
Finding Optimal REST Service Oracle Based on Hierarchical REST Chart

Li Li, Wu Chou

Shannon IT Lab

Huawei

Bridgewater, New Jersey, USA

{li.nj.li, wu.chou}@huawei.com

Abstract—Based on the hypertext-driven nature of REST API,

this paper presents a structural approach for REST client

design and implementation, in which a REST client is

decomposed into two reusable functional modules: a client

oracle that selects hyperlinks to follow for a given goal, and a

client agent that carries out the interaction as instructed by the

oracle. This decomposition has several advantages over a

monolithic REST client where the two functions are

intertwined and inseparable. To automatically find an optimal

client oracle from a machine-readable description of a REST

API, we introduce the path selection framework and apply

Dijkstra’s Shortest Path algorithm to Hierarchical REST

Chart, which is an enhancement and extension to the original

REST Chart that describes REST API based on Colored Petri-

Net. The proposed method has been implemented in Java and

tested on two sets of Hierarchical REST Charts. Experimental

results indicate that the proposed approach is effective and

promising.

Keywords—REST API; Hierarchical REST Chart; REST

Oracle; Petri-Net; Shortest Path

I. INTRODUCTION

In recent years, the REST architectural style [1] has
become increasingly popular, and it has been applied widely
to API designs in various areas, including Real-Time
Communications [2][3], Cloud Computing [4], and
Software-Defined Networking [5]. It provides an efficient
and flexible way to access and integrate large-scale complex
systems and distributed applications. REST is based on the
principle that any client of a REST API should be driven by
nothing but hypertext. This principle seems abstract but it is
easy to understand if we treat a REST API as a distributed
finite state machine, where the states are resource
representations and the transitions are the links between the
representations. In this model, hypertext-driven means that a
client should enter a REST API from an entry point, and
then be guided by the hypertext from the resources to reach
a final representation.

This principle makes it possible for a user without any
technical background to use the Web by following the
hyperlinks on the pages until the desired page is retrieved.
In this process, the user decides which links to follow based
on the information on the page, and the user agent carries
out these decisions by interacting with the resources
identified by the links. This separation of users from the
user agents make both of them “reusable” in the sense that a

user can use any user agent, and a user agent can use any
user, to navigate the Web.

To mirror this process for a REST client that navigates a
REST API without user involvement, it would be beneficial
to decompose the REST client into two functional
components: a client oracle responsible to select links to
follow from the resource representations, and a client agent
responsible to interact with the resources based on the
selected links. This decomposition of a REST client has
several advantages over a monolithic REST client where
these two functions are intertwined and inseparable:

 a client oracle can be reused with different versions
of a REST API, especially if a REST API version
update changes some resource representations and
identifications, but does not change the link relations
in the representations;

 a client oracle can be reused across different service
description languages of the same REST API;

 a client oracle can drive client agents in different
programming languages to achieve consistent
behavior;

 a client agent can be driven by different client oracle
to accomplish different tasks;

 a client oracle can significantly reduce the size of a
client agent if only a small portion of the resource
representations are selected by the client oracle.

To realize these benefits for a given REST API, a client
oracle and client agent can be written by developers
manually. But this can be difficult, time consuming, and
error prone. A better approach is to generate a REST oracle
and agent automatically from a machine-readable service
description of a REST API, such as REST Chart [6]. If the
manual programming process becomes unnecessary or
greatly reduced, we can significantly speed up the REST
client development process. To tackle REST client
generation in two phases, this paper describes a method to
find optimal client oracles based on the Hierarchical REST
Chart, an extension to REST Chart [6], and client agent
generation will be our future work.

The rest of this paper is organized as follows. Section II
reviews related work in REST service description
languages. Section III describes the Hierarchical REST
Chart. Section IV introduces the optimal REST oracle
framework. Section V discusses the implementation and
experimental results, and our findings are concluded with
Section VI.

21Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

II. RELATED WORK

Since 2009, several new service description languages,
including WADL [7], RAML [8], Swagger [9], RSDL [10],
API-Blueprint [11], SA-REST [12], ReLL [13], REST Chart
[6], RADL [14], and RDF-REST [15] have been developed
independently for REST API, but none of them is yet
standardized. All these description languages are encoded in
some machine-readable languages, such as XML, and most
of them are standalone documents, except a few of them,
such as SA-REST, are intended to be embedded within a
host language, such as HTML.

RAML is a YAML language that organizes a REST API
as a tree rooted at a base URI (template or reference) that
denotes a REST API entry point. Underneath the root are a
set of URI (templates or references) that identify available
resources. Each URI may be associated with the access
methods that define the input and output representations.
While RAML offers a minimalist structure and several
interesting mechanisms, such as inline documentation,
resource traits and types, it could lead to inadvertent
violation of the REST constraints [6] by exposing a list of
fixed resource locations. Also, RAML does not seem to
have a way to tie the hyperlinks in hypertext representations
with the URI templates in the REST API description tree.
Without these ties, it would be difficult for a REST client to
know the method to access a hyperlink and the response
representation.

Swagger has bindings to both YAML and JSON, and its
REST API descriptive structure is very similar to RAML,
except using a different set of vocabularies. For this reason,
it has the same problems as RAML.

RSDL is a XML language that organizes a REST API
around a list of <resource> elements, each of which may
contain elements <location> that define its URI, <link> that
links it to other resources, and <method> that define the
access. As a result, RSDL could also inadvertently violate
the REST constraints [6] by exposing a fixed set of resource
locations to the clients. Moreover, there are no ties between
the <link> elements, the <method> elements, and the actual
resource representations, such that a hyperlink in a
representation can point to its access method and response
representation.

RADL is a XML language that organizes a REST API
around the <resource> element that defines the resource
location in the child element <uri> and resource methods in
the child <interface> element. The request and response of a
method are defined by <document> elements, which may
contain <link> elements pointing to other <document>
elements. Like RSDL, this resource centric design could
lead to fixed resource locations. Moreover, even if a client
knows the interface of a resource, it may not know the
method in the interface to access a hyperlink of a document,
if two or more methods exist in the interface.

Some open source toolkits are available for some service
description languages [8][9][11] to generate client and
server skeleton code in Java and node.js, such that the
developers can edit the generated source code to complete
the implementation. However, when generating the client

code, these toolkits do not separate client oracle and client
agent, as far as we know.

In addition, none of these service description languages
supports nested REST API descriptions, such that a
complete REST API description can be incrementally
refined or composed seamlessly with the same mechanism.
Breaking a large service description file into small parts can
be helpful but it is still not sufficient, since the large service
description is incomplete without the parts.

III. HIERARCHICAL REST CHART

We adopt the REST Chart model [6] as the basis for
finding optimal client oracles. A major feature of REST
Chart is the ability to combine the static aspects of a REST
API, e.g. media types and link relations, with the dynamics
of the REST API, e.g. the hypertext driven client-server
interactions, into one coherent model. The REST Chart
models a REST API as a Colored Petri Net where the places
are “colored” by types. A typed place denotes a media type
schema that defines valid resource representations. A
transition denotes a valid resource interaction following a
hyperlink in a schema. A token in a typed place denotes a
valid resource representation defined by the schema. In this
model, the connected schemas collectively define the
hypertext media types of a REST API without creating any
out-of-band dependences to the resource organization of the
REST API.

Figure 1. Example of a basic REST Chart

A basic REST Chart defines the contract between the
server and client for a single interaction. This contract
consists of two server places and a client place connected by
a transition, as illustrated in Figure 1. This REST Chart
indicates that a client can transfer its representational state
from the login place (server place) to the account place
(server place) if the client can create a token for the
credential place (client place). To make the transition, the
server first puts a token x1 in the login place (i.e. returns a
valid login page), to provide a login hyperlink to the client.
Then the client selects that link and puts a token x2 in the
credential place (i.e. enters valid username and password).
At this point, the transition (solid bar) fires and the user
credential is sent to the login resource identified by the
hyperlink. On success, the server deposits a token x3 in the
account place (i.e. returns the valid account information).

login

(x1)

resource

credential

(x2)

account

(x3)

input output

22Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

These token markings capture the essential interaction
procedure as sanctioned by the REST Chart.

The resource involved in the interaction is identified by
a URI template, and there is no fixed resource location,
relation, or interface that could lead to violations of the
REST constraints R3-R5 [6]. A REST API with more than
one interaction can be described by connecting appropriate
places to form a large Petri-Net with a single entry place,
which is the designated entry point of the REST API.

Figure 2. Hierarchical REST Chart C1 that nests REST Chart C2

Figure 3. XML of REST Chart C1 that nests C2 by its interface

Figure 4. XML of REST Chart C2’s interface places

To promote reusability and modularization of REST
API, this paper extends the REST Chart to Hierarchical
REST Chart based on Hierarchical Petri-Net. In
Hierarchical REST Chart, a typed place can contain another
REST Chart, as shown in Figure 2 where place P of REST

Chart C1 contains REST Chart C2. The REST Charts C1
and C2 communicate as follows: 1) when place P receives a
token of type P1, it is moved to place P1 of C2; 2) C2 will
fire as usual; 3) when place P2 or P3 has a token, then the
token is moved back to place P; 4) C1 will continue to fire
as usual. In general, Hierarchical REST Chart can be nested
to any number of levels.

Figure 5. Top-level REST Chart for the network REST API with nested

representations in double framed boxes

Figure 6. REST Chart nested inside at the Network place of the top-level

REST Chart

To represent Hierarchical REST Chart, the XML of C1
is modified but there is no modification to the XML of C2.
In C1, we modify place P and its outgoing transitions in
REST Chart C1 to point at C2. The relevant modifications
to C1 XML are illustrated in Figure 3 in bold font, where
the <representation> element has an attribute “href” that
points to the location of REST Chart C2, and the two
<transition> elements “P_t1” and “P_t2” use notations
“P/P2” and “P/P3” to reference the places P2 and P3
respectively in C2 that is nested in place P. The places P1,
P2, and P3 of Chart REST C2 act as its interface to hide the
topology of C2 as shown in Figure 4, such that the internal
changes in C2 will not impact C1.

C2

 C1

P

P1

P2

P3

P1

P2

P3

P_t1

P_t2

<rest_chart id="C2">

<representation id="P1" initial="true">…</representation>

…internal topology…

<representation id="P2">…</representation>

<representation id="P3">…</representation>

</rest_chart>

<rest_chart id=”C1”>

…

<representation id="P" href="URI_to_C2" />

<transition id="P_t1">

 <input>

 <representation ref="P/P2" link="P2_k1" />

 </input>

 …

</transition>

<transition id="P_t2">

 <input>

 <representation ref="P/P3" link="P3_k1" />

 </input>

 …

</transition>

…

</rest_chart>

23Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

We have successfully applied Hierarchical REST Chart
to describe several practical REST APIs, including the
Network Management REST API of OpenStack [16]. Figure
5 depicts a top-level REST Chart with three nesting
representations: Port, Network and Subnet, and the nested
REST Chart for the Network is depicted in Figure 6, whose
interface place Port and Subnet are used by C1 in transition
t4 and t5 respectively. In both figures, the empty places
indicate the client requests to dereference the hyperlinks.

IV. OPTIMAL REST ORACLE

REST Oracle is based on the idea that a REST client can
be divided into two reusable functional modules: a client
oracle that decides the resources to interact with, and a
client agent that carries out the resource interactions
instructed by the client oracle. The decisions made by a
client oracle obviously depend on what goal the client is
trying to achieve with the REST API. For example, a client
oracle that tries to check bank account balance probably
should select different resources than a client oracle that
tries to deposit a paper check to an account.

If a REST API is described by Hierarchical REST Chart,
the goal of a client can be defined in terms of the places it
needs to visit. For instance, when a client wants to deposit a
check to an account, it must reach these places in the correct
order: login place to authenticate itself, the place to deposit
a check, the place to scan the check, the place to upload the
check, the place to verify the information, and the place for
the positive acknowledgement of the entire process.

If there is more than one sequence of places to reach a
goal, as most REST API does, a REST client needs to
consider which path is optimal. For this purpose, we map
each transition in a Hierarchical REST Chart to a positive
real number that represents the cost for a REST client to
take that transition. The cost can be related to network
latency, the message size, the processing time, or a
combination of such factors that can be measured based on
the environment in which the REST API operates. With the
cost factor, an optimal path can be defined as the shortest
path from the initial place to a goal place in a Hierarchical
REST Chart. A uniform cost of 1.0 at every transition would
produce an optimal oracle that takes the smallest number of
messages to reach the goal place.

 It is possible to find such shortest paths in REST Chart
based on Petri-Net reachability algorithms [18] or
coverability algorithms [19]. However, these algorithms are
usually complex or may take exponential space as they
compute all possible token markings in arbitrary Petri-Net.
For this reason, we decide to use graph search algorithm,
whose time complexity is not dependent on token markings
and is polynomial to the number of places and transitions of
a Petri-Net.

To apply this approach, we convert the Hierarchical
REST Chart to a nested directed graph. The server places
become the vertices, and each edge is labeled with
corresponding transition including the client place and a
cost as illustrated in Figure 7. This process is recursively
applied to the nested REST Charts.

Figure 7. Transforming a REST Chart to a directed graph with cost

It is often useful to direct a REST client to not just one,
but a series of goal places when interacting with a
workflow. To realize this requirement, we adapt Dijkstra’s
Shortest Path algorithm [17] to the nested directed graph to
find the shortest path from the initial place to the first goal
place, and then repeat the algorithm from current goal place
to the next goal place in the series, until the last goal place is
reached. If a goal place is not reachable, then the process
will stop. The shortest path found by this process is an
oracle that reaches these goals in the given order.

Figure 8. Client Oracle algorithm adapted from Dijkstra’s Shortest Path
Algorithm

The Client Oracle algorithm is outlined in Figure 8. The
core of the algorithm (lines 2-17) uses Dijkstra’s Shortest
Path algorithm on the directed graph A, which is converted
from the REST Chart C, to find a shortest path from an
initial place Pi to a final place Pj and record the transitions
on the path (e.g. s[X] = transition(Pk)). The rest of the
algorithm (lines 18-24) reconstructs from the recorded

server

place Si

client

place Ci

Tij

server

place Sj

vertex

Si

vertex

Sj

Tij, Ci, cost

1. Client_Oracle(C, A, Pi, Pj): Oracle

2. C: REST Chart

3. A: adjacency matrix for C

4. Pi: source place

5. Pj: target place

6. IN = {Pi}

7. For each Pk in P of C do d[Pk] = A[Pi,Pk]

8. While Pj not in IN do

9. Pk = a place X in P–IN with minimum d[X]

10. s[Pk] = C.transition(Pi)

11. IN += Pk

12. For each place X in P–IN do

13. dist = d[X]

14. d[X] = min(d[X], d[Pk] + A[Pk, X])

15. if (d[X] < dist) then s[X] = C.transition(Pk)

16. End

17. End

18. T = s[Pj]

19. Oracle = (C.server_place(T), T, C.client_place(Y))

20. While C.server_place(T) ≠ Pi do

21. T = s[T]

22. Oracle += (C.server_place(T), T, C.client_place(T))

23. End

24. Return reverse(Oracle)

25. End

24Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

transitions of the oracle as a sequence of triples
(Server_Place, Transition, Client_Place).

If a vertex Si contains a nested directed graph, then we
will find the shortest paths from the initial vertex of the
nested graph to all its final vertices, and add the total cost of
each shortest path to the cost of the corresponding edge
from Si. For example in Figure 2, the cost of the shortest
path from P1 to P2 will be added to edge P_t1 of P, and the
cost of the shortest path from P1 to P3 will be added to edge
P_t2 of P.

The following diagram (Figure 9) illustrates 3 shortest
paths (oracles) superimposed on an automated coffee
service REST Chart with uniform cost 1 labeled on the
edges, and the corresponding oracles are summarized in
Table I.

Figure 9. Three client oracles (shortest paths) for three goal series

TABLE I. ORACLES FOUND FOR DIFFERENT GOALS

 Goal Series Oracle

1 {confirmation}
(initial, T0, coffee_order)

(order_payment, T1, payment)

2
{confirmation,

order_deleted}

(initial, T0, coffee_order)
(order_payment, T1, payment)

(confirmation, T4, delete_2)

3 {notification}

(initial, T0, coffee_order)

(order_payment, T1, payment)
(confirmation, T6, subscription)

The oracle triples in Table I contain the crucial
information to implement a fully functional oracle program.
The server place in a triple specifies the representations that
a REST client must understand to select a hyperlink. The
transition in a triple specifies the interaction with the

selected hyperlink. The client place specifies the
representations, e.g. a form definition, that the REST client
must supply for that interaction. The only missing
information is the actual representation, e.g. the form data,
for the client place, which can be saved statically with the
client oracle, or input to the client oracle dynamically when
it is needed. Alternative optimal paths to a goal can also be
included in a client oracle for fail over or load balancing
purposes.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

We have developed a Java implementation of the Client
Oracle algorithm in Figure 8. The overall flow of the
implementation is illustrated in Figure 10. Only the top-
level REST Chart is need by the tool, which will
automatically load any nested REST Chart. Our Java tool
implementation accepts a single or a series of goals. In
addition to finding a client oracle for a given set of goals, it
can also find all the client oracles from the entry place to all
other places in a Hierarchical REST Chart. The output of the
tool includes the oracles found for the top-level and the
nested REST Charts.

Figure 10. Java implementation of Client Oracle

We ran our Java tool on two sets of Hierarchical REST
Charts with randomly generated costs to find all possible
client oracles from the initial place. The first set contains 4
Hierarchical REST Charts nested in three levels, where the
numbers in the parentheses indicate the number of places
and transitions in the REST Chart:
 Chart1 (8,7)

 Chart3 (4,3)
 Chart2 (6,5)
 Chart4 (4,3)

 The second set contains 4 REST Charts nested in 3
levels as follows:

ABC1 (8,14)
 ABC2 (6,8)
 ABC3 (5,7)
 ABC4 (4,5)

The execution time (in millisecond) includes parsing the
multiple XML files into the internal data structure, finding
all client oracles based on the data structure, and saving
them to a log file. The times measured by Java function
System.currentTimeMillis() averaged over 5 runs on

Main (I/O)

Hierarchical

REST Chart
XML Files

Parse REST

Chart XML

SAXParser

Internal

Data

Structure

Compute

Client Oracle

Source

Targets

Client

Oracle

Transition

Cost File

25Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

a 32-bit Windows 7 machine (Intel i5 M560 dual core at
2.67 GHz and 4.00 GB memory) are summarized in Table
II, where the numbers in the parentheses indicate the total
number of places (V) and transitions (E) in each REST
Chart.

TABLE II. PERFORMANCE SUMMARY

 average (ms) std

Set 1 (22, 18) 59 6.8

Set 2 (23, 34) 66 6.7

Since the Dijkstra’s Shortest Path algorithm has

O(E+V*log(V)) time complexity for a graph with E edges

and V vertices, the time ratio of these two sets are very close

to the time complexity ratio: 66/59=1.1 while

(34+23*log(23))/(18+22*log(22))=1.3. For this reason, the

the performance is satisfactory and consistent. More

important than the performance measurements that can be

improved in many ways, the results demonstrate that the

approach is feasible in finding optimal client oracles with

any Hierarchical REST Chart in polynomial time.

VI. CONCLUSION

The three main contributions of this paper are: 1) a
structural approach to REST client design based on two
reusable functional modules, i.e. a client oracle that selects
hyperlink to follow for a given goal, and a client agent that
carries out the interaction as instructed by the oracle; 2) the
new modeling mechanism and XML language to support
Hierarchical REST Chart, which is a significant
improvement over the original REST Chart for REST
service modeling; and 3) a path selection framework for
finding the optimal REST oracle and the implementation of
the path selection framework based on Dijkstra’s Shortest
Path algorithm to Hierarchical REST Chart. Our approach
has several advantages over a monolithic REST client
design approach. Experimental results indicated that this
approach is feasible and promising.

For future work, we plan to continue improving the
framework of the Hierarchical REST Chart and apply the
REST oracle approach in automated goal-driven generation
of fully functional REST clients based on the REST Chart
description of REST API.

ACKNOWLEDGMENT

The authors would like to thank Anita Kurni for
implementing the Java Client Oracle tool while working as a
contractor for Huawei.

REFERENCES

[1] R. T. Fielding, Architectural Styles and the Design of Network-based
Software Architectures, Dissertation, University Of California, Irvine,
2000.

[2] Twilio REST API, http://www.twilio.com/docs/api, retrieved:
February, 2015.

[3] GSMA OneAPI, http://www.gsma.com/oneapi/voice-call-control-
restful-api/, retrieved: February, 2015.

[4] Amazon Simple Storage Service REST API,
http://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html,
retrieved: February, 2015.

[5] Floodlight REST API,
http://www.openflowhub.org/display/floodlightcontroller/Floodlight+
REST+API, retrieved: February, 2015.

[6] L. Li and W. Chou, “Design and Describe REST API without
Violating REST: a Petri Net Based Approach,” ICWS 2011, July 4-9,
2011, pp. 508-515.

[7] M. Hadley, Web Application Description Language, W3C member
Submission, 31, August 2009, http://www.w3.org/Submission/wadl/,
retrieved: February, 2015.

[8] RAML Version 0.8, http://raml.org/spec.html, retrieved: February,
2015.

[9] Swagger 2.0, https://github.com/swagger-api/swagger-spec, retrieved
February, 2015.

[10] J. Robie, R. Cavicchio, R. Sinnema, and E. Wilde, “RESTful Service
Description Language (RSDL), Describing RESTful Services
Without Tight Coupling, Balisage,” The Markup Conference 2013,
http://www.balisage.net/Proceedings/vol10/html/Robie01/BalisageVo
l10-Robie01.html, retrieved: February, 2015.

[11] API Blueprint Format 1A revision 7, https://github.com/apiaryio/api-
blueprint/blob/master/API%20Blueprint%20Specification.md,
retrieved: February, 2015.

[12] K. Gomadam, A. Ranabahu, and A. Sheth, SA-REST: Semantic
Annotation of Web Resources, W3C Member Submission 05 April
2010, http://www.w3.org/Submission/SA-REST/, retrieved: February,
2015.

[13] R. Alarcon and E. Wilde, “Linking Data from RESTful Services,”
LDOW 2010, April 27, 2010, pp 100-107.

[14] J. Robie, RESTful API Description Language (RADL),
https://github.com/restful-api-description-language/RADL, 2014,
retrieved: February, 2015.

[15] P.-A. Champin, “RDF-REST, A Unifying Framework for Web APIs
and Linked Data,” Services and Applications over Linked APIs and
Data (SALAD) workshop at ESWC, May 2013, pp.10-19.

[16] OpenStack API References, http://developer.openstack.org/api-
ref.html, retrieved: February, 2015.

[17] J. L. Gersting: Mathmatical Structures for Computer Science, third
edition, 1993, pp. 422-423.

[18] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Processing, 2nd edition, Springer, 2008, pp. 246-246.

[19] J. Esparza and M. Nielsen: Decidability Issues for Petri Nets, BRICS
Report Series, RS-94-8, ISSN 0909-0878, May 1994.

26Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

