
Developing and Adopting Trust-aware Collaborative Prediction of QoS
for Service-based Systems

Feng-Jian Wang, Chen-Yang Chen, Po-Han Chen
Dept. of Computer Science

National Chiao Tung University
Hsinchu, Taiwan

Email: {fjwang@cs.nctu.edu.tw, admachen@gmail.com, sihalon@gmail.com}

Abstract—An application (service) can be composed of existing
services. Generally, an appropriate service might be selected
according to the predicted Quality of Service (QoS) values,
and the most common approach for service selection is using
collaborative filtering for prediction. In this paper, we present a
trust-aware QoS prediction method for service selection, which is
inspired by trust relationships in social networks. We use direct
and indirect similarities of opinion among users, each of which are
combinations of belief, disbelief, and uncertainty. Then, we can
derive similarities among users, select similar users, and predict
the QoS value of a service. The experimental results show that the
accuracy of QoS values determined using our method is better
than that using other methods.

Keywords–Trust-aware; QoS Prediction; Service-Based Systems;
Opinion.

I. INTRODUCTION

Web services are widely adopted to provide various func-
tions in fields such as scientific research, e-commerce, health-
care, and aerospace. Developers can create applications with
low costs and short development times by adopting exist-
ing services. However, individual services to be adopted for
composition must meet not only functional but also non-
functional requirements such as response time, reliability, and
cost constraints. For better service selection, quality-of-service
(QoS) values can be used. Several approaches have been
presented to determine the QoS values of services [1]-[2].
Liang et al. [1] proposed a framework to predict QoS values
by extracting service features. Zhen et al. [3] adopted matrix
factorization to predict QoS. Zheng et al. [4] applied collab-
orative filtering (CF) to predict unknown QoS values. Their
approach selects similar users based on the Pearson Correlation
Coefficient (PCC). Moreover, two studies have been conducted
for improving their CF-based approach by applying factors:
neighborhood [2] and time-aware [5]. However, the predicted
results are inaccurate when the number of invocation records
is too low.

In general, similarity has propagative characteristics, so
similarity exploitation of users that reside at longer distances
is reasonable. To improve QoS prediction value accuracy,
we propose an approach based on the concept "the more
similar the users selected for prediction, the more accurate the
predicted QoS value". For example, consider three users having
the following properties: the first two users are not similar to
each other, but both are similar to the third. With a two-hop
distance [6], the first user may have some similarity to the
second; in other words, there is an indirect similar relationship
between them.

In our approach, prediction accuracy is improved based
on a social trust network. For example, we might be able
to know with certainty whether a proposition will be true
or false [7]. Both direct and indirect similarities comprise
the kernel adopted in our work. User can be trusted more

with higher direct similarity. Also, inspired by Josang’s paper
[8], "Opinion" has been introduced to express the extent of
belief in some events, and direct opinion can be defined to be
composed of three factors: uncertainty, belief, and disbelief. An
indirect opinion can be determined from the recommendation
of other users based on their direct opinion [8]. Finally, the
value for representing the indirect similarity of two users, can
be estimated according to other users' indirect opinions.

We then present an algorithm to select users based on direct
(i.e., PCC) and indirect similarity, and adopt their opinion to
help improve QoS prediction by modifying QoS values using
Resnick’s formula correspondingly. The experimental results
indicate that our approach is better than other approaches when
the number of invocation records is small [4].

The rest of the paper is organized as follows. Section II de-
scribes the background and related work. Section III introduces
our trust-aware approach. Section IV presents the experiments
and makes comparisons. Finally, Section V concludes the
whole paper and future work.

II. BACKGROUND

In this section, we describe service-based systems (SBS),
QoS calculations, social trust, and related QoS evaluation and
prediction approaches. Part A presents a review of QoS eval-
uation and prediction approaches for an application (service).
Part B introduces trust and related work in recommendation
systems.
A. QoS Evaluation and Prediction for SBS

SBSs are applications composed of individual services in
more than one website. From the viewpoint of a composition
workflow, a service can be treated as a process. During
SBS development, it is better to select the most appropriate
one from among web service candidates. For example, some
consumers prefer cheap services, while others prefer highly
reliable ones. It might be better to select a cheaper service if
budget is a major consideration. Moreover, functionality might
be quantified based on the values of necessary quality factors.
With the rising popularity of SBSs, an increasing number
of services with similar functions are supported by different
service providers. Therefore, it is better to adopt an effective
approach to evaluate Web services for selection, composition,
and so on [9].

Collaborative filtering approaches [4][10] are widely
adopted for predicting attribute values in recommendation
systems. QoS values can be predicted using QoS records of
different Web services from similar users, including failure
probability, performance, and cost. Usually, similarities be-
tween users are defined in terms of PCC [11], which is a
measure of the linear correlation between two variables X and
Y, as expressed by (1), where X is the mean of X, Y is the
mean of Y, and the coefficient value is between -1 and 1.

14Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing



r =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
(1)

Data sparsity is one of the main challenges for current
CF-based approaches [6]. When both numbers of users and
services increase quickly, the user-service matrix (which will
be explained later) commonly used in CF approaches could
become very large and sparse. The cold-start problem is
encountered because a new user invokes only a few services,
which may lead to insufficiency of QoS values. To alleviate
the cold-start problem, factors such as location [12] and time
[7][11] have been adopted to improve prediction.

In conventional CF approaches, similar users are located
within a distance of one hop. Similarity has propagative
characteristics, so information exploitation of users located at
longer distances would be reasonable. An example in Figure 1
shows that User 1 is similar to User 2, User 2 is similar to User
3, and both similarities are of one distance. It is reasonable to
treat both User 1 and User 3 as indirectly similar, and there is
a similarity of two-hop propagations between them [13].

Figure 1. Example of similarity propagation.

B. Social Trust in Cloud Computing and Recommendation
system

Social networks are used to reflect real-world relationships,
allow users to share information, and form connections among
users [14]. Chard et al. [14] designed a social cloud system and
implemented it. In the social cloud system, users can discover
storage services contributed by their friends based on existing
trust relationships. In the study of recommendation systems,
Singla et al. [15] applied data mining techniques to study the
relationships among users, and observed that users are more
likely to share interests with similar users. Pitsilis et al. [16]
announced that the performance of a recommendation system
can be enhanced based on potential trust among users.

Each of above trust models is adopted to solve one or
more specific problems in social cloud systems or recom-
mendation systems. In contrast, Subjective Logic [8] is a
general trust model for representation and reasoning of trust.
It operates on subjective beliefs and uses "opinion" to denote
the representation of a subjective belief. Pitsilis et al. [13] and
O’Donovan et al. [17] used subjective logic for reasoning the
trustworthiness among users, and their experiments indicate
that the accuracy of recommendation values can be improved
with trustworthiness.

Because of the incompleteness and inconsistency of knowl-
edge, it is impossible to know for sure whether a proposition
would be true or false [7]. Thus, opinion [8] has been defined
to express the extent of belief in some events, and the definition
includes three factors: belief (b), disbelief (d), and uncertainty
(u). The mathematical definition and computation of direct
opinion are described below.

Let ωi
e, useri’s opinion about an event e, be a three tuple,

where bie is useri’s belief in event e, die is useri’s disbelief
in event e, ui

e is useri’s uncertainty in event e and ωi
e =

{bie, die, ui
e}. Figure 2 indicates the profile of (2).

bie + die + ui
e = 1, {bie, die, ui

e} ∈ [0, 1]3 (2)

Figure 2. Opinion triangle.

Two operators are provided by Subjective Logic: recom-
mendation ⊗ in (3) and consensus ⊕ in (4) [8]. Both can
be used for deriving opinions regarding other users' opinions.
Based on recommendation ⊗, useri’s opinion about event e
due to userj is derived from userj’s recommendation. In (4),
let the degree of trust of useri to userj be bij . Then, bije ,
dije and uij

e are the belief, disbelief, and uncertainty values,
respectively, about e of useri being persuaded by userj and
can be determined as bij×bje. dije is determined by multiplying
bij and dje. userj’s certainty can be defined as 1 − uj

e (i.e.,
bje+dje). Let ωij

e be useri’s opinion about e recommended by
userj , and let ωi

j be useri’s opinion about the degree of trust
in userj . Mathematically, ωij

e can be defined as follows:
ωij
e = ωi

j ⊗ ωj
e = {bije , dije , uij

e },

where


bije = bij × bje
dije = bij × dje
uij
e = 1− bij × (1− uj

e)

(3)

The effect of the consensus operator ⊕ can help reduce
uncertainty by applying opinions from both useri and userj .
The consensus opinion ωi,j

e between useri and userj on event
e can be defined as follows [8]:

ωi,j
e = ωi

e ⊕ ωj
e = {bi,je , di,je , ui,j

e },

where


bi,je = (bieu

j
e + bjeu

i
e)/(u

i
e + uj

e − ui
eu

j
e)

di,je = (dieu
j
e + djeu

i
e)/(u

i
e + uj

e − ui
eu

j
e)

ui,j
e = (ui

eu
j
e)/(u

i
e + uj

e − ui
eu

j
e)

(4)

A consensus operator combines evidences for different
users, and several approaches [13][16][18][19] provide dif-
ferent methods to combine opinions based on the consensus
operator.

III. PROPOSED METHODOLOGY

This section presents an approach to provide a trust-aware
QoS method for predicting the QoS values of web services.
Figure 3 shows a global viewpoint of our approach, including
both input and output of two functions: 1) to help service
selection with QoS prediction 2) to help evaluate a new
composite service. Our work in this paper is focused on
function one (prediction part), which involves three stages: In
Stage 1, indirect similarity between two users is determined by
applying Subjective Logic [8]. In Stage 2, a set of similar users
is selected according to their direct and indirect similarities to

15Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing



Figure 3. Workflow of trust-aware collaborative QoS prediction and evaluation.

the designated user. In Stage 3, QoS values are predicted by
employing the QoS values of similar users. The three stages
are described below.

A. Stage 1: Indirect Similarity Computation
The first stage introduces the user-service matrix, for cal-

culating direct similarity and subjective logic [8] to determine
indirect similarity between users in our approach.

1) Direct Similarity Calculation
A user-service matrix is a 2-dimensional matrix, where

each row represents a distinct service to be invoked and each
column represents a distinct user. Each entry in the matrix
contains some recorded QoS values, which are usually called
invocation records.

In our work, such entries in a user-service matrix are de-
fined to contain three tuples, where the first tuple is reliability
value, second is response time, and third is throughput for the
corresponding service and invoker (user). The entry is called
null when all values inside it are zero. For example, user1 has
never invoked service2, and entry E1,2 is null. service1 has
been invoked by user1, and E1,1 contains (90%, 100ms, 24),
i.e., the reliability of service1 is 90%, response time is 100
ms, and throughput is 24 kbps.

By applying PCC [11], direct similarity between useri and
userj is computed by employing (5) according to QoS values
of the services invoked by both of them.

Sim(i, j) =

∑
s∈Si

⋂
Sj

(Ei,s−Ei)
T (Ej,s−Ej)√∑

s∈Si

⋂
Sj

(|Ei,s−Ei|)2
√∑

s∈Si

⋂
Sj

(|Ej,s−Ej |)2

(5)

Ei =
1

|si|
∑
s∈Si

Ei,s (6)

where i and j represent useri and userj separately,
Si and Sj are two sets of services invoked by useri
and userj separately, Si

⋂
Sj is a set of services

invoked by both of them and Ei is the average QoS
value of all services invoked by useri shown in (6).

2) Indirect Similarity Calculation
In general, the greater the number of services invoked

by both users, the greater is the number of common invo-
cation records owned by them. Consider two users useri and
userj . To determine useri’s uncertainty toward the notion that
"applying userj’s invocation records to predict QoS might
be useful," the number of services invoked by both users
may be adopted as evidence. When the number of common
invocation records is larger, useri might be more sure that
applying userj’s invocation records to predict QoS is useful.

Furthermore, the uncertainty can be determined using (7), a
formula derived from [6]:

u(i, j) = (ni,j + 1)−m (7)

where ni,j denotes the number of services invoked
by useri and userj . m is a positive number.

Practically, the number of services invoked is very small
[4]. If m increases (e.g., to be greater than 2), the uncertainty
determined using (7) decreases dramatically. Moreover, this
indicates the lower uncertainty is achieved when fewer services
are invoked by both users. Such an uncertainty value is
impractical, and it is better and reasonable to assign m as
1 in our experience.

In the case that two users have high similarity values (e.g.,
high PCC value), the invocation records of one user might be
useful for predicting the QoS value of the other user. To derive
useri’s belief value for "Applying userj’s invocation records
to predict QoS is useful," direct similarity (i.e., PCC value)
between useri and userj may be adopted as evidence. Such
a volume for useri can be defined according to (8), which is
derived from [6]:

b(i, j) =
1

2
(1− u(i, j))(1 + Sim(i, j)) (8)

In (8), the certainty value is 1 − u(i, j). When useri and
userj have a higher PCC value, they might have higher belief
as well. Thus, 1+Sim(i, j) is adopted to compute the weight
for deciding the ratio of belief to disbelief. Moreover, equation
(8) includes a one-half operation to restrict b(i, j) within the
interval [0,1]. Correspondingly, the disbelief of useri to such
an application can be determined according to (2) (i.e., b(i, j)+
d(i, j) + u(i, j) = 1).

An opinion can be direct or indirect. The value of a
direct opinion can be derived by (7) and (8), which compute
uncertainty and belief values [20]. The value of an indirect
opinion can be derived from the recommendations of other
users using the recommendation operator [8]. In (1), the PCC
value between useri and userj is assigned as zero when
neither of them invokes a service. In this case, userj is not
put into the set of similar users for predicting the QoS value of
useri. However, when both users are similar to a third user, the
invocation records of userj may be helpful for predicting the
QoS value of useri because the similarity can be propagated
via the third user [13]. To introduce the effect of indirect
similarity, indirect opinion may be adopted.

An example in Figure 4 shows how to derive an indirect
opinion. In the example, the belief values of trust degree for
Useri to (Userk, Userl and Userm) and (Userk, Userl
and Userm) to Userj are both larger than a threshold. Thus,

16Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing



indirect opinion between Useri and Userj , ωi(k,l,m)
j , can be

determined using the recommendations of Userk, Userl, and
Userm [8].

Figure 4. Example for Determining Indirect Opinion.

The indirect opinion of two users useri and userj can be
defined as the consensus of direct opinions of users who have
direct opinions about both aforementioned users. According to
the example shown in Figure 4, ωi(k,l,m)

j can thus represent
the indirect opinion from Userj to Userj . The indirect simi-
larity between useri and userj can determined using indirect
opinion by applying (9). Figure 5 shows the distribution of
indirect similarity values and indicates that the growth rate of
belief to indirect similarity value depends on the uncertainty
value.

Sim′(i, j) = 2× (1− ui
j)× bij − 1 (9)

1) where ui
j is the uncertainty value and bij is the

belief value for useri to userj . 2) direct opinions are
obtained from users selected following the process
described in the next paragraph. 1 − ui

j is useri’ s
certainty, employed to be a weighting value for ad-
justing the growth rate of belief to indirect similarity
by multiplying bij and (1−ui

j). Then, we define Sim′
as multiplication by 2 and subtraction of 1 to restrict
its value to [-1,1].

To select appropriate users to recommend the opinion,
we define an opinion threshold (OThreshold) between 0 to
1 in order to determine the users whose opinions can affect
the designated user effectively. OThreshold is helpful for
predicting QoS.

Figure 5. Distribution of (9).

Algorithm 1 details the procedure for deriving indirect
similarity. Lines 3-7 select the users whose belief values from
Useri to them and from them to Userj are larger than
OThreshold and place them into TrustUserSet. Indirect
opinion between Useri and Userj is initialized by their
direct opinion. Lines 8-11 represent a loop that considers all
recommendations from the users in the trust user set and
determines indirect opinion of each user for Useri to Userj .
At each turn of the loop, the indirect opinion value due to
or via recommendation of Userl is determined using the
recommendation operator at line 9. Each indirect opinion is

combined with the consensus operator at line 10. Because ui
j

and bij are two attributes in ωi
j , Sim′(i, j) is computed after

ωi
j is computed.

Algorithm 1 Deriving Indirect Similarity

Input: Useri, Userj and OThreshold
Output: Indirect similarity Sim′(i, j) between users

1: function CALC_INDIRECTSIMILARITY()
2: TrustUserSet← ∅ ,wi

l ← ∅, wi
j ← ∅ ;

3: for each user Userk do
4: if both b(i, k), b(k, j) > OThreshold then
5: TrustUserSet← TrustUserSet

⋃
{Userk}

6: end if
7: end for
8: for each user IN TrustUserSet named as Userl do
9: ωi

l ← ωi
l ⊗ ωl

j
. recommended by Userl with recommendation operator

10: ωi
j ← ωi

j ⊕ ωi
l . ωi

l is added to ωi
j by consensus operator

11: end for
12: return Sim′(i, j) . defined in (9)
13: end function

Figure 6. Deriving Indirect Similarity

B. Stage 2: Similar Users Selection

To select similar users who may help predict QoS values
for the designated user, the first step is to divide users into
two groups according to a given number k, where the PCC
values between the first-group users (i.e., similar users) and
the designated user are larger than those between the second-
group users and the designated user. In general, QoS value
predictions are inaccurate when k is unsuitable. For example,
if the value of k is too large, users not similar to the designated
user might be selected. Because there is no effective method
to determine a suitable k value for division currently, an
eigenvalue k can be adopted to be the number of first-group
users instead. We study the influence of k and find that QoS
values are more accurate and suitable when k is set to be
within a specific range (set as 15 here). Besides, in a cold-start
situation, PCC may not be able to find an adequate number of
similar users. Our approach adopts indirect similarity values to
improve user selection in the case there are less than k users
selected owing to direct similarities. The selection approach
associated with indirect similarity is the same as the first one
except 1) the users are those who were not selected before,
2) selection data is indirect similarity, and 3) amount being
selected is equal to k–the number of users selected in the first
stage.

Algorithm 2 is designed for this selection. Each user in
AllUsers contains PCC values and indirect similarity values,
determined using (5) and Algorithm 1, respectively, and the
calculations are set in lines 2-5 of said algorithm. Lines 7-14
constitute a while loop for selecting similar users according
to their PCC values to Useri. Lines 16-23 perform selection
based on indirect similarity if the first while loop cannot get
k users.
C. Stage 3: QoS Prediction

The QoS value predictions are determined according to
(10) based on Resnicks's formula [11][21]. Let Êi,s be useri’s
QoS value prediction for services, Ei and Ej represent the
mean QoS values of all services invoked by Useri and Userj

17Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing



Algorithm 2 Selecting Similar Users

Input: Useri, an eigenvalue k, and AllUsers
Output: a set of similar users to Useri

1: function SIMILAR_USER_SELECTION()
2: for each user named Userj in AllUsers do
3: Userj .Similarity ← Sim(Useri, Userj)
4: Userj .IndirectSimilarity ←

Calc_IndirectSimilarity(Useri, Userj , OThreshold)
5: end for
6: select_count = 0
7: while select_count < k do
8: Fetch a user from AllUsers who has the greatest

PCC value and is not in SimilarUsers, and
name it as Userj

9: if Userj .Similarity ≤ 0 then
10: break
11: end if
12: SimilarUsers ← SimilarUsers

⋃
{Userj}

13: select_count = select_count+ 1
14: end while
15: if select_count < k then
16: while select_count < k do
17: Fetch a user from AllUsers who has the

greatest indirect similarity value and is not
in SimilarUsers, and name it as Userj

18: if Userj .IndirectSimilarity ≤ 0 then
19: break
20: end if
21: SimilarUsers ← SimilarUsers

⋃
{Userj}

22: select_count = select_count+ 1
23: end while
24: end if
25: return SimilarUsers

26: end function
Figure 7. Selecting Similar Users

respectively, and S(i) be a set of users similar to useri gen-
erated by Algorithm 2 and Wi,j be a weight value indicating
the similarity between useri and userj . Here Similarityi,j
refers to the similarity between useri and userj .

Êi,s = Ei +
∑

j∈S(i),Ej,s 6=null

Wi,j × (Ej,s − Ej) (10)

Wi,j =
Similarityi,j∑

k∈S(i) Similarityi,k
(11)

Algorithm 3 is designed to predict the QoS value of useri.
In the algorithm, a set of similar users is selected at line 2 by
applying Algorithm 2. The predictive QoS value is initialized
with the average QoS value of all services invoked by Useri in
line 3. Lines 4-9 constitute a loop for updating the predictive
QoS value according to the QoS values of all similar users for
Services. Finally, line 10 returns the predicted QoS values of
Services invoked by useri.

IV. EXPERIMENTS FOR QOS PREDICTION

In this section, we introduce our experiments and results,
and compare the results with those from existing works. Part A
describes the technique for comparing the evaluation results of
QoS prediction. Then, we discuss the influence of parameters
such as the number of invoked services, eigenvalue k, and
opinion threshold in Part B.

Algorithm 3 Predicting QoS values of a service

Input: Useri, and Services
Output: predicted QoS values of Services for Useri

1: function QOS_PREDICTION()
2: similar_users← Similar_User_Selection(Useri, k)

3: Êi,s ← Ei

4: for Userj in similar_users do
5: if Ej,s 6= null then
6: Wi,j ← Similarityi,j∑

k∈S(i)
Similarityi,k

. by (11)

7: Êi,s ← Êi,s +Wi,j × (Ej,s − Ej)
8: end if
9: end for

10: return Êi,s

11: end function
Figure 8. Predicting QoS values of a service

A. Comparison of Prediction Accuracy
To evaluate the accuracy of a QoS prediction technique,

Mean Absolute Error (MAE) [4] is adopted for calculating the
difference between real and predicted QoS values. In general,
the smaller the calculated MAE value, the more accurate is the
QoS prediction for a service. MAE is defined as follows [22]:

MAE =

∑
S∈PSi

|Êi,s − Ei,s|
|PSi|

(12)

where PSi is a set of services whose QoS values are
derived by the prediction for useri, and Ei,s and
Êi,s is a pair of real and predicted QoS values of
Services for useri respectively.

In our evaluation work, the calculation of real QoS values
is based on the invocation records collected in [23], and widely
adopted as real QoS values for evaluation of QoS prediction
methods [4][12][20]. The data in [23] were obtained from
www.wsdream.net, a service broker website, and they represent
100 real-world Web services. To monitor the QoS values of
these services, the system deployed 150 service consumers
on Planet-Lab [24] distributed across 20 countries to invoke
the services, and recorded 1,500,000 Web service invocations
executed a hundred times by 150 distributed users on 100 Web
services. Each invocation record indicates the QoS values of a
service invoked by a user, and includes three items: response
time, throughput, and execution state (i.e., failure or success).

The computation methods for QoS values are quality
dependent. For example, reliability can be determined based
on execution state. To minimize errors in our experiments,
the response time of a service for a user was defined as the
average of the response time from all invocation records of
the service for the user. So does throughput, which is defined
as the average of all throughput value. The reliability value of
servicej for useri is calculated according to (13):

Ri,j =
Si,j

Ni,j
(13)

where Si,j is the successful invoking times of
servicej , and Ni,j is the invoking times of servicej .
That is, a smaller Ri,j means higher reliability.

Given that each user invokes some services only in the real
world, the user-service matrix is sparse. However, it is difficult

18Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing



TABLE I. PREDICTION ACCURACY COMPARISON

to derive appropriate sparse matrixes (e.g., in different density)
to carry out the experiments from real world databases. In
our experiment, the QoS values of 100 Web services invoked
by 150 users calculated according to the invocation records
are stored in a 150 × 100 user-service matrix called answer
matrix and we define an experimental sparse matrix, a 150×
100 user-service matrix. The QoS values in the experimental
sparse matrix are constructed based on the answer matrix. For
example, if the density of the sparse matrix is 5%, 5% of the
entries in the experimental sparse matrix are filled with real
QoS values from the answer matrix and the others are filled
with NULL. The experimental sparse matrix is built in steps:

1) A new user-service matrix is built and all entries are
set to NULL.

2) Let NE be the number of entries (e.g., 15,000 in our
experimental sparse matrix), density be the density
of the experimental sparse matrix, and NS be the
number of selected entries given as multiplication of
NE and density. A set of numbers SN is derived
randomly by selecting NS non-repetitive numbers
within the interval [1,NE].

3) The indexes of selected entries according to the
number RN in SN can be derived by (14) and (15)

4) The selected entries the of experimental sparse matrix
are filled with the QoS values contained in the
corresponding entries of the answer matrix.

indexservice = (RN ÷ columns of the matrix) + 1 (14)

indexuser = RN % rows of the matrix (15)

To compare the accuracy of our approach with other
approaches, we implemented a sequence of methods based
on 1) user-based CF approach using PCC (UPCC) [22], 2)
item-based CF approach using PCC (IPCC) [25], 3) hybrid
PCC (HPCC) [26], 4) user-mean (UMEAN), 5) item-mean
(IMEAN), 6) matrix factorization (MF) [3] and 7) our trust-
aware QoS prediction approach to predict the QoS values of
services. MAE values were calculated based on the predicted
QoS values and QoS values from the answer matrix. To study
the accuracy under different densities, experimental sparse
matrixes of 5%, 10%, and 15% were adopted as the training
matrices. To minimize errors, each approach was looped 50
times for 10 randomly selected users, and the average MAE
was calculated. Table I summarizes the contributions of our
work:

1) Our QoS prediction approach obtains better pre-
diction accuracy in terms of reliability values and
response time for densities of 5%-15%. However,

MAE values of reliability are accurate and so close
in these applied methods because the calculation of
service reliability are really high in our dataset.

2) The prediction accuracy in terms of throughput was
also better than that of other methods under 5% den-
sity. However, when the number of invocation records
is large (i.e., density is 10% or 15%), the matrix
factorization [3] and hybrid PCC [26] approaches
obtained better prediction accuracy for QoS attributes
with values close to each other for different users
(e.g., throughput).

3) A few previous studies [3][26] dealt with the predic-
tion of one or two distinct QoS attributes. However,
our approach is suitable for three QoS attributes.

B. Impacts Observed for Interval Factors
Table I also shows that the MAE values of each QoS

attribute are in a distinct range in our approach (e.g., the
MAE values of reliability and response time are 0.035-0.0371
and 794-1363, respectively). Observation on line charts with
the MAE values in a graph is difficult because the range
differences are large. We adopted Normalization Mean Ab-
solute Error (NMAE) [2] to depict the line chars for studying
the influence of number of invoked services, k, and opinion
threshold, as follows [2]:

NMAE =
MAE∑

S∈PSi

Êi,s

|PSi|

(16)

The number of services invoked by a user may change
the prediction accuracy in our approach. To study this effect,
the number of services was varied from 5 to 50, and the data
were incremented by 5. Figure 9 shows the NMAE values
of response time, throughput, and reliability in our approach.
Their values declined from 0.449 to 0.288, 0.24 to 0.01, and
0.020 to 0.015, respectively, thus indicating that our approach
can be improved when a (designated) user invokes a greater
number of services.

To study the influence of eigenvalue k on the prediction
accuracy, k was varied from 2 to 20. Figure 10 shows that the
NMAE value of our approach is the smallest when k was 12
or 14. This indicates that the predicted QoS values were more
accurate when eigenvalue k was within a specific range.

To study the influence of opinion threshold (OThreshold)
on the prediction accuracy, the data were detected in the
opinion threshold at increments of 0.1 from 0.1 to 0.9. Figure
11 shows that the NMAE value obtained using our approach
is the smallest when the opinion threshold is 0.2-0.4. This
indicates that the predicted QoS values were more accurate
when the opinion threshold was within a specific range.

19Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing



Figure 9. Influence of invoked services. Figure 10. Influence of eigenvalue k. Figure 11. Influence of opinion threshold.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a trust-aware approach to predict
QoS values of services more accurately. In our approach, the
opinions of selected users are used to improve PCC values.
These opinions are selected based on three factors, namely,
belief, disbelief, and uncertainty, of the designated users who
share a greater number of common services. Moreover, we
introduce the indirect similar property to help select users for
cold-start services. The experiments indicate that our approach
provides better prediction for service selection.

There are at least two issues that warrant further study:
1) Only three QoS attributes were adopted in our approach.
The accuracy of QoS values might be improved by applying
a greater number of QoS attributes. 2) Indirect similarity
might improve with the use of additional features such as user
location, reputation of provider, and user preferences.

REFERENCES
[1] Z. Liang, H. Zou, J. Guo, F. Yang, and R. Lin, “Selecting web service

for multi-user based on multi-qos prediction,” in Services Computing,
2013 IEEE International Conference on, June 2013, pp. 551–558.

[2] J. Wu, L. Chen, Y. Feng, Z. Zheng, M. C. Zhou, and Z. Wu, “Predicting
quality of service for selection by neighborhood-based collaborative
filtering,” Systems, Man, and Cybernetics: Systems, IEEE Transactions
on, vol. 43, no. 2, March 2013, pp. 428–439.

[3] Z. Zheng, H. Ma, M. Lyu, and I. King, “Collaborative web service qos
prediction via neighborhood integrated matrix factorization,” Services
Computing, IEEE Transactions on, July 2013, pp. 289–299.

[4] Z. Zheng and M. Lyu, “Collaborative reliability prediction of service-
oriented systems,” in Software Engineering, 2010 ACM/IEEE 32nd
International Conference on, vol. 1, May 2010, pp. 35–44.

[5] Z. Liu, Z. Liu, and T. Lu, “A location and time related web service
distributed selection approach for composition,” in Grid and Cooperative
Computing, 9th International Conference on, Nov 2010, pp. 296–301.

[6] G. Pitsilis and S. J. Knapskog, “Social trust as a solution to address
sparsity-inherent problems of recommender systems,” Recommender
Systems and the Social Web, 2009, pp. 33–40.

[7] A. JÃÿsang, “Reliability analysis with uncertain probabilities,” in Pro-
ceedings of the 4th International Conference on Probabilistic Safety
Assessment and Management (PSAM4). Springer, Heidelberg, 1998.

[8] A. Jøsang, “A logic for uncertain probabilities,” Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., vol. 9, no. 3, Jun. 2001, pp. 279–311.
[Online]. Available: http://dl.acm.org/citation.cfm?id=565980.565981

[9] Z. Zheng, Y. Zhang, and M. Lyu, “Investigating qos of real-world web
services,” Services Computing, IEEE Transactions on, vol. 7, no. 1, Jan
2014, pp. 32–39.

[10] R. Burke, “Hybrid recommender systems: Survey and experiments,”
User Modeling and User-Adapted Interaction, vol. 12, no. 4, Nov. 2002,
pp. 331–370.

[11] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl,
“Grouplens: An open architecture for collaborative filtering of netnews,”
in Proceedings of the 1994 ACM Conference on Computer Supported
Cooperative Work, ser. CSCW ’94. ACM, 1994, pp. 175–186.

[12] J. Zhu, Y. Kang, Z. Zheng, and M. Lyu, “Wsp: A network coordinate
based web service positioning framework for response time prediction,”
in Web Services (ICWS), 2012 IEEE 19th International Conference on,
June 2012, pp. 90–97.

[13] G. Pitsilis and S. J. Knapskog, “Social trust as a solution to address
sparsity-inherent problems of recommender systems,” in Proceedings of
2009 ACM Conference on Recommender Systems, 2009, pp. 33–40.

[14] K. Chard, S. Caton, O. Rana, and K. Bubendorfer, “Social cloud: Cloud
computing in social networks,” in Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, July 2010, pp. 99–106.

[15] P. Singla and M. Richardson, “Yes, there is a correlation: - from social
networks to personal behavior on the web,” in Proceedings of the
17th International Conference on World Wide Web, ser. WWW ’08.
New York, NY, USA: ACM, 2008, pp. 655–664. [Online]. Available:
http://doi.acm.org/10.1145/1367497.1367586

[16] G. Pitsilis and L. Marshall, “Modeling trust for recommender systems
using similarity metrics,” in Trust Management II, ser. The International
Federation for Information Processing, Y. Karabulut, J. Mitchell, P. Her-
rmann, and C. Jensen, Eds. Springer, 2008, vol. 263, pp. 103–118.

[17] J. O’Donovan and B. Smyth, “Trust in recommender systems,” in
Proceedings of the 10th International Conference on Intelligent User
Interfaces, ser. IUI ’05. New York, NY, USA: ACM, 2005, pp. 167–
174. [Online]. Available: http://doi.acm.org/10.1145/1040830.1040870

[18] A. Jøsang, R. Hayward, and S. Pope, “Trust network
analysis with subjective logic,” in Proceedings of the 29th
Australasian Computer Science Conference - Volume 48,
ser. ACSC ’06. Darlinghurst, Australia, Australia: Australian
Computer Society, Inc., 2006, pp. 85–94. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1151699.1151710

[19] A. Josang and T. Bhuiyan, “Optimal trust network analysis with
subjective logic,” in Emerging Security Information, Systems and Tech-
nologies, 2008. SECURWARE ’08. Second International Conference
on, Aug 2008, pp. 179–184.

[20] Y. Zhang, Z. Zheng, and M. Lyu, “Wspred: A time-aware personalized
qos prediction framework for web services,” in Software Reliability
Engineering, IEEE International Symposium, Nov 2011, pp. 210–219.

[21] P. Resnick and H. R. Varian, “Recommender systems,” Commun.
ACM, vol. 40, no. 3, Mar. 1997, pp. 56–58. [Online]. Available:
http://doi.acm.org/10.1145/245108.245121

[22] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proceedings
of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, ser. UAI’98. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998, pp. 43–52. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2074094.2074100

[23] Z. Zheng, Y. Zhang, and M. Lyu, “Distributed qos evaluation for real-
world web services,” in Web Services (ICWS), 2010 IEEE International
Conference on, July 2010, pp. 83–90.

[24] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “Planetlab: An overlay
testbed for broad-coverage services,” SIGCOMM Comput. Commun.
Rev., vol. 33, no. 3, Jul. 2003, pp. 3–12. [Online]. Available:
http://doi.acm.org/10.1145/956993.956995

[25] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based
collaborative filtering recommendation algorithms,” in Proceedings of
the 10th International Conference on World Wide Web, ser. WWW
’01. New York, NY, USA: ACM, 2001, pp. 285–295. [Online].
Available: http://doi.acm.org/10.1145/371920.372071

[26] Z. Zheng, H. Ma, M. Lyu, and I. King, “Wsrec: A collaborative filtering
based web service recommender system,” in Web Services, 2009. ICWS
2009. IEEE International Conference on, July 2009, pp. 437–444.

20Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing


