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Abstract—Based on the hypertext-driven nature of REST API, 

this paper presents a structural approach for REST client 

design and implementation, in which a REST client is 

decomposed into two reusable functional modules: a client 

oracle that selects hyperlinks to follow for a given goal, and a 

client agent that carries out the interaction as instructed by the 

oracle. This decomposition has several advantages over a 

monolithic REST client where the two functions are 

intertwined and inseparable. To automatically find an optimal 

client oracle from a machine-readable description of a REST 

API, we introduce the path selection framework and apply 

Dijkstra’s Shortest Path algorithm to Hierarchical REST 

Chart, which is an enhancement and extension to the original 

REST Chart that describes REST API based on Colored Petri-

Net.  The proposed method has been implemented in Java and 

tested on two sets of Hierarchical REST Charts. Experimental 

results indicate that the proposed approach is effective and 

promising. 

Keywords—REST API; Hierarchical REST Chart; REST 

Oracle; Petri-Net; Shortest Path 

I.  INTRODUCTION 

In recent years, the REST architectural style [1] has 
become increasingly popular, and it has been applied widely 
to API designs in various areas, including Real-Time 
Communications [2][3], Cloud Computing [4], and 
Software-Defined Networking [5]. It provides an efficient 
and flexible way to access and integrate large-scale complex 
systems and distributed applications. REST is based on the 
principle that any client of a REST API should be driven by 
nothing but hypertext. This principle seems abstract but it is 
easy to understand if we treat a REST API as a distributed 
finite state machine, where the states are resource 
representations and the transitions are the links between the 
representations. In this model, hypertext-driven means that a 
client should enter a REST API from an entry point, and 
then be guided by the hypertext from the resources to reach 
a final representation.  

This principle makes it possible for a user without any 
technical background to use the Web by following the 
hyperlinks on the pages until the desired page is retrieved. 
In this process, the user decides which links to follow based 
on the information on the page, and the user agent carries 
out these decisions by interacting with the resources 
identified by the links. This separation of users from the 
user agents make both of them “reusable” in the sense that a 

user can use any user agent, and a user agent can use any 
user, to navigate the Web.  

To mirror this process for a REST client that navigates a 
REST API without user involvement, it would be beneficial 
to decompose the REST client into two functional 
components: a client oracle responsible to select links to 
follow from the resource representations, and a client agent 
responsible to interact with the resources based on the 
selected links. This decomposition of a REST client has 
several advantages over a monolithic REST client where 
these two functions are intertwined and inseparable: 

 a client oracle can be reused with different versions 
of a REST API, especially if a REST API version 
update changes some resource representations and 
identifications, but does not change the link relations 
in the representations;  

 a client oracle can be reused across different service 
description languages of the same REST API;  

 a client oracle can drive client agents in different 
programming languages to achieve consistent 
behavior; 

 a client agent can be driven by different client oracle 
to accomplish different tasks;  

 a client oracle can significantly reduce the size of a 
client agent if only a small portion of the resource 
representations are selected by the client oracle.   

To realize these benefits for a given REST API, a client 
oracle and client agent can be written by developers 
manually. But this can be difficult, time consuming, and 
error prone. A better approach is to generate a REST oracle 
and agent automatically from a machine-readable service 
description of a REST API, such as REST Chart [6]. If the 
manual programming process becomes unnecessary or 
greatly reduced, we can significantly speed up the REST 
client development process. To tackle REST client 
generation in two phases, this paper describes a method to 
find optimal client oracles based on the Hierarchical REST 
Chart, an extension to REST Chart [6], and client agent 
generation will be our future work. 

The rest of this paper is organized as follows. Section II 
reviews related work in REST service description 
languages. Section III describes the Hierarchical REST 
Chart. Section IV introduces the optimal REST oracle 
framework. Section V discusses the implementation and 
experimental results, and our findings are concluded with 
Section VI. 
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II. RELATED WORK 

Since 2009, several new service description languages, 
including WADL [7],  RAML [8], Swagger [9], RSDL [10], 
API-Blueprint [11], SA-REST [12], ReLL [13], REST Chart 
[6], RADL [14], and RDF-REST [15] have been developed 
independently for REST API, but none of them is yet 
standardized. All these description languages are encoded in 
some machine-readable languages, such as XML, and most 
of them are standalone documents, except a few of them, 
such as SA-REST, are intended to be embedded within a 
host language, such as HTML.  

RAML is a YAML language that organizes a REST API 
as a tree rooted at a base URI (template or reference) that 
denotes a REST API entry point. Underneath the root are a 
set of URI (templates or references) that identify available 
resources. Each URI may be associated with the access 
methods that define the input and output representations. 
While RAML offers a minimalist structure and several 
interesting mechanisms, such as inline documentation, 
resource traits and types, it could lead to inadvertent 
violation of the REST constraints [6] by exposing a list of 
fixed resource locations. Also, RAML does not seem to 
have a way to tie the hyperlinks in hypertext representations 
with the URI templates in the REST API description tree. 
Without these ties, it would be difficult for a REST client to 
know the method to access a hyperlink and the response 
representation. 

Swagger has bindings to both YAML and JSON, and its 
REST API descriptive structure is very similar to RAML, 
except using a different set of vocabularies. For this reason, 
it has the same problems as RAML. 

RSDL is a XML language that organizes a REST API 
around a list of <resource> elements, each of which may 
contain elements <location> that define its URI, <link> that 
links it to other resources, and <method> that define the 
access. As a result, RSDL could also inadvertently violate 
the REST constraints [6] by exposing a fixed set of resource 
locations to the clients. Moreover, there are no ties between 
the <link> elements, the <method> elements, and the actual 
resource representations, such that a hyperlink in a 
representation can point to its access method and response 
representation.  

RADL is a XML language that organizes a REST API 
around the <resource> element that defines the resource 
location in the child element <uri> and resource methods in 
the child <interface> element. The request and response of a 
method are defined by <document> elements, which may 
contain <link> elements pointing to other <document> 
elements.  Like RSDL, this resource centric design could 
lead to fixed resource locations. Moreover, even if a client 
knows the interface of a resource, it may not know the 
method in the interface to access a hyperlink of a document, 
if two or more methods exist in the interface. 

Some open source toolkits are available for some service 
description languages [8][9][11] to generate client and 
server skeleton code in Java and node.js, such that the 
developers can edit the generated source code to complete 
the implementation.  However, when generating the client 

code, these toolkits do not separate client oracle and client 
agent, as far as we know.  

In addition, none of these service description languages 
supports nested REST API descriptions, such that a 
complete REST API description can be incrementally 
refined or composed seamlessly with the same mechanism. 
Breaking a large service description file into small parts can 
be helpful but it is still not sufficient, since the large service 
description is incomplete without the parts.  

III. HIERARCHICAL REST CHART 

We adopt the REST Chart model [6] as the basis for 
finding optimal client oracles. A major feature of REST 
Chart is the ability to combine the static aspects of a REST 
API, e.g. media types and link relations, with the dynamics 
of the REST API, e.g. the hypertext driven client-server 
interactions, into one coherent model. The REST Chart 
models a REST API as a Colored Petri Net where the places 
are “colored” by types. A typed place denotes a media type 
schema that defines valid resource representations. A 
transition denotes a valid resource interaction following a 
hyperlink in a schema. A token in a typed place denotes a 
valid resource representation defined by the schema. In this 
model, the connected schemas collectively define the 
hypertext media types of a REST API without creating any 
out-of-band dependences to the resource organization of the 
REST API.  

 

Figure 1. Example of a basic REST Chart 

A basic REST Chart defines the contract between the 
server and client for a single interaction. This contract 
consists of two server places and a client place connected by 
a transition, as illustrated in Figure 1. This REST Chart 
indicates that a client can transfer its representational state 
from the login place (server place) to the account place 
(server place) if the client can create a token for the 
credential place (client place). To make the transition, the 
server first puts a token x1 in the login place (i.e. returns a 
valid login page), to provide a login hyperlink to the client. 
Then the client selects that link and puts a token x2 in the 
credential place (i.e. enters valid username and password).  
At this point, the transition (solid bar) fires and the user 
credential is sent to the login resource identified by the 
hyperlink. On success, the server deposits a token x3 in the 
account place (i.e. returns the valid account information). 

login 

(x1) 

resource 

credential 

(x2) 

account 

(x3) 

input output 
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These token markings capture the essential interaction 
procedure as sanctioned by the REST Chart. 

The resource involved in the interaction is identified by 
a URI template, and there is no fixed resource location, 
relation, or interface that could lead to violations of the 
REST constraints R3-R5 [6]. A REST API with more than 
one interaction can be described by connecting appropriate 
places to form a large Petri-Net with a single entry place, 
which is the designated entry point of the REST API.  

 

Figure 2. Hierarchical REST Chart C1 that nests REST Chart C2 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. XML of REST Chart C1 that nests C2 by its interface 

 

 

 

 

Figure 4. XML of REST Chart C2’s interface places 

To promote reusability and modularization of REST 
API, this paper extends the REST Chart to Hierarchical 
REST Chart based on Hierarchical Petri-Net. In 
Hierarchical REST Chart, a typed place can contain another 
REST Chart, as shown in Figure 2 where place P of REST 

Chart C1 contains REST Chart C2. The REST Charts C1 
and C2 communicate as follows: 1) when place P receives a 
token of type P1, it is moved to place P1 of C2; 2) C2 will 
fire as usual; 3) when place P2 or P3 has a token, then the 
token is moved back to place P; 4) C1 will continue to fire 
as usual. In general, Hierarchical REST Chart can be nested 
to any number of levels. 

 

Figure 5. Top-level REST Chart for the network REST API with nested 

representations in double framed boxes 

 
Figure 6. REST Chart nested inside at the Network place of the top-level 

REST Chart 

To represent Hierarchical REST Chart, the XML of C1 
is modified but there is no modification to the XML of C2. 
In C1, we modify place P and its outgoing transitions in 
REST Chart C1 to point at C2. The relevant modifications 
to C1 XML are illustrated in Figure 3 in bold font, where 
the <representation> element has an attribute “href” that 
points to the location of REST Chart C2, and the two 
<transition> elements “P_t1” and “P_t2” use notations 
“P/P2” and “P/P3” to reference the places P2 and P3 
respectively in C2 that is nested in place P. The places P1, 
P2, and P3 of Chart REST C2 act as its interface to hide the 
topology of C2 as shown in Figure 4, such that the internal 
changes in C2 will not impact C1. 

C2 

                            C1 

P 

P1 

P2 

P3 

P1 

P2 

P3 

 

P_t1 

P_t2 

<rest_chart id="C2"> 

<representation id="P1" initial="true">…</representation> 

…internal topology… 

<representation id="P2">…</representation> 

<representation id="P3">…</representation> 

</rest_chart> 

 

<rest_chart id=”C1”> 

… 

<representation id="P" href="URI_to_C2" /> 

<transition id="P_t1"> 

    <input> 

      <representation ref="P/P2" link="P2_k1" /> 

    </input> 

    … 

</transition> 

<transition id="P_t2"> 

    <input> 

      <representation ref="P/P3" link="P3_k1" /> 

    </input> 

    … 

</transition> 

… 

</rest_chart> 
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We have successfully applied Hierarchical REST Chart 
to describe several practical REST APIs, including the 
Network Management REST API of OpenStack [16]. Figure 
5 depicts a top-level REST Chart with three nesting 
representations: Port, Network and Subnet, and the nested 
REST Chart for the Network is depicted in Figure 6, whose 
interface place Port and Subnet are used by C1 in transition 
t4 and t5 respectively. In both figures, the empty places 
indicate the client requests to dereference the hyperlinks. 

IV. OPTIMAL REST ORACLE 

REST Oracle is based on the idea that a REST client can 
be divided into two reusable functional modules: a client 
oracle that decides the resources to interact with, and a 
client agent that carries out the resource interactions 
instructed by the client oracle. The decisions made by a 
client oracle obviously depend on what goal the client is 
trying to achieve with the REST API. For example, a client 
oracle that tries to check bank account balance probably 
should select different resources than a client oracle that 
tries to deposit a paper check to an account.  

If a REST API is described by Hierarchical REST Chart, 
the goal of a client can be defined in terms of the places it 
needs to visit. For instance, when a client wants to deposit a 
check to an account, it must reach these places in the correct 
order: login place to authenticate itself, the place to deposit 
a check, the place to scan the check, the place to upload the 
check, the place to verify the information, and the place for 
the positive acknowledgement of the entire process.  

If there is more than one sequence of places to reach a 
goal, as most REST API does, a REST client needs to 
consider which path is optimal.  For this purpose, we map 
each transition in a Hierarchical REST Chart to a positive 
real number that represents the cost for a REST client to 
take that transition. The cost can be related to network 
latency, the message size, the processing time, or a 
combination of such factors that can be measured based on 
the environment in which the REST API operates. With the 
cost factor, an optimal path can be defined as the shortest 
path from the initial place to a goal place in a Hierarchical 
REST Chart. A uniform cost of 1.0 at every transition would 
produce an optimal oracle that takes the smallest number of 
messages to reach the goal place. 

 It is possible to find such shortest paths in REST Chart 
based on Petri-Net reachability algorithms [18] or 
coverability algorithms [19]. However, these algorithms are 
usually complex or may take exponential space as they 
compute all possible token markings in arbitrary Petri-Net. 
For this reason, we decide to use graph search algorithm, 
whose time complexity is not dependent on token markings 
and is polynomial to the number of places and transitions of 
a Petri-Net. 

To apply this approach, we convert the Hierarchical 
REST Chart to a nested directed graph. The server places 
become the vertices, and each edge is labeled with 
corresponding transition including the client place and a 
cost as illustrated in Figure 7. This process is recursively 
applied to the nested REST Charts. 

 

Figure 7. Transforming a REST Chart to a directed graph with cost 

It is often useful to direct a REST client to not just one, 
but a series of goal places when interacting with a 
workflow. To realize this requirement, we adapt Dijkstra’s 
Shortest Path algorithm [17] to the nested directed graph to 
find the shortest path from the initial place to the first goal 
place, and then repeat the algorithm from current goal place 
to the next goal place in the series, until the last goal place is 
reached. If a goal place is not reachable, then the process 
will stop. The shortest path found by this process is an 
oracle that reaches these goals in the given order.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Client Oracle algorithm adapted from Dijkstra’s Shortest Path 
Algorithm 

The Client Oracle algorithm is outlined in Figure 8. The 
core of the algorithm (lines 2-17) uses Dijkstra’s Shortest 
Path algorithm on the directed graph A, which is converted 
from the REST Chart C, to find a shortest path from an 
initial place Pi to a final place Pj and record the transitions 
on the path (e.g. s[X] = transition(Pk)). The rest of the 
algorithm (lines 18-24) reconstructs from the recorded 

server 

place Si 

client 

place Ci 

Tij 

server 

place Sj 

vertex 

Si 

vertex 

Sj 

Tij, Ci, cost 

1. Client_Oracle(C, A, Pi, Pj): Oracle 

2.   C: REST Chart  

3.   A: adjacency matrix for C  

4.   Pi: source place 

5.   Pj: target place 

6.   IN = {Pi} 

7.   For each Pk in P of C do d[Pk] = A[Pi,Pk] 

8.   While Pj not in IN do 

9.     Pk = a place X in P–IN with minimum d[X] 

10.     s[Pk] = C.transition(Pi) 

11.     IN += Pk 

12.     For each place X in P–IN do 

13.       dist = d[X] 

14.       d[X] = min(d[X], d[Pk] + A[Pk, X]) 

15.       if (d[X] < dist) then s[X] = C.transition(Pk) 

16.     End 

17.   End 

18.   T = s[Pj] 

19.   Oracle = (C.server_place(T), T, C.client_place(Y)) 

20.   While C.server_place(T) ≠ Pi do  

21.     T = s[T] 

22.     Oracle += (C.server_place(T), T, C.client_place(T)) 

23.   End 

24.   Return reverse(Oracle) 

25. End 

24Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing



transitions of the oracle as a sequence of triples 
(Server_Place, Transition, Client_Place). 

If a vertex Si contains a nested directed graph, then we 
will find the shortest paths from the initial vertex of the 
nested graph to all its final vertices, and add the total cost of 
each shortest path to the cost of the corresponding edge 
from Si. For example in Figure 2, the cost of the shortest 
path from P1 to P2 will be added to edge P_t1 of P, and the 
cost of the shortest path from P1 to P3 will be added to edge 
P_t2 of P. 

The following diagram (Figure 9) illustrates 3 shortest 
paths (oracles) superimposed on an automated coffee 
service REST Chart with uniform cost 1 labeled on the 
edges, and the corresponding oracles are summarized in 
Table I. 

 
Figure 9. Three client oracles (shortest paths) for three goal series 

TABLE I.  ORACLES FOUND FOR DIFFERENT GOALS 

 Goal Series Oracle 

1 {confirmation} 
(initial, T0, coffee_order) 

(order_payment, T1, payment) 

2 
{confirmation, 

order_deleted} 

(initial, T0, coffee_order) 
(order_payment, T1, payment) 

(confirmation, T4, delete_2) 

3 {notification} 

(initial, T0, coffee_order) 

(order_payment, T1, payment) 
(confirmation, T6, subscription) 

The oracle triples in Table I contain the crucial 
information to implement a fully functional oracle program. 
The server place in a triple specifies the representations that 
a REST client must understand to select a hyperlink.  The 
transition in a triple specifies the interaction with the 

selected hyperlink. The client place specifies the 
representations, e.g. a form definition, that the REST client 
must supply for that interaction. The only missing 
information is the actual representation, e.g. the form data, 
for the client place, which can be saved statically with the 
client oracle, or input to the client oracle dynamically when 
it is needed.  Alternative optimal paths to a goal can also be 
included in a client oracle for fail over or load balancing 
purposes.  

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

We have developed a Java implementation of the Client 
Oracle algorithm in Figure 8. The overall flow of the 
implementation is illustrated in Figure 10. Only the top-
level REST Chart is need by the tool, which will 
automatically load any nested REST Chart. Our Java tool 
implementation accepts a single or a series of goals. In 
addition to finding a client oracle for a given set of goals, it 
can also find all the client oracles from the entry place to all 
other places in a Hierarchical REST Chart. The output of the 
tool includes the oracles found for the top-level and the 
nested REST Charts. 

 

Figure 10. Java implementation of Client Oracle 

We ran our Java tool on two sets of Hierarchical REST 
Charts with randomly generated costs to find all possible 
client oracles from the initial place. The first set contains 4 
Hierarchical REST Charts nested in three levels, where the 
numbers in the parentheses indicate the number of places 
and transitions in the REST Chart: 
 Chart1 (8,7)  

 Chart3 (4,3) 
 Chart2 (6,5)  
  Chart4 (4,3) 

 The second set contains 4 REST Charts nested in 3 
levels as follows:  

ABC1 (8,14)  
 ABC2 (6,8)  
  ABC3 (5,7)  
  ABC4 (4,5) 

The execution time (in millisecond) includes parsing the 
multiple XML files into the internal data structure, finding 
all client oracles based on the data structure, and saving 
them to a log file. The times measured by Java function 
System.currentTimeMillis() averaged over 5 runs on 
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Parse REST 

Chart XML 

SAXParser 

Internal 

Data 

Structure 

Compute 

Client Oracle 

Source 

Targets 

Client 

Oracle 

Transition 

Cost File 
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a 32-bit Windows 7 machine (Intel i5 M560 dual core at 
2.67 GHz and 4.00 GB memory) are summarized in Table 
II, where the numbers in the parentheses indicate the total 
number of places (V) and transitions (E) in each REST 
Chart. 

TABLE II.  PERFORMANCE SUMMARY 

 average (ms) std 

Set 1 (22, 18) 59 6.8 

Set 2 (23, 34) 66 6.7 

Since the Dijkstra’s Shortest Path algorithm has 

O(E+V*log(V)) time complexity for a graph with E edges 

and V vertices, the time ratio of these two sets are very close 

to the time complexity ratio: 66/59=1.1 while 

(34+23*log(23))/(18+22*log(22))=1.3. For this reason, the 

the performance is satisfactory and consistent. More 

important than the performance measurements that can be 

improved in many ways, the results demonstrate that the 

approach is feasible in finding optimal client oracles with 

any Hierarchical REST Chart in polynomial time. 

VI. CONCLUSION 

The three main contributions of this paper are: 1) a 
structural approach to REST client design based on two 
reusable functional modules, i.e. a client oracle that selects 
hyperlink to follow for a given goal, and a client agent that 
carries out the interaction as instructed by the oracle; 2) the 
new modeling mechanism and XML language to support 
Hierarchical REST Chart, which is a significant 
improvement over the original REST Chart for REST 
service modeling; and 3) a path selection framework for 
finding the optimal REST oracle and the implementation of 
the path selection framework based on Dijkstra’s Shortest 
Path algorithm to Hierarchical REST Chart. Our approach 
has several advantages over a monolithic REST client 
design approach. Experimental results indicated that this 
approach is feasible and promising.  

For future work, we plan to continue improving the 
framework of the Hierarchical REST Chart and apply the 
REST oracle approach in automated goal-driven generation 
of fully functional REST clients based on the REST Chart 
description of REST API.   
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