fault is a hard task. We will demonstrate this in a case study
on soundness and derive why it is better to use inaccurate
analysis techniques similar to those used by compilers. For
this, we repeat a formal and language independent model
for service compositions at first — the workflow graphs (see
Section II). Subsequently, in Section III, we show within the
case study on soundness that accurate analysis approaches
are not suitable to give profitable tool support. Based on
this case study, we explain why it is so important to have
an instantaneous development support during the modelling
of service compositions (see Section IV). Eventually, this
paper closes with a summary and possible future work in
Section V.

II. PRELIMINARIES
In the context of graphs, we use the notions .n and n/

to describe the sets of incoming and outgoing edges of a
graph node n, respectively.

In the rest of this paper, special directed graphs, the
workflow graphs, are used to describe service compositions
in a language independent way. Workflow graphs have
different kinds of nodes for parallelisms, decisions and tasks.
They were originally introduced by Sadiq and Orlowska [3]:

Definition 2.1 (Workflow Graph): A workflow graph is a
quadruple WFG = (N,E, s, e) where (N,E) is a directed
graph with a set N of nodes and a set E of edges. The
graph has a single start node s and a single end node e.
Furthermore, the set N of nodes is splitted into disjoint
subsets

N = {s, e} ∪NTask ∪NSplit ∪NMerge ∪NFork ∪NJoin

where all nodes within the same subset have the same
semantics and appearance. We call each node within NTask

a task node. The nodes of set NSplit are split nodes and
nodes of the set NMerge are merge nodes. NFork contains
all fork nodes whereas NJoin contains all join nodes.

Furthermore, the nodes have the following properties:
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Figure 1. A service composition, which handles the logic of the execution of a survey

1) s has no incoming and exactly one outgoing edge,
whereas e has one incoming and no outgoing edge.

2) NTask: Each node has exactly one incoming and
outgoing edge.

3) NSplit/NFork: Each node has exactly one incom-
ing and at least two outgoing edges.

4) NMerge/NJoin: Each node has at least two incom-
ing and exactly one outgoing edge. �

For the visualization of workflow graphs, we use the
same notations as the Business Process Model and Notation
standard [4]. Therefore, tasks are illustrated as simple rect-
angles. Split and merge nodes are visualized by diamonds
with crosses. Eventually, diamonds with pluses are used to
illustrate fork and join nodes (cf. Figure 1).

These different visualizations mark the different seman-
tics of the nodes. To describe the semantics of a node, we
use a token game known from Petri net semantics [5]. In
token games, states are used to describe a single execution
situation. Such states can also be defined for workflow
graphs [6]:

Definition 2.2 (State): A state of a workflow graph
WFG = (N,E, s, e) is a multiset S with the basic set E.
The multiset assigns a natural number t of tokens to each
edge edge ∈ E of the workflow graph, S(edge) = t. We
say, edge has or carries a token in state S, if S(edge) ≥ 1.
�

There are two important states of a workflow graph: (1)
The initial state and (2) the termination state. Within the
initial state, only the single outgoing edge of the start node
carries a token, whereas within the termination state only
the single incoming edge of the end node carries a token.
In our graph visualizations, we use black dots on edges to
illustrate that those edges carry a token in the current state.

In each state (except the termination state), there should
be some nodes, which are executable, i.e., their functionality
can be performed.

Definition 2.3 (Executability): Let WFG = (N,E, s, e)
be a workflow graph in a state S. All nodes n ∈ N \ {s, e}
are executable in S if either (1) n is not a join node and at
least one of its incoming edges has a token, or (2) each of its
incoming edges carries a token. The set Exec(S) contains
all nodes, which are executable in S. �

If a node is executable, its execution directly follows a
state transition from one state to another:

Definition 2.4 (State Transition): Assuming a state S of
a workflow graph WFG = (N,E, s, e) who contains an
executable node n ∈ Exec(S). After the node n is executed,
S changes into the state S′, written S

n→ S′. S′ is defined
as follows:

n ∈ (NTask ∪NFork ∪NJoin):
Each incoming edge in of n loses one token
and each outgoing edge out of n gets a token,
S′ = (S \ .n) ∪ n/.

n ∈ (NSplit ∪NMerge):
There is exactly one randomly chosen incoming
edge in of n which loses a token and exactly
one randomly chosen outgoing edge out of n
which gets a token, S′ = (S \{in})∪{out}. �

Together, the executability and the state transitions form
the semantics of each kind of workflow graph node. Sum-
marized, the start and end node have no special semantics.
Therefore, they are only used to mark the start and end of
a workflow graph. Furthermore, each node, except a join
node, is executable once there is at least one token on one
of its incoming edges. A task node takes a token from
its incoming edge and puts it back to its outgoing edge.
Split and merge nodes perform non-deterministical choices
instead: Split nodes take a token from their incoming edge
and put a single token to one of their randomly chosen
outgoing edges; whereas merge nodes take one token from
one randomly chosen incoming edge (with a token) and put
a token to their outgoing edge.

Eventually, fork and join nodes handle parallelism. Fork
nodes take a token from their incoming edge and put a
token on each outgoing edge. However, join nodes are only
executable if each of their incoming edges has at least one
token. If a join node is executed, a token is removed from
each incoming edge and a single new token is placed on its
outgoing edge.

As a single state can change into different states, we can
define states that are reachable from a current state [6].

Definition 2.5 (Reachability): A state Sto is directly
reachable from a state Sfrom if Sfrom contains an exe-
cutable node n whose execution in Sfrom leads to Sto.
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Figure 2. The success message is never printed, so there is a failure

Sto is reachable from state Sfrom (we will write
Sfrom →∗ Sto) if there is a sequence S0, . . . , Sm, m ≥ 1,
of states such that S0 → S1 → . . . → Sm−1 → Sm and
S0 = Sfrom, Sm = Sto. �

III. A CASE STUDY ON SOUNDNESS IN THE CONTEXT
OF DEVELOPMENT SUPPORT

Before we argue for advanced analysis techniques for
the immediate support during the development of service
compositions, we motivate such analyses through a case
study. In this case study, we consider the classic notion of
soundness. A workflow graph is called sound if neither a
deadlock nor a lack of synchronization is reachable from
the initial state [2] [3]. A deadlock is a non-termination
state S in which no node is executable, Exec(S) = ∅. Lacks
of synchronization are states S in which at least one edge
carries more than one token, S(edge) ≥ 2.

If an execution of a workflow graph results in a deadlock
or lack of synchronization, the graph’s behaviour is not
well defined and comprehensible. So, it is beneficial to
know whether a workflow graph is sound or not. More
precisely, a developer of a service composition wants to
know, why the workflow graph runs into a deadlock or a
lack of synchronization.

There are many approaches, which are able to classify
whether a workflow graph is sound. The first known al-
gorithm was introduced by van der Aalst [2]. It is based
on the rank theorem [7], which can be solved in cubic
time complexity regarding the size of the workflow graph
[8]. However, this approach does not give any diagnostic
information where or why the workflow graph is unsound
[9]. For this reason, other approaches were developed, which
we classify into three main approaches: (1) Model check-
ing, (2) graph decomposition, and, finally, (3) pattern and
compiler-based approaches. Examples for model checking
approaches are the performed state space explorations by
LoLA [10] and Woflan [11]. The Single-Entry-Single-Exit
(SESE) approach by Vanhatalo et al. [6] is an example for a
graph decomposition, whereas the anti-pattern approach of
Favre et al. [12] and our compiler-based approach [13] [14]
are instances for the latter class of approaches. There are
many other significant approaches, however, they resemble
one another in their classification.

Most techniques, like the graph decomposition and
compiler-based approaches, are profitable in the context of
developing service compositions although their output is in-
accurate, i.e., they cannot detect faults appearing at runtime.
Instead, they find incorrect structures in the compositions

may leading to a wrong behaviour. To accentuate that inac-
curate analysis techniques are suitable for IDEs, we argue
in the following case study that accurate analysis techniques
lead to a time expensive and hard troubleshooting.

For this case study, we consider as an example the
approach of state space exploration, which dominates the lit-
erature in process verification for a long time period. Within
state space exploration, the state space starting at the initial
state is examined. Thereby, the state space is a directed graph
in which each node is a state and each edge between two
states S1, S2 means that S2 is directly reachable from S1.
During the building of this state space, each state is checked
whether it is a deadlock or a lack of synchronization. As the
state space can have an exponential size depending on the
size of the workflow graph, the building of the state space
will be broken after the first wrong state is found. As a
result, the approach indicates whether the worklow graph is
sound. Furthermore, the developer gets a failure trace, more
precisely, a path within the state space from the initial to
the erroneous state.

Now, we compare the verification results of state space
exploration with well known software testing terms [15].
This vocabulary makes it possible to evaluate the located
faults and how they can be used for troubleshooting. Fur-
thermore, the following comparisons motivate the usage of
service composition specific advanced analyses.

A. Failures, Faults, and Errors
In software testing, there are different terms with dif-

ferent meanings for wrong execution states of a program.
A wrong state is called a failure if an user of the program
sees an undesired behaviour or result [15]. For example,
in the workflow graph in Figure 2 we see that the last
task — the printing of the success message — will not be
executed since the composition runs into a deadlock in the
join node. Therefore, the user is informed by the missing
success message that there is a failure. Another example is
a composition, which results in duplicated results as some
nodes were executed twice in series caused by a lack of
synchronization.

Such a lack of synchronization is the manifestation of
an incorrect development of the composition. This mani-
festation is called a fault [15]. For example, the process
developer may know why the user sees some duplicated
results, as the developer may identify that some service calls
were performed twice unnecessarily. The reason why the
service is called twice is called an error. An error is the
wrong human action during the development of the service
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Figure 3. The distance between the fault and its error may be large
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Figure 4. One fault masks another fault so that the failure may disappear

composition [15].
Obviously, to repair an erroneous service composition, a

developer has to know the error instead of faults and failures.
If the developer knows only the fault or the failure, it has
to derive the error from the diagnostic information.

Considering the previous term definitions, each accurate
analysis technique always results in a fault since it searches
within the different execution possibilities of a workflow
graph instead at the workflow graph itself. For this, the
developer has to derive the real error, to be able to repair the
composition. However, this derivation of the error is a hard
task since faults can be masked or disguised. Furthermore,
the distance between the fault and the error may be very
great so that it seems impossible that a fault has its origin
so early in the composition. All those different difficulties
are considered in the following sub sections.

B. Fault Distance
The distance between a fault and its error is known

as the passed time or passed program instructions until
an error results in a fault [16]. The workflow graph in
Figure 3 has some bigger subgraphs, which are folded as
services D and E for reasons of lack of space. After the
subgraph D is executed, the workflow graph will end in
a deadlock state as the join on the right-hand side cannot
be executed. Such a detected deadlock state is the result
of an accurate soundness approach. Naturally, a developer
would now search the corresponding error near the fault.
Since a lot of time has passed and the workflow graph is
complex caused by the subgraphs D and E, it is very hard
to identify the error. A natural and simple correlation is that
the difficulty of finding corresponding errors of faults grows
with their distances.

C. Fault Masking
Fault masking is the situation in which one fault prevents

the detection of another fault [15]. This leads to much
difficulty as the faults do not necessarily cause a visible
failure. Furthermore, it may happen that one fault is repaired
by another one.

For example, in a program, one function should process
payment information in Euro, however, it processes the data
in Dollar instead. Now, another function takes the value
and should translate the currency from Euro to Dollar.
Coincidentally, within this function, the programmer has
forgotten to implement this translation and the value is
passed as-is. The result: The program has a correct behaviour
as no failure happens although it does not have the desired
functionality.

An example of fault masking in the context of service
compositions is illustrated in Figure 4. The first part of
the workflow graph (the loop) results in a lack of synchro-
nization, whereas the second part has an obvious deadlock.
However, the first part produces an endless number of tokens
so that the previous lack of synchronization always prevents
the latter deadlock at runtime. An accurate approach would
now result in a lack of synchronization only — it is not
able to detect the deadlock as it does not appear at runtime.
To this end, the first fault has to be repaired before the
deadlock appears within an accurate approach. This makes
the correction of a service composition more time expensive
since a necessary analysis has to run for each fault at least.

D. Fault Illusion
Fault illusion is not a classic term of software testing.

We introduce it at this point because such a situation is
not accurately described by the existing terms. Figure 5
exemplifies this illusion with a workflow graph. Currently,
that workflow graph is within a deadlock state since there
is no node, which can be executed.
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Figure 5. One fault produces another fault so that there is the illusion of an error, which does not exists

An accurate analysis technique could provide this dead-
lock state. However, if the developer of the service com-
position takes a closer look at the workflow graph, it will
not find a good fitting error of the deadlock. This happens
for the reason that the deadlock is caused by a lack of
synchronization: The left-hand side fork node has two upper
outgoing control flows that are not synchronized by a join
node. Only a merge node combines both flows, which
possibly results in a lack of synchronization on its outgoing
edge. Nevertheless, if, e.g., service A needs much more time
as service B, the control flow of service B reaches the join
node on the right-hand side before the control flow, which
performs service A. Because of this, the join node can be
executed before the lack of synchronization appears. Then,
however, the workflow graph runs into a deadlock although
there is the error of a wrong control flow synchronization.

So, in short, a fault illusion is the appearance of a fault
although the errors of other faults cause it. The finding
of such a fault illusion is a very hard task in big service
compositions. In this context, accurate analysis techniques
are not suitable for error identification.

E. Fault Blocking
In software testing, fault blocking is the condition in

which a fault blocks the further failure detection [17].
In accurate approaches, it is easy to see that it is not
possible to detect faults after a deadlock since there is no
further reachable state. As a result, it is not possible to
detect all errors within a service composition. Hence, fault
blocking makes the error detection time expensive since a
necessary analysis has to run at least for each fault (which
can be an arbitrary large number in the case of lacks of
synchronization).

Another difficulty of fault blocking is that one fault may
result in another fault. This is linked to fault illusion. In
Figure 6, we see a simple workflow graph in which a split
node causes (local) deadlocks in the upper and lower join
nodes. However, as we can also see, the deadlock of the
lower join node is caused by the deadlock of the upper
one, i.e., if the upper join node would be a merge node, the
deadlock of the lower join node disappears. Therefore, the
deadlock of the lower join node is the result of the blocking
of a control flow of the upper join node. Since an accurate
fault finding approach like state space exploration may return
the deadlock of the lower join node, it is hard to find its error.

IV. DEVELOPMENT SUPPORT DURING THE CREATION
OF SERVICE COMPOSITIONS

In the last section, we have demonstrated in a case study
that accurate analysis techniques for tool support during the
development of service compositions is not suitable. Now,
we argue on the base of this case study, why it is important
to support the modelling of compositions.

The development of service compositions is an error-
prone task just like the development of software systems. As
for the latter exist IDEs, the tool support for the development
of service composition is expandable. That is surprising
since there is a substantial common ground between both:
(1) There is data information passed through variables and
(2) there is a flow graph, which represents the structure.

Besides those similarities there are some serious dif-
ferences making the adaption of analyses from classical
software development to service compositions difficult: (1)
In most cases, service compositions are developed by the
use of visual modeling languages, e.g., BPMN and Event-
driven process chains [18]. Visually modeled compositions
often result in unstructured workflow graphs, e.g., approx.
60% of all real world processes taken from IBM Zürich [19]
are unstructured. Unfortunately, most known fast analysis
algorithms of compiler theory work only for structured
graphs.

(2) A second major difference between the development
of software systems and service compositions is the ability
to model explicit parallelism within service compositions.
Since most algorithms for program analysis cannot be ap-
plied to parallel programs, they must be adapted [20]. Lee
et al. [21] introduced the Concurrent Static Single Assign-
ment (CSSA) form making it possible to use algorithms of
sequential programs for parallel software. Unfortunately, the
building of the CSSA form requires knowledge about pos-
sible race conditions to ensure high quality analysis results.
The derivation of race conditions, however, is difficult for
unstructured workflow graphs [21].

The major advantages of well-known analyses used in
modern IDEs for software development are the extensive
diagnostic information and the possibility to find possible
failures along the whole program instead of only finding
first reachable failures from the start. For example, imagine
we use a variable a at line 10 and a variable b at a subsequent
line 20 in a program, however, we have forgotten to define
both variables before. Now, most modern IDEs will give us a
feedback for both undefined variables although the variable
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Figure 6. One fault blocks another fault

a appears always before b.
Conversely and as motivated in our case study, most anal-

yses for service compositions do use accurate fault finding
techniques, which can only find first appearing faults since
afterwards the program is within a dirty state. Furthermore,
the accurate finding of faults is more time consuming then
performing safe over-approximations as done by classical
compiler algorithms. Finally, as we have shown previously
in our case study, such accurate fault finding techniques
like state space exploration have some serious disadvantages
during the reparation of malformed service compositions.

Summarized, we plead for an adaption of fast and well-
known analysis techniques of modern IDEs to the devel-
opment of service compositions. Furthermore, we argue for
the development of advanced analysis techniques especially
for service compositions to solve composition-specific prob-
lems. In this context, we also plead for a first real compiler
for service compositions, which enables those analyses as
well as the transformation of service compositions into
runnable applications [22]. Such runnable applications can
be executed, e.g., in a virtual machine [23].

V. CONCLUSION AND FUTURE WORK
In this paper, we have recommended for the introduction

of advanced analyses for service compositions. In this con-
text, we have shown in a case study that accurate analysis
techniques can result in an unprecise and time consuming
error detection. This makes it difficult to repair a defect
composition.

Our proposal is to apply well-known algorithms of
compiler theory to the theory of service compositions.
Therefore, some basic problems have to be solved in the
future: (1) Some compiler algorithms have to be adapted to
unstructured graphs. Furthermore, (2) there is the need for an
algorithm to find races between two variables in unstructured
workflow graphs. Then, it is possible to perform the CSSA
building algorithm on service compositions, which enables
other algorithms from compiler theory in a parallel context.
Finally, (3) there must be a research infrastructure like a
compiler to collect and apply new developed algorithms to
service compositions. Such a compiler has to be connected
with an IDE to support the building of compositions.
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