
A Conceptual Model to Evaluate Decisions for Service Profitability 

Eng Lieh Ouh 

Institute of Systems Science 

National University of Singapore 

25 Heng Mui Keng Terrace, Singapore  

e-mail: englieh@nus.edu.sg 

Stan Jarzabek 

Department of Computer Science, School of Computing 

National University of Singapore 

Computing 1, 13 Computing Link, Singapore  

Faculty of Computer Science,  

Bialystok University of Technology 

e-mail: stanjarzabek@gmail.com 

 
Abstract— Service profitability depends on the cost of 

engineering a service for a given base of tenants, on service 

provisioning cost, and on the revenue gained from selling the 

service to that tenant base. The tenant base depends on the range 

of service variability, i.e., on Service Provider's ability to vary 

service requirements to meet tenant expectations. These various 

factors that have to do with service profitability form a complex 

web of information that makes it difficult to analyze and see the 

exact impact of decisions regarding the choice of service 

architecture or the use of service adaptation techniques. To make 

this analysis easier for Service Providers, we built a conceptual 

model that helps Service Providers identity factors affecting 

service profitability and the interplay among them. Based on that 

model, Service Providers can answer questions regarding how 

choices of the service architecture or tenant base affect service 

profitability.  

Keywords-service provider; service profittability; service 

architecture; service variability; tenant base; service engineering; 

service provisioning. 

I. BACKGROUND AND MOTIVATION 

Service Providers maximize service profits by looking into 
ways to best reduce their engineering and provisioning costs 
while selling the service to possibly a large number of satisfied 
tenants. The choice of service architecture plays a critical role 
in balancing the way these three forces affect service 
profitability. However, the most scalable and cheapest for 
service provisioning shared service architectures tend to restrict 
service adaptability. It is our goal in this paper to analyze the 
interplay among conflicting forces that affect service 
profitability, and identify the detailed factors behind these 
forces. The conceptual model of service profitability presented 
in this paper is to help Service Providers better see how 
decisions regarding the choices of service architecture, 
dynamic (at service runtime) versus static (at the service 
construction-time) service adaptation techniques, or the size of 
the tenant base affect service profitability. This conceptual 
model can be further extended with provisions for quantitative 
analysis of service profitability, which is the subject of our on-
going work.  

In our previous work [1], we described the decisions that 
Service Providers typically make during service engineering 
regarding the choice of service architecture, service packaging, 
service hosting and the use of static or dynamic binding 
techniques to adapt services to needs of various tenants. 
Service components can be encapsulated at a service or tenant 

specific level packaging. For service hosting, a service can be 
hosted on a dedicated or shared process instance. Service 
architectures differ in how the service code is managed during 
service engineering, service execution and service hosting. As 
compared to [1], this paper further elaborates on and formalizes 
earlier findings to build a conceptual model.  

Section II introduces Service Variability and Service 
Architectures. We give our proposed Service Profitability 
Model in Section III, followed by an Analysis of Service 
Profitability in Section IV. Related work is presented in Section 
V. Our conclusion is in Section VI. 

II. SERVICE VARIABILITY AND SERVICE ARCHITECTURES 

The range of service variability is the extent to which a 
Service can be adapted to varying service requirements of 
different tenants. The larger the range the service can 
accommodate, the higher the number of tenants and the higher 
the revenue for the Service Provider. Service architecture is 
composed of a set of components and the relationships among 
them to implement a service. A service supports a set of 
common features [15], shared by all the tenants, and a set of 
variant features (FRSV), that are in a range of service variability, 
i.e., features that are of interest to some but not all 

tenants.  Each feature f ∈  FRSV corresponds to a set of variation 

points in service architecture components. The purpose of 
variation points is to enable customization of components 
whenever f is required by a tenant. A selected variant to be 
bind to a variation point is composed of service components of 
one or more modules as shown in Figure 1. 

 

Figure 1. Service, Features and Variants 

Fully-Shared (SAFS) is a service architecture based on a 

shared process instance with service components being shared 

by tenants during service execution. Dynamic binding 

techniques are used to bind the variants to the variation points 

of the feature for service running in SAFS. The range of service 

variability that is supported by SAFS is as follows: 
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 At least one new variant or variation point needs to be 

designed and deployed onto existing process instance to 

support the varying requirements. 

 

 Existing features can be configured on existing process 

instance to support the varying requirements 

 

Partially-Shared (SAPS) is a service architecture based on 

a shared process instance but, as opposed to SAFS, the service 

components in SAPS can be tenant level or service level 

packaged. In other words, the service components packaged in 

the module can be servicing a set of tenants or a particular 

tenant. Both static and dynamic techniques can be used to bind 

the variants to the variation points of the features for Service 

running in SAPS. The range of service variability that is 

supported by SAPS includes the variability supported by SAFS 

and the following: 

 For at least one new variant, variation points need to be 

designed and deployed onto a dedicated process instance 

to support the varying requirements. 

 

 Existing features can be configured, but some features 

need to be deployed onto a dedicated process instance to 

support the varying requirements. 

 
Non-Shared (SANS) is based on each tenant having its 

own, dedicated process instance and the service components 

being tenant level packaged. Both static and dynamic 

techniques can be used to bind the variants to the variation 

points of the features for Service running in SANS. The range 

of service variability that is supported by SANS includes the 

variability supported by SAPS and the following: 

 All required features need to be deployed onto a dedicated 

process instance to support the varying requirements. 

 

The service architecture can be hybrid, comprising of a 

combination of existing service architectures. The SAFS+PS is 

the hybrid service architecture comprising of SAFS and SAPS. 

SAFS+PS+NS is the hybrid service architecture comprising of 

SAFS, SAPS and SANS. The deployment diagrams of the three 

basic service architectures SAFS, SAPS and SANS are shown in 

Figure 2. The white portions indicate components of the 

architecture that are not shared among tenants and the dark 

portions indicate components that are shared among tenants.  
Service architectures that share runtime resources to 

minimize provisioning cost potentially limit the extent to which 
services can be adapted to varying requirements of tenants. For 
example, a tenant who requires service to be processed and 
data isolated due to security regulations cannot be onboard 
together with other tenants (that do not have such 
requirements) with a service architecture that does not have 
clear separation of runtime resources between tenants. Having 
clear separation of runtime resources among tenants incurs 
higher provisioning cost for the Service Provider, which would 
be likely passed on to the tenant as higher service price. On the 
other hand, there are also tenants who are price-sensitive with 
minimum variations of requirements. In this case, Service 
Providers can best minimize cost by engineering the service on 
a service architecture that shares resources.  To the Service 
Provider, what are the factors and how they interplay can 
greatly impact their service profitability. We formalized these 
factors into a Service Profitability Model to help Service 
Providers analyze a complicated web of interrelated factors 
affecting service profitability. 
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Figure 2. Service Architectures 
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Figure 3. A conceptual model of Service Profitability

III. CONCEPTUAL MODEL OF SERVICE PROFITABILITY  

Service Providers seek to maximize their profitability in the 
long term by minimizing their costs while maximizing their 
revenue. A Service Provider can re-engineer an existing 
application into a service or develop a service from scratch. 
This is the cost incurred in engineering the functionality of the 
service. The engineering cost varies depending on the choice of 
service architecture, but is independent of the number of 
tenants. Besides engineering service functionality, a Service 
Provider needs engineer variability into a service to 
accommodate variations in requirements among tenants. For 
business strategic reasons, a Service Provider may have some 
target tenants in mind and engineer the variability to meet the 
varying requirements of the target tenants. The extent of the 
service variability can vary with each variability technique and 
the selected service architecture which in turn impact the cost 
to engineer for variability. Service engineering costs can be 
estimated with software cost estimation tools (e.g., 
COCOMOII [2]) typically in terms of function points or lines 
of code.  The other factor to the cost on top of service 
engineering cost is the provisioning cost. This cost is incurred 
to host the service in a hardware and network environment to 
serve the tenant’s requests. The provisioning cost varies with 
the selected service architectures and the extent of service 
variability. The provisioning can be hosted internally or 
externally, virtualized or non-virtualized. To minimize 
provisioning cost, a virtualized environment is usually adopted. 
One key factor to whether the hosting is internal or external 
depends on each organization’s security policy. Provisioning 
cost of virtualized environment can be estimated on the 
respective cloud hosting sites (e.g., Amazon Web Services [3]). 
During the lifecycle of the service, new tenants might be 
interested to subscribe to the same service. For business 
reasons, a Service Provider may also wish to onboard new 
tenants to maximize their revenue. However, the current extent 
of service variability might not exactly fit the requirements of 

the new tenants. The additional engineering and provisioning 
costs vary with the selected service architectures, adopted 
variability technique and the extent of variability of the tenant’s 
requirements. The costs to engineer and provision for delta 
variability can be estimated similarly as described earlier. 
Service revenue will vary with the number of initial set and 
new set of tenants. Service profitability for providing the 
service in the long term can be measured by the net present 
value of the revenue gained minus the costs incurred over a 
pre-determined investment horizon, taking into account the 
value of money over time. For the rest of this section, we 
define the terms and use them in the conceptual model of 
service profitability. A conceptual model of Service 
Profitability is found in Figure 3. 

A. Explanation of the terms in conceptual model 

The Range of Service Variability (RSV) is the extent to 
which a Service can be adapted to varying service requirements 
of different tenants. The larger the range the service can 
accommodate, the higher the number of tenants and the higher 
the revenue for the Service Provider. The Tenant Base (TB) is 
composed of the users of a given Service, or onboarded tenants. 
To onboard a tenant, the Service must be able to meet the 
requirements of that tenant. As RSV reflects the Service 
Provider’s ability to customize the Service, RSV determines 
the TB that can be supported. Service Providers dream to 
engineer a service where RSV fulfills the varying requirements 
of the TB, maximizing service profits. Service Profits are 
determined by the Total Service Cost (TSC) incurred and Total 
Service Revenue (TSR) gained when providing the service. 
Costs are incurred to engineer the functionality of the Service 
and to engineer the Service to support a given RSV on a given 
Service Architecture (SA). For this, we collectively use the 
term Service Engineering Costs (SEC) to denote the both the 
Service Functionality Engineering Cost (SFEC) and Service 
Variability Engineering Cost (SVEC). SVEC is based on the 
selected Variability Techniques (VT) to support a given RSV 
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on a given SA. There are also costs involved to provide the 
hardware and infrastructure resources to support a given TB on 
a given SA. For this, we use the term Service Provisioning 
Costs (SPC). TSR is the total revenue from selling the Service 
on a given service SA. 

Delta Variability (DV) is the change to existing Service 
requirements required to onboard new tenant(s). We denote 
these newly onboarded tenants as Delta Tenant Base (DTB). 
Delta Cost (DC) is the cost to implement DV for a given DTB 
on a given SA. Similarly to TSC, DC is composed of Service 
Engineering Delta Cost (SEDC) and Service Provisioning 
Delta Cost (SPDC). 

IV. AN ANALYSIS OF SERVICE PROFITABILITY 

In this section, we show use cases for the conceptual model 

presented as ten questions illustrating specific profitability-

related dilemma of a Service Provider during service planning. 

A.      Service Profitability Model and Service Archiectures 

For SAFS, the service engineering cost to support the given 

range of variability is composed of implementing the dynamic 

binding techniques to bind the variants to the variation points 

identified for each feature of the Service. The service 

provisioning costs to support the given range of service 

variability is composed of provisioning the hardware and 

infrastructure resources to support the tenant base. Among the 

basic architectures, SAFS have the lowest provisioning costs 

due to sharing of resources. Delta variability that is the 

changes to existing Service requirements by new tenants have 

to be supported by the service architecture to onboard the 

tenant. If the delta variability is outside the given range of 

service variability of SAFS then there are two possible 

scenarios. One scenario is that the Service Provider incurs the 

service variability delta costs to engineer the delta variability 

into the existing SAFS. (e.g., implementing new variants or 

variation points that can be shared among tenants). The second 

scenario is that the tenant cannot be onboard as the delta 

variability cannot be supported on existing SAFS  (e.g., tenant 

require total isolation of software, process and data).  

For SAPS, the service variability engineering costs to 

support the given range of service variability is higher than 

SAFS as the Service Provider needs to implement both the 

dynamic and the static binding techniques. The service 

provisioning costs are also higher than SAFS due to the tenant 

level packaging leading to the need to provision more 

resources to support more software components. If the delta 

variability of new tenants is outside the given range of service 

variability of SAPS, a Service Provider can onboard the tenants 

by incurring service variability delta costs to engineer the delta 

variability into the existing SAPS. (e.g., implementing new 

variants or variation points that can be shared among tenants 

or supporting isolation of software or data). As SAPS is running 

on shared process instance, the Service Provider is unable to 

onboard the tenant if the tenant has requirements that require a 

dedicated process instance (e.g., isolation of processes). 

For SANS, the service variability engineering costs to 

support the given range of service variability is lower than 

SAPS as it needs to implement only based on static binding 

techniques. The service provisioning costs are the highest 

among SANS  and SAPS as dedicated resources are provided for 

each tenant. If the delta variability of new tenants is outside 

the given range of service variability of SANS, SANS can 

support delta variability of new tenants (even for isolation of 

process) due to dedicated process instances.  

For SAFS+PS, the service variability engineering costs to 

support the given range of service variability involves the 

implementation of both dynamic and static binding techniques 

and the need to support two basic service architectures. It is 

higher than any of the basic architectures SAFS, SAPS or SANS.  

Depending on whether the service is provisioned on SAFS 

and/or SAPS, the provisioning costs for SAFS+PS can be 

calculated from the respective provisioning costs of SAFS 

and/or SAPS.  The support of delta variability is similar to the 

scenarios in basic architectures of SAFS or SAPS. 
For SAFS+PS and SAFS+PS+NS, the service variability 

engineering costs to support the given range of service 
variability involves the implementation of both dynamic and 
static binding techniques and the need to support all three basic 
service architectures. It is the higher than the basic service 
architectures.  Depending on whether the service is provisioned 
on SAFS, SAPS and/or SANS, the provisioning costs for SAFS+PS 
can be calculated from the respective provisioning costs of 
SAFS, SAPS and/or SANS.   

B. Key Questions to Service Profitability 

Questions 1 to 3 and 4 to 6 are related to the revenue and cost 

of the Service Profitability Model. Questions 7 to 9 are related 

to service architectures, while the last question is related to the 

overall service profitability. 

 

1) How many tenants will have to be onboarded so that 

the profit from service outweighs the cost of building it? 

The answer to this question will help the Service Provider to 

estimate the breakeven point for service cost and revenue. For 

a given service architecture, the Service Provider can simulate 

the number of tenants against the expected cost incurred to 

build the service for the Service Provider to have a better 

insight on the breakeven point for the initial total service costs. 

2) How many new delta-tenants will have to be onboarded 

to outweigh the cost of implementing changes (delta-

requirements) required for new tenants? 

To Service Providers, this is another question on the 

breakeven of their investment. It differs from question 7 in 

terms of the delta cost against the delta revenue gained from 

the delta tenant base. For a given service architecture, the 

Service Provider can simulate the number of delta tenants 

against the expected delta cost incurred to build the service, 

the Service Provider has a better insight on the breakeven 

point for the delta costs. 

3) Which pricing stratgey should a Service Provider adopt 

for the service? 

The right pricing strategy positively impacts the total service 

revenue and delta revenue to be gained.  The pricing strategy 

can be pay as per use, subscription-based, tiered based, 

transaction based or mixture of the above. The pricing strategy 

can also vary across time. For a given service architecture, the 
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Service Provider can simulate the expected distribution of 

tenants for each of the pricing strategies across the investment 

horizon and evaluate for overall service profitability. 

4) Is it better to re-engineer from existing code or develop 

services from scratch? 

The decision to this question impacts the service functionality 

engineering cost, which is independent of the number of 

tenants. Based on simulation of the expected distribution of 

tenants, this question can be addressed to see if the impact of 

the additional costs to develop from scratch versus the savings 

by re-engineering from existing code. 

5) Should a Service Provider provision the service 

internally or externally? 

The impact of hosting choices on service profitability can be 

inferred from service provisioning and service provisioning 

delta costs. The cost of provisioning the service internally 

typically incurs higher upfront setup and maintenance cost 

than external provisioning. However, it provides higher degree 

of security in terms of privacy and isolation of data and 

processes. Provisioning the service externally can decrease 

upfront setup and maintenance costs, but the level of control is 

also reduced. Based on the above, simulations can be run with 

these costs and expected distribution of tenants to analyze 

overall service profitability. 

6) Which variability technique should a Service Provider 

apply to address the required range of service variability? 

A Service Provider can apply static variability techniques to 

address higher degree of variability, but can also be more 

costly as compared to only applying dynamic variability 

techniques to address runtime variability. The adoption of 

variability technique impacts the service variability 

engineering cost and service engineering delta cost.  

Additionally, due to the variability technique, new tenants 

with requirements that does not fit the service variability will 

either be unable to onboard or the service architecture needs to 

evolve. Assuming the service architecture remains the same, 

the Service Provider can simulate the expected distribution of 

tenants for each of the adopted variability techniques and 

evaluate for overall service profitability. 

7) To what degree does the selection of a service 

architecture impact service profitability? 

This is a typical profitability-related question a Service 

Provider tries to answer. Based on the conceptual model, a 

Service Provider can estimate the total service costs incurred 

for each choice of the service architecture. In addition, a 

Service Provider may simulate a set of expected delta tenants 

that can be onboarded within the pre-determined specified 

investment horizon and measure the impact to total service 

costs, total service revenue and overall service profits. 

8) Should a Service Provider onboard new tenant if this 

requires the change of service architecture? 

Onboarding new tenants present new business opportunities, 

but also incurs costs to implement extra delta variability into 

the Service. This cost grows further if onboarding new tenants 

requires the change of service architecture, e.g., from shared to 

dedicated. In this case, the Service Provider needs to simulate 

different distributions of tenants and evaluate the overall 

profitability. These distributions differ in their degree of 

varying requirements and evaluate the service profitability 

impact on each of the service architectures. From the results, a 

Service Provider can have a better insight whether to evolve 

their architecture or not. 

9) Should a Service Provider adopt a specific service 

architecture or a hybrid of service architectures? 

Besides deciding on the type variability techniques, adopting a 

hybrid of service architectures requires additional cost 

incurred to manage the variability across service architectures. 

The Service Provider can simulate the expected distribution of 

tenants for each service architecture including different 

hybrids and evaluate for overall service profitability. 

10) If a Service Provider has an objective to achieve a 

certain level of service profitability within a certain investment 

horizon, what costs and revenue the Service Provider needs to 

incur and gain? 

This question can be considered an optimization problem in 

terms of maximizing the total service revenue and delta 

revenue while minimizing the total service costs and delta cost 

for a given level of service profitability. From the conceptual 

model, factors that affect the total service cost and total 

service revenue can be defined as equations to be evaluated by 

an optimization solver.  More than one optimal set of values is 

possible in this case. The Service Provider can evaluate and 

design towards one of these values in this optimal set. 

 

Each of these questions can be addressed at the lower level of 

abstraction. For example, in the first question, the assumption 

of a given service architecture can be further decomposed to 

evaluate against a set of service architectures for the Service 

Provider to be able to evaluate more scenarios.  

V. RELATED WORK 

There is much literature on how to minimize service 
engineering and provisioning costs to improve service 
profitability. Existing methods focus on variability techniques 
to enable late binding of the service variants, customization of 
business process execution language (BPEL) process with 
variability descriptors [8] and variability modeling techniques 
to manage the variability in service applications [9][10]. Kwok 
et al. [11] propose to lower the provisioning cost through 
resource calculations with constraints to decide the best server 
to onboard a new tenant. A resource consumption estimation 
model to optimally place onboarding tenants is also studied in 
[12].  

A single-instance multi-tenant service application enables a 

Service Provider to achieve economies of scale through 

runtime sharing. However, runtime sharing can make tenant-

specific variations difficult to achieve in such an application as 

it needs to realize the variability across different tenants in the 

single-instance application [13]. For the software as service 

paradigm to truly meet its potential, Sengupta et.al. [14] 

propose that vendors will need to move away from building 

rigid “one-size-fits-all” systems, or those that offer a fixed set 

of available customization options from which tenants must 

select. Service paradigm essentially is an economic model for 

software consumption; hence, many of these activities would 
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have to be grounded on the basis of financial reasoning that 

can benefit the vendor as well as the tenants. In contrast with 

other works that addresses costs or benefits independently, this 

paper takes a holistic view of service adoption in terms of 

service profitability. To the best of our knowledge, there are 

no such economics-driven service adoption evaluation 

methods; therefore service adoption is frequently made 

without holistically evaluating whether it is economically 

worthwhile to invest for the long term. In this study, we seek 

to propose an economic model of service profitability based 

on high-level conceptual model of service profitability 

(original contribution) and existing value-added software 

engineering metrics and economics-driven models used in 

other areas. We believe that the reasoning based on service 

profitability is able to address the service paradigm with a 

more balanced view than before. 

VI. CONCLUSION 

Our proposed Service Profitability Model formalizes the 
interplay of multiple factors that influence service profitability. 
The model addresses decisions related to the tenant base, 
required range of service variability, service architecture and 
the use of variability techniques. Our model shows how these 
decisions affect service cost and revenue. We illustrated the 
usage of our profitability model with an analysis of service 
architectures and service profitability scenarios. We believe the 
model will help Service Providers maximize service 
profitability. For future work, we intend to extend our Service 
Profitability Model with quantitative methods and tools that 
can help Service Providers examine factors that affect service 
profitability. 
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