
A Conceptual Model to Evaluate Decisions for Service Profitability

Eng Lieh Ouh

Institute of Systems Science

National University of Singapore

25 Heng Mui Keng Terrace, Singapore

e-mail: englieh@nus.edu.sg

Stan Jarzabek

Department of Computer Science, School of Computing

National University of Singapore

Computing 1, 13 Computing Link, Singapore

Faculty of Computer Science,

Bialystok University of Technology

e-mail: stanjarzabek@gmail.com

Abstract— Service profitability depends on the cost of

engineering a service for a given base of tenants, on service

provisioning cost, and on the revenue gained from selling the

service to that tenant base. The tenant base depends on the range

of service variability, i.e., on Service Provider's ability to vary

service requirements to meet tenant expectations. These various

factors that have to do with service profitability form a complex

web of information that makes it difficult to analyze and see the

exact impact of decisions regarding the choice of service

architecture or the use of service adaptation techniques. To make

this analysis easier for Service Providers, we built a conceptual

model that helps Service Providers identity factors affecting

service profitability and the interplay among them. Based on that

model, Service Providers can answer questions regarding how

choices of the service architecture or tenant base affect service

profitability.

Keywords-service provider; service profittability; service

architecture; service variability; tenant base; service engineering;

service provisioning.

I. BACKGROUND AND MOTIVATION

Service Providers maximize service profits by looking into
ways to best reduce their engineering and provisioning costs
while selling the service to possibly a large number of satisfied
tenants. The choice of service architecture plays a critical role
in balancing the way these three forces affect service
profitability. However, the most scalable and cheapest for
service provisioning shared service architectures tend to restrict
service adaptability. It is our goal in this paper to analyze the
interplay among conflicting forces that affect service
profitability, and identify the detailed factors behind these
forces. The conceptual model of service profitability presented
in this paper is to help Service Providers better see how
decisions regarding the choices of service architecture,
dynamic (at service runtime) versus static (at the service
construction-time) service adaptation techniques, or the size of
the tenant base affect service profitability. This conceptual
model can be further extended with provisions for quantitative
analysis of service profitability, which is the subject of our on-
going work.

In our previous work [1], we described the decisions that
Service Providers typically make during service engineering
regarding the choice of service architecture, service packaging,
service hosting and the use of static or dynamic binding
techniques to adapt services to needs of various tenants.
Service components can be encapsulated at a service or tenant

specific level packaging. For service hosting, a service can be
hosted on a dedicated or shared process instance. Service
architectures differ in how the service code is managed during
service engineering, service execution and service hosting. As
compared to [1], this paper further elaborates on and formalizes
earlier findings to build a conceptual model.

Section II introduces Service Variability and Service
Architectures. We give our proposed Service Profitability
Model in Section III, followed by an Analysis of Service
Profitability in Section IV. Related work is presented in Section
V. Our conclusion is in Section VI.

II. SERVICE VARIABILITY AND SERVICE ARCHITECTURES

The range of service variability is the extent to which a
Service can be adapted to varying service requirements of
different tenants. The larger the range the service can
accommodate, the higher the number of tenants and the higher
the revenue for the Service Provider. Service architecture is
composed of a set of components and the relationships among
them to implement a service. A service supports a set of
common features [15], shared by all the tenants, and a set of
variant features (FRSV), that are in a range of service variability,
i.e., features that are of interest to some but not all

tenants. Each feature f ∈ FRSV corresponds to a set of variation

points in service architecture components. The purpose of
variation points is to enable customization of components
whenever f is required by a tenant. A selected variant to be
bind to a variation point is composed of service components of
one or more modules as shown in Figure 1.

Figure 1. Service, Features and Variants

Fully-Shared (SAFS) is a service architecture based on a

shared process instance with service components being shared

by tenants during service execution. Dynamic binding

techniques are used to bind the variants to the variation points

of the feature for service running in SAFS. The range of service

variability that is supported by SAFS is as follows:

61Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

 At least one new variant or variation point needs to be

designed and deployed onto existing process instance to

support the varying requirements.

 Existing features can be configured on existing process

instance to support the varying requirements

Partially-Shared (SAPS) is a service architecture based on

a shared process instance but, as opposed to SAFS, the service

components in SAPS can be tenant level or service level

packaged. In other words, the service components packaged in

the module can be servicing a set of tenants or a particular

tenant. Both static and dynamic techniques can be used to bind

the variants to the variation points of the features for Service

running in SAPS. The range of service variability that is

supported by SAPS includes the variability supported by SAFS

and the following:

 For at least one new variant, variation points need to be

designed and deployed onto a dedicated process instance

to support the varying requirements.

 Existing features can be configured, but some features

need to be deployed onto a dedicated process instance to

support the varying requirements.

Non-Shared (SANS) is based on each tenant having its

own, dedicated process instance and the service components

being tenant level packaged. Both static and dynamic

techniques can be used to bind the variants to the variation

points of the features for Service running in SANS. The range

of service variability that is supported by SANS includes the

variability supported by SAPS and the following:

 All required features need to be deployed onto a dedicated

process instance to support the varying requirements.

The service architecture can be hybrid, comprising of a

combination of existing service architectures. The SAFS+PS is

the hybrid service architecture comprising of SAFS and SAPS.

SAFS+PS+NS is the hybrid service architecture comprising of

SAFS, SAPS and SANS. The deployment diagrams of the three

basic service architectures SAFS, SAPS and SANS are shown in

Figure 2. The white portions indicate components of the

architecture that are not shared among tenants and the dark

portions indicate components that are shared among tenants.
Service architectures that share runtime resources to

minimize provisioning cost potentially limit the extent to which
services can be adapted to varying requirements of tenants. For
example, a tenant who requires service to be processed and
data isolated due to security regulations cannot be onboard
together with other tenants (that do not have such
requirements) with a service architecture that does not have
clear separation of runtime resources between tenants. Having
clear separation of runtime resources among tenants incurs
higher provisioning cost for the Service Provider, which would
be likely passed on to the tenant as higher service price. On the
other hand, there are also tenants who are price-sensitive with
minimum variations of requirements. In this case, Service
Providers can best minimize cost by engineering the service on
a service architecture that shares resources. To the Service
Provider, what are the factors and how they interplay can
greatly impact their service profitability. We formalized these
factors into a Service Profitability Model to help Service
Providers analyze a complicated web of interrelated factors
affecting service profitability.

Node

Dedicated TenantB

Process instance
Dedicated TenantA

Process instance

Node

Shared Process Instance

Node

Shared Process Instance

Fully-Shared (FS) Non-Shared (NS)

Interface Layer

Persistence Layer

Interface Layer

Business Layer Business Layer

Persistence Layer

Partially-Shared (PS)

- One Possibility

Interface Layer

Business Layer

Persistence Layer

TenantA (ProductA) `TenantB (ProductB)

Interface Layer

Business Layer

Persistence Layer

C
o
n
fi
g

u
ra

tio
n
 L

a
y
e
r

C
o
n
fi
g

u
ra

tio
n
 L

a
y
e
r

C
o
n
fi
g

u
ra

tio
n
 L

a
y
e
r

C
o
n
fi
g

u
ra

tio
n
 L

a
y
e
r

Service

Level

Packaging

Service

Level

Packaging

Service

Level

Packaging

TenantA

Level

Packaging

TenantA

Level

Packaging

TenantA

Level

Packaging

TenantB

Level

Packaging

TenantB

Level

Packaging

TenantB

Level

Packaging

TenantA

Level

Packaging

TenantB

Level

Packaging

TenantA

Level

Packaging

TenantB

Level

Packaging

TenantA

Level

Packaging

TenantB

Level

Packaging

Shared

Shared

Shared

Figure 2. Service Architectures

62Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

Figure 3. A conceptual model of Service Profitability

III. CONCEPTUAL MODEL OF SERVICE PROFITABILITY

Service Providers seek to maximize their profitability in the
long term by minimizing their costs while maximizing their
revenue. A Service Provider can re-engineer an existing
application into a service or develop a service from scratch.
This is the cost incurred in engineering the functionality of the
service. The engineering cost varies depending on the choice of
service architecture, but is independent of the number of
tenants. Besides engineering service functionality, a Service
Provider needs engineer variability into a service to
accommodate variations in requirements among tenants. For
business strategic reasons, a Service Provider may have some
target tenants in mind and engineer the variability to meet the
varying requirements of the target tenants. The extent of the
service variability can vary with each variability technique and
the selected service architecture which in turn impact the cost
to engineer for variability. Service engineering costs can be
estimated with software cost estimation tools (e.g.,
COCOMOII [2]) typically in terms of function points or lines
of code. The other factor to the cost on top of service
engineering cost is the provisioning cost. This cost is incurred
to host the service in a hardware and network environment to
serve the tenant’s requests. The provisioning cost varies with
the selected service architectures and the extent of service
variability. The provisioning can be hosted internally or
externally, virtualized or non-virtualized. To minimize
provisioning cost, a virtualized environment is usually adopted.
One key factor to whether the hosting is internal or external
depends on each organization’s security policy. Provisioning
cost of virtualized environment can be estimated on the
respective cloud hosting sites (e.g., Amazon Web Services [3]).
During the lifecycle of the service, new tenants might be
interested to subscribe to the same service. For business
reasons, a Service Provider may also wish to onboard new
tenants to maximize their revenue. However, the current extent
of service variability might not exactly fit the requirements of

the new tenants. The additional engineering and provisioning
costs vary with the selected service architectures, adopted
variability technique and the extent of variability of the tenant’s
requirements. The costs to engineer and provision for delta
variability can be estimated similarly as described earlier.
Service revenue will vary with the number of initial set and
new set of tenants. Service profitability for providing the
service in the long term can be measured by the net present
value of the revenue gained minus the costs incurred over a
pre-determined investment horizon, taking into account the
value of money over time. For the rest of this section, we
define the terms and use them in the conceptual model of
service profitability. A conceptual model of Service
Profitability is found in Figure 3.

A. Explanation of the terms in conceptual model

The Range of Service Variability (RSV) is the extent to
which a Service can be adapted to varying service requirements
of different tenants. The larger the range the service can
accommodate, the higher the number of tenants and the higher
the revenue for the Service Provider. The Tenant Base (TB) is
composed of the users of a given Service, or onboarded tenants.
To onboard a tenant, the Service must be able to meet the
requirements of that tenant. As RSV reflects the Service
Provider’s ability to customize the Service, RSV determines
the TB that can be supported. Service Providers dream to
engineer a service where RSV fulfills the varying requirements
of the TB, maximizing service profits. Service Profits are
determined by the Total Service Cost (TSC) incurred and Total
Service Revenue (TSR) gained when providing the service.
Costs are incurred to engineer the functionality of the Service
and to engineer the Service to support a given RSV on a given
Service Architecture (SA). For this, we collectively use the
term Service Engineering Costs (SEC) to denote the both the
Service Functionality Engineering Cost (SFEC) and Service
Variability Engineering Cost (SVEC). SVEC is based on the
selected Variability Techniques (VT) to support a given RSV

63Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

on a given SA. There are also costs involved to provide the
hardware and infrastructure resources to support a given TB on
a given SA. For this, we use the term Service Provisioning
Costs (SPC). TSR is the total revenue from selling the Service
on a given service SA.

Delta Variability (DV) is the change to existing Service
requirements required to onboard new tenant(s). We denote
these newly onboarded tenants as Delta Tenant Base (DTB).
Delta Cost (DC) is the cost to implement DV for a given DTB
on a given SA. Similarly to TSC, DC is composed of Service
Engineering Delta Cost (SEDC) and Service Provisioning
Delta Cost (SPDC).

IV. AN ANALYSIS OF SERVICE PROFITABILITY

In this section, we show use cases for the conceptual model

presented as ten questions illustrating specific profitability-

related dilemma of a Service Provider during service planning.

A. Service Profitability Model and Service Archiectures

For SAFS, the service engineering cost to support the given

range of variability is composed of implementing the dynamic

binding techniques to bind the variants to the variation points

identified for each feature of the Service. The service

provisioning costs to support the given range of service

variability is composed of provisioning the hardware and

infrastructure resources to support the tenant base. Among the

basic architectures, SAFS have the lowest provisioning costs

due to sharing of resources. Delta variability that is the

changes to existing Service requirements by new tenants have

to be supported by the service architecture to onboard the

tenant. If the delta variability is outside the given range of

service variability of SAFS then there are two possible

scenarios. One scenario is that the Service Provider incurs the

service variability delta costs to engineer the delta variability

into the existing SAFS. (e.g., implementing new variants or

variation points that can be shared among tenants). The second

scenario is that the tenant cannot be onboard as the delta

variability cannot be supported on existing SAFS (e.g., tenant

require total isolation of software, process and data).

For SAPS, the service variability engineering costs to

support the given range of service variability is higher than

SAFS as the Service Provider needs to implement both the

dynamic and the static binding techniques. The service

provisioning costs are also higher than SAFS due to the tenant

level packaging leading to the need to provision more

resources to support more software components. If the delta

variability of new tenants is outside the given range of service

variability of SAPS, a Service Provider can onboard the tenants

by incurring service variability delta costs to engineer the delta

variability into the existing SAPS. (e.g., implementing new

variants or variation points that can be shared among tenants

or supporting isolation of software or data). As SAPS is running

on shared process instance, the Service Provider is unable to

onboard the tenant if the tenant has requirements that require a

dedicated process instance (e.g., isolation of processes).

For SANS, the service variability engineering costs to

support the given range of service variability is lower than

SAPS as it needs to implement only based on static binding

techniques. The service provisioning costs are the highest

among SANS and SAPS as dedicated resources are provided for

each tenant. If the delta variability of new tenants is outside

the given range of service variability of SANS, SANS can

support delta variability of new tenants (even for isolation of

process) due to dedicated process instances.

For SAFS+PS, the service variability engineering costs to

support the given range of service variability involves the

implementation of both dynamic and static binding techniques

and the need to support two basic service architectures. It is

higher than any of the basic architectures SAFS, SAPS or SANS.

Depending on whether the service is provisioned on SAFS

and/or SAPS, the provisioning costs for SAFS+PS can be

calculated from the respective provisioning costs of SAFS

and/or SAPS. The support of delta variability is similar to the

scenarios in basic architectures of SAFS or SAPS.
For SAFS+PS and SAFS+PS+NS, the service variability

engineering costs to support the given range of service
variability involves the implementation of both dynamic and
static binding techniques and the need to support all three basic
service architectures. It is the higher than the basic service
architectures. Depending on whether the service is provisioned
on SAFS, SAPS and/or SANS, the provisioning costs for SAFS+PS
can be calculated from the respective provisioning costs of
SAFS, SAPS and/or SANS.

B. Key Questions to Service Profitability

Questions 1 to 3 and 4 to 6 are related to the revenue and cost

of the Service Profitability Model. Questions 7 to 9 are related

to service architectures, while the last question is related to the

overall service profitability.

1) How many tenants will have to be onboarded so that

the profit from service outweighs the cost of building it?

The answer to this question will help the Service Provider to

estimate the breakeven point for service cost and revenue. For

a given service architecture, the Service Provider can simulate

the number of tenants against the expected cost incurred to

build the service for the Service Provider to have a better

insight on the breakeven point for the initial total service costs.

2) How many new delta-tenants will have to be onboarded

to outweigh the cost of implementing changes (delta-

requirements) required for new tenants?

To Service Providers, this is another question on the

breakeven of their investment. It differs from question 7 in

terms of the delta cost against the delta revenue gained from

the delta tenant base. For a given service architecture, the

Service Provider can simulate the number of delta tenants

against the expected delta cost incurred to build the service,

the Service Provider has a better insight on the breakeven

point for the delta costs.

3) Which pricing stratgey should a Service Provider adopt

for the service?

The right pricing strategy positively impacts the total service

revenue and delta revenue to be gained. The pricing strategy

can be pay as per use, subscription-based, tiered based,

transaction based or mixture of the above. The pricing strategy

can also vary across time. For a given service architecture, the

64Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

Service Provider can simulate the expected distribution of

tenants for each of the pricing strategies across the investment

horizon and evaluate for overall service profitability.

4) Is it better to re-engineer from existing code or develop

services from scratch?

The decision to this question impacts the service functionality

engineering cost, which is independent of the number of

tenants. Based on simulation of the expected distribution of

tenants, this question can be addressed to see if the impact of

the additional costs to develop from scratch versus the savings

by re-engineering from existing code.

5) Should a Service Provider provision the service

internally or externally?

The impact of hosting choices on service profitability can be

inferred from service provisioning and service provisioning

delta costs. The cost of provisioning the service internally

typically incurs higher upfront setup and maintenance cost

than external provisioning. However, it provides higher degree

of security in terms of privacy and isolation of data and

processes. Provisioning the service externally can decrease

upfront setup and maintenance costs, but the level of control is

also reduced. Based on the above, simulations can be run with

these costs and expected distribution of tenants to analyze

overall service profitability.

6) Which variability technique should a Service Provider

apply to address the required range of service variability?

A Service Provider can apply static variability techniques to

address higher degree of variability, but can also be more

costly as compared to only applying dynamic variability

techniques to address runtime variability. The adoption of

variability technique impacts the service variability

engineering cost and service engineering delta cost.

Additionally, due to the variability technique, new tenants

with requirements that does not fit the service variability will

either be unable to onboard or the service architecture needs to

evolve. Assuming the service architecture remains the same,

the Service Provider can simulate the expected distribution of

tenants for each of the adopted variability techniques and

evaluate for overall service profitability.

7) To what degree does the selection of a service

architecture impact service profitability?

This is a typical profitability-related question a Service

Provider tries to answer. Based on the conceptual model, a

Service Provider can estimate the total service costs incurred

for each choice of the service architecture. In addition, a

Service Provider may simulate a set of expected delta tenants

that can be onboarded within the pre-determined specified

investment horizon and measure the impact to total service

costs, total service revenue and overall service profits.

8) Should a Service Provider onboard new tenant if this

requires the change of service architecture?

Onboarding new tenants present new business opportunities,

but also incurs costs to implement extra delta variability into

the Service. This cost grows further if onboarding new tenants

requires the change of service architecture, e.g., from shared to

dedicated. In this case, the Service Provider needs to simulate

different distributions of tenants and evaluate the overall

profitability. These distributions differ in their degree of

varying requirements and evaluate the service profitability

impact on each of the service architectures. From the results, a

Service Provider can have a better insight whether to evolve

their architecture or not.

9) Should a Service Provider adopt a specific service

architecture or a hybrid of service architectures?

Besides deciding on the type variability techniques, adopting a

hybrid of service architectures requires additional cost

incurred to manage the variability across service architectures.

The Service Provider can simulate the expected distribution of

tenants for each service architecture including different

hybrids and evaluate for overall service profitability.

10) If a Service Provider has an objective to achieve a

certain level of service profitability within a certain investment

horizon, what costs and revenue the Service Provider needs to

incur and gain?

This question can be considered an optimization problem in

terms of maximizing the total service revenue and delta

revenue while minimizing the total service costs and delta cost

for a given level of service profitability. From the conceptual

model, factors that affect the total service cost and total

service revenue can be defined as equations to be evaluated by

an optimization solver. More than one optimal set of values is

possible in this case. The Service Provider can evaluate and

design towards one of these values in this optimal set.

Each of these questions can be addressed at the lower level of

abstraction. For example, in the first question, the assumption

of a given service architecture can be further decomposed to

evaluate against a set of service architectures for the Service

Provider to be able to evaluate more scenarios.

V. RELATED WORK

There is much literature on how to minimize service
engineering and provisioning costs to improve service
profitability. Existing methods focus on variability techniques
to enable late binding of the service variants, customization of
business process execution language (BPEL) process with
variability descriptors [8] and variability modeling techniques
to manage the variability in service applications [9][10]. Kwok
et al. [11] propose to lower the provisioning cost through
resource calculations with constraints to decide the best server
to onboard a new tenant. A resource consumption estimation
model to optimally place onboarding tenants is also studied in
[12].

A single-instance multi-tenant service application enables a

Service Provider to achieve economies of scale through

runtime sharing. However, runtime sharing can make tenant-

specific variations difficult to achieve in such an application as

it needs to realize the variability across different tenants in the

single-instance application [13]. For the software as service

paradigm to truly meet its potential, Sengupta et.al. [14]

propose that vendors will need to move away from building

rigid “one-size-fits-all” systems, or those that offer a fixed set

of available customization options from which tenants must

select. Service paradigm essentially is an economic model for

software consumption; hence, many of these activities would

65Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

http://wizfolio.com/?citation=1&ver=3&ItemID=275&UserID=19448&AccessCode=8BD65852BE9D4A3A95D1D753FBB632A4&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=280&UserID=19448&AccessCode=3A81DFA8B6FF4F67817AAC642CF4EF34&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=280&UserID=19448&AccessCode=3A81DFA8B6FF4F67817AAC642CF4EF34&CitationSuffix=
http://wizfolio.com/?citation=1&ver=3&ItemID=529&UserID=19448&AccessCode=4F036CD28F3648B8959E4D62E46F7928&CitationSuffix=

have to be grounded on the basis of financial reasoning that

can benefit the vendor as well as the tenants. In contrast with

other works that addresses costs or benefits independently, this

paper takes a holistic view of service adoption in terms of

service profitability. To the best of our knowledge, there are

no such economics-driven service adoption evaluation

methods; therefore service adoption is frequently made

without holistically evaluating whether it is economically

worthwhile to invest for the long term. In this study, we seek

to propose an economic model of service profitability based

on high-level conceptual model of service profitability

(original contribution) and existing value-added software

engineering metrics and economics-driven models used in

other areas. We believe that the reasoning based on service

profitability is able to address the service paradigm with a

more balanced view than before.

VI. CONCLUSION

Our proposed Service Profitability Model formalizes the
interplay of multiple factors that influence service profitability.
The model addresses decisions related to the tenant base,
required range of service variability, service architecture and
the use of variability techniques. Our model shows how these
decisions affect service cost and revenue. We illustrated the
usage of our profitability model with an analysis of service
architectures and service profitability scenarios. We believe the
model will help Service Providers maximize service
profitability. For future work, we intend to extend our Service
Profitability Model with quantitative methods and tools that
can help Service Providers examine factors that affect service
profitability.

REFERENCES

[1] E. L. Ouh and S. Jarzabek, “Understanding Service Variability for

Profitable Software as a Service: Service Providers’ Perspective,” in

26th International Conference on Advanced Information Systems
Engineering (CAiSE), 2014, pp. 9-16.

[2] “COCOMO II” http://csse.usc.edu/csse/research/COCOMOII [retrieved:
Jan, 2015].

[3] “Amazon Web Services Pricing” http://aws.amazon.com/pricing/

[retrieved: Jan, 2015].

[4] A. Mili, S. F. Chmiel, R. Gottumukkala, and L. Zhang, "An integrated

cost model for software reuse," in Proceedings of the 22nd international
conference on Software engineering (ICSE), 2000, pp. 157-166.

[5] "The Apache Open for Business Project (OfBiz)"

http://ofbiz.apache.org/ [retrieved: Jan, 2015].

[6] Stanislaw Jarzabek and Dan Daniel, "Adaptive Reuse Technique"

http://art.comp.nus.edu.sg/ [retrieved: Jan, 2015].

[7] "FeatureIDE" http://wwwiti.cs.uni-magdeburg.de/iti_db/research

[8] R. Mietzner and F. Leymann, "Generation of BPEL Customization
Processes for SaaS Applications from Variability Descriptors," in IEEE

International Conference of Services Computing, 2008, pp. 359-366,.

[9] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl, “Variability
modeling to support customization and deployment of multi-tenant-

aware Software as a Service applications,” in Proceedings of the 2009

ICSE Workshop on Principles of Engineering Service Oriented Systems,
2009, pp. 18-25.

[10] B. Morin, O. Barais, and J. M. Jzquel, "Weaving Aspect Configurations

for Managing System Variability," in Proceedings of VaMoS, 2008, pp.

53-62,.

[11] T. Kwok and A. Mohindra, “Resource calculations with constraints, and
placement of tenants and instances for multi-tenant SaaS applications,”

in Service-Oriented Computing (ICSOC), 2008, pp. 633-648.

[12] Y. Zhang, Z, Wang, B. Gao, C. Guo, W. Sun, and X. Li, “An effective
heuristic for on-line tenant placement problem in SaaS,” in IEEE

International Conference on Web services (ICWS), 2010, pp. 425-432.

[13] I. Kumara, J. Han, A. Colman, T. Nguyen, and M. Kapuruge, "Sharing

with a Difference: Realizing Service-based SaaS Applications with

Runtime Sharing and Variation in Dynamic Software Product Lines," in
IEEE International Conference on Services Computing (SCC), 2013, pp.

567-574.

[14] B. Sengupta and A. Roychoudhury, “Engineering multi-tenant software-
as-a-service systems,” in 3rd International Workshop on Principles of

Engineering Service-Oriented Systems, 2011, pp. 15-21.

[15] J. Lei, B. Sengupta and A. Roychoudhury, "Tenant Onboarding in

Evolving Multi-tenant Software-as-a-Service Systems," in IEEE

International Conference on Web Services (ICWS), 2012, pp. 415-422.

[16] M. Svahnberg, J. Van Gurp, and J. Bosch, ”A taxonomy of variability

realization techniques. Software: Practice and Experience,” 2005, pp.

705-754.

[17] Y. Zhang, Z. Wang, B. Gao, C. Guo, W. Sun, and Xu Li, “An effective

heuristic for on-line tenant placement problem in SaaS,” in International
Conference on Web services (ICWS), 2010, pp. 425-432.

[18] M. Ma, and J. Huang, ”The pricing model of cloud computing services,”
in Proceedings of the 14th Annual International Conference on

Electronic Commerce, 2012, pp. 263-269.

[19] A. Mukhija, D. S. Rosenblum, H. Foster, and S. Uchitel, “Runtime
support for dynamic and adaptive service composition. in Rigorous

software engineering for service-oriented systems,” 2011, pp. 585-603.

[20] H. Jegadeesan and S. Balasubramaniam, ”A method to support

variability of enterprise services on the cloud,” in Cloud Computing,

2009, pp. 117-124.

[21] D. Ma, ”The business model of" software-as-a-service". in IEEE

International Conference on Services ComputingC(SCC), 2007, pp. 701-

702.

[22] W. Frakes and C. Terry, "Software reuse: metrics and models," ACM

Computing Surveys (CSUR), vol. 28, no. 2, pp. 415-435, 1996.

[23] V. Choudhary, "Software as a Service: Implications for Investment in

Software Development," in 40th Annual Hawaii International

Conference on System Sciences (HICSS), 2007, pp. 209a.

[24] B. Boehm, "Software Engineering Economics," in IEEE Transactions on

Software Engineering, 1984, pp. 4-21.

[25] C. P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. t

Hart, “Enabling multi-tenancy: An industrial experience report,” in 2010

IEEE International Conference on Software Maintenance (ICSM), 2010,
pp. 1-8.

[26] H. Wang and Z. Zheng, “Software architecture driven configurability of
multi-tenant SaaS application,” in Web Information Systems and

Mining, 2010, pp. 418-424.

[27] R. Mietzner, F. Leymann, and M.P. Papazoglou, “Defining composite

configurable SaaS application packages using SCA, variability

descriptors and multi-tenancy patterns,” in Third International
Conference on Internet and Web Applications and Services (ICIW),

2008, pp. 156-161.

[28] T. Kwok, T. Nguyen, and L. Lam, “A software as a service with multi-
tenancy support for an electronic contract management application,” in

IEEE International Conference on Services Computing (SCC), 2008, pp.

179-186.

[29] Y. Zhang, S. Liu, and X Meng, “Towards high level SaaS maturity

model: methods and case study,” in IEEE Asia-Pacific Services
Computing Conference (APSCC), 2009, pp. 273-278

66Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

http://csse.usc.edu/csse/research/COCOMOII
http://aws.amazon.com/pricing/
http://ofbiz.apache.org/

