
An Application of Stochastic Models To Monitoring of Dynamic Web Services

Marcelo De Barros, Manish Mittal
Bing Customer Experiences Engineering

Microsoft Corporation

Redmond, USA

marcelod@microsoft.com, manishm@microsoft.com

Abstract - Web search engines are very dynamic in

nature; not only are the backend and data powering the site

evolving, but the frontend is always adapting to different

browsers, devices and form-factors, and experiments are often

running in production. In fact, when it comes to User

Experience (UX), it is likely that users are always falling into

some live experiment in production: variation of colors, fonts,

typography, different Java Scripts and so on. Issues (software

bugs) can occur on the live site for very particular contexts,

where a context is defined as a particular configuration of

browser, market and experiment. As an example, a JavaScript

error can occur on a certain page, for certain types of queries,

against a certain market on a particular browser. The problem

that we’re trying to solve is to devise a probabilistic

methodology to monitor and detect these particular software

bugs in production environments by maximizing the chances of

detecting the most relevant issues from the application users’

standpoint. For this purpose, we at the Microsoft Bing

Experiences Team developed a concept of synthetic

exploratory monitoring that can focus on the important

features on the sites and pages, and use invariants (conditions

that should always hold true, or always hold false, for specific

contexts), such as security-related invariants, to detect

potential anomalies in the current context. We make use of

stochastic models to ensure maximum relevant coverage of

contexts and devices. We use the power of the Selenium testing

framework to drive end-to-end automation on browsers and

devices, the notion of exploratory tests, and a set of heuristics

and invariants (text-based and image-based) that can auto-

detect problems on the live site in very particular contexts. We

compare and contrast two machine–learning models: Markov

Chains and Time-Based Artificial Neural Networks (ANNs).

We implemented the idea explained in this paper to monitor

large-scale web sites such as Bing Search Engine where alerts

are generated automatically whenever the anomaly conditions

are detected. The solution is easily expandable to other sites.

We envision, as future work, moving this technology to the

cloud that would allow easy customization of all parameters

(browsers used, definition of the finite-state machine, heuristics

and invariants). This paper explains the fundamental

principles to create a stochastic monitoring model and

demonstrates how to apply the principles to large-scale web

sites and services. We will utilize Bing Search Engine to

illustrate the techniques explained here.

Keywords-software testing; large-scale services; quality of

services; markov chains; artificial neural networks; selenium;

testing in production; monitoring; stochastic models

I. SCALING SYSTEMS TO DEVICES, BROWSERS AND

MARKETS

In today’s world, whenever a new online system is

launched, it is usually available across several devices

(devices that display web contents), browsers and markets

instantaneously and simultaneously. This poses a significant

development challenge since:

a) Different browsers, devices and markets have

specific requirements and resources that may differ

from each other, and there is no enforced global

standard across them.

b) Support for Cascading Style Sheet (CSS) and

HTML5 compatibility and support vary

significantly from browser to browser.

c) The form-factor for the different devices varies

significantly. Because of smaller screens, code

might need to be optimized to show the user

different data or presentation of the information.

Despite the development and adoption of

responsive web design techniques [10], very often

there is still a need for small code customizations.

For instance, some devices are large enough to

display data into two vertical panes (columns),

where others require the use of a single pane.

d) Markets are also another important dimension

given the differences in language grammars as well

as geo-cultural differences. Large-scale systems

such as Google, Bing and Facebook are always

dealing with such challenges.

Many large-scale web sites are now making use of

“flights” or “experiments”. An experiment is a way to

expose a percentage of the site’s users to a different

treatment of the site (which can be differences in the User

Interface, middle-tier, backend or even data differences) in

order to collect early feedback and then make an informed

decision about the upcoming features for the system. For

example, a search engine might want to expose 2% of its

users to a SEarch Results Page (or SERP) that shows only

eight “blue links” by default instead of ten blue links. The

telemetry for that experiment is then collected and analyzed

against the “control” (the ten blue links) and data analysts

work on distilling the positive and negative aspects of the

experiment, where positive aspects correspond to user

metrics moving towards the expected direction (such as

page load time being reduced, user abandonment reduced,

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

mailto:marcelod@microsoft.com

increased dwell time [16], amongst others) and negative

correspond to the converse. Experiments can overlap with

each other. At any point in time, there might be tens or even

hundreds of experiments running in production

environments [15].

The paper is organized as follows: in Section I, we

describe the complexities involved with monitoring large-

scale services. In Section II, we describe the current state of

the art. In Sections III and IV, we introduce the ideas of

Markov Chains and Selenium, respectively. In Sections V,

we define the concept of exploratory runs. In Section VI, we

define the concept of subscription-based validation methods.

In Section VII, we devise the strategy for exploratory runs

utilizing a stochastic model (such as Markov Chains),

Selenium and the pre-defined concept of subscription-based

validation methods to solve the monitoring problem. In

Section VIII, we explore other stochastic models that can be

used to solve the monitoring problem, such as Artificial

Neural Networks. In Section IX, we provide a summary of

the work as well as the direction for future research.

II. MONITORING COMPLEXITIES AND STATE OF THE ART

Since the code is somewhat customized to different user

experiences (experiments, browsers, devices and markets),

there is a possibility of encountering specific issues on any

of these and worst, on combination of these dimensions: a

specific problem may only happen on an experiment, on a

given browser, on a given device and for a particular

market. Some simple lower-bound calculations show the

complexity and the scale of this problem. If we have around

30 experiments, 30 browsers, 30 devices and 200 markets,

the number of possible combinations (assuming no overlaps

on the experiments) becomes 30*30*30*200 = 5,400,000

different permutations. Even using well known monitoring

techniques, such as Gomez [2] or Keynote [3], it becomes

impossible to monitor all these variations. In reality, though,

most of these contexts are either not significantly crucial to

the business or are not valid at all (for example, most of the

time experiments are limited to either a group of markets or

a group of browsers), hence understanding the valid and

important permutations can prune the combinatorial space

considerably. Notice the usage of the terms “testing” and

“monitoring” are interchangeable in this paper, both

indicating the ability to proactively detect anomalies in real

production environments.

The current state of the art for monitoring strategies consists

basically of three approaches:

a) Synthetic Transactions [2]: market tools such as

Keynote and Gomez give the capability of building custom,

synthetic transactions to monitor particular features of web

services and sites. However, synthetic transactions only

target very limited set of features that need to be known a-

priori which limits its effectviness when monitoring

complex and dynamic systems. They are very inefective for

highly dynamic services.

b) Performance Counters [14]: web services

developers have the ability to implement performance

counters on the server side which can give indications of

potential system malfunctions. For example, a performance

counter that tracks “75%tile server side latency” can be the

initial lead to investigate real user issues with the service (in

case of spikes or drops, for example). However,

performance counters have the disadvantages that they

usually fail to track client-only problems (such as javascript

errors) and since they aggregate data across all the users, it

only detects problems when a signficant number of users are

affected by the problem – issues that affect only a very

small percentage of users usually go undetected by

performance counters.

c) Telemetry: telemetry consists of analysis of time

series of logs from user activity as well as system probes in

order to detect anomalies in production [12]. Although

telemetry analysis has the capability of detecting widespread

issues with one’s service, it is not a real-time monitoring

system since the collection, aggregation and availability of

the data are tasks that usually take signficant time to be

performed, limiting its ability in detecting anomalies in a

timely manner.

 None of the current state of the art methoodologies hence

is comprehensive enough to actually model the user’s

behavior and detect in real-time relevant anomalies based on

the true users’ patterns observed in production

environments. The work described in this paper is an

attempt to address this gap.

III. MARKOV CHAINS

We use Markov Chains [4] to model the behavior of the

system, limiting the monitoring space to the most probable

paths. A Markov Chain is a type of stochastic model based

on the concept of Finite-State Machines [17]) that

undergoes transitions from one state to another on a state

space. It is a random process usually characterized as

memory-less: the next state depends only on the current

state and not on the sequence of events that preceded it. For

search engines, the states in a Markov Chain are web site

landing pages, such as: the search engine Home Page, the

search engine Web Results Page, Videos Results Page,

Images Results Page, Settings Page, and any the other page

type included in the search engine substrate.
The actions that lead to a state transition are the different

actions that can be performed by the end user, mainly
Searches, Clicks, Tabs, Hovers, and so on. With enough
anonymous log-based information about the different states
and actions, one can build a comprehensive Markov Chain
diagram modelling the proper behavior of the average user of
the web system in questions. The assumption is that most
web sites nowadays log information about their users’
iterations with the page (in an anonymized manner). The
picture below (Figure 1) gives an example of a state
transition, and the table below (Table I) gives an example of
a simple Markov Chain. Notice that the key aspect here is

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

that each action is associated with a certain probability (the
“Probability Weightings” column in Table I), calculated
based on the number (percentage) of users who triggered that
respective action based on captured data. For example, the
second row in Table I shows the state as being the “home
page” and the probability weighting as being “20%”. The
semantics of such information is that when a user lands (or
is) in the “Home Page” state, there is a probability of 20%
that the user will perform the action of “typing a query” and
hitting enter. The third row tells us that if the user is in the
same state (“Home Page”) there is also a probability of 15%
that the user will perform the action of clicking on the “Top
News” link. The table only shows a partial view of the
probability weighting distribution.

Figure 1. Example of state transitions

TABLE I. EXAMPLE OF MARKOV CHAINS STATES AND

WEIGHTED TRANSITIONS
Initial State Final State Action Probability

Weightings

Home Page Search Results

Page

Typed Query 20%

Home Page Search Results

Page

Clicked on

“Top News”

15%

Home Page Home Page Refresh the

Page

5%

Search

Results Page

Search Results

Page

Typed Query 60%

Search

Results Page

Non-Search

Page

Clicked on

Ads

15%

Search

Results Page

Non-Search

Page

Clicked on

Algo Result

33%

Images

Results Page

Videos Results

Page

Click on the

Videos link

10%

Images

Results Page

Images Results

Page

Click on

Related
Images

25%

Images

Results Page

Images Results

Page

Click on

Related

Entities

7%

Images

Results Page

Images Results

Page

Refresh the

Page

13%

The granularity of the states and the actions is

something that varies depending on the applications. In the

example above, the Typed Query action could certainly be

further refined by specifying the category/class of query

being typed, such as “Local Query”, “Adult Query” or

“Electronics”. Likewise the “clicked on” event can be

grouped into categories (such as “clicked on Algo Results”)

or further refined down to the domain of the link being

clicked (such as “clicked on an amazon.com link”). The

important aspect is to create the chain in such a way that it

truly encompasses the users’ behavior but keeping it concise

enough to prune the overall search space. For our project,

we also added some random aspects to our testing in order

to provide extra coverage. For example, when the action is

“Send a new query” we take a random query from a pool of

pre-defined queries, usually a combination of head and tail

queries (See “Web Search Queries” [9]).

Some states are outside the scope of the pages being

tested. For example, if the scope being tested is all the pages

under the bing.com domain, any site outside that domain

would be considered an out-of-scope state. It is important to

model the chain in such a way that once out of the scope,

actions will lead to in-scope states (such as clicking the back

button, or navigating back to the initial state).

With the Markov Chain created, the monitoring approach

can be tweaked to randomly follow the paths and

probabilities specified by the chain. Notice that the approach

will necessarily focus on the most probable paths (assuming

a random distribution), which is the desired approach.

In addition to using a Markov Chain for transitions, another

important aspect that needs to be taken into consideration is

the overall distribution of browsers, devices, markets and

flights (experiments).

There are two different approaches to integrating

Markov Chains for these additional dimensions into the

monitoring system:

1) Create the Markov Chain to take into account

browsers, devices, markets and flights

(experiments). In such cases, there can be multiple

Markov Chains for each dimension, or combination

of dimensions, or one Chain where states and

transitions take into account these dimensions; or,

alternatively

2) Create the Markov Chain without the particular

data about browsers, devices, markets and flights,

and use an orthogonal table with the distribution of

the population across these dimensions, and

randomly switch to a certain dimension as you

navigate the chain.

The approach we have taken is the second one. The
Markov Chain is created with the overall usage pattern
across all the users in the system. At the same time we get
the distribution of users across all browsers, devices, markets
and experiments. In the following hypothetical example
(Table II), we see several user context distributions across
browsers, devices, markets and experiments. We then
combine these two sources of data (the Markov Chain and
the User Context Distributions) in order to come up with the
proper stochastic model for the exploratory tests. Section VII
explains the details of how these two data sources come
together. Section VIII explains how the User Context

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

Distribution can be used as input into an Artificial Neural
Network.
 TABLE II. EXAMPLE OF USER CONTEXT DISTRIBUTIONS

Browser Percentage of users

Internet Explorer 7 6%

Internet Explorer 8 8%

Internet Explorer 11 15%

Firefox 9%

Others 62%

Device Percentage of users

Windows Phone 34%

iPhone 17%

Kindle Fire 17%

Android 9%

Others 23%

Market Percentage of users

United States 52%

China 17%

Brazil 4.5%

Canada 7%

Others 19.5%

Experiment Percentage of users

Experiment #1: light-blue
background color

2%

Experiment #2: larger font size

for titles

3%

Experiment #3: larger images 20%

Experiment #4: new relevance

ranker

1%

A potential limitation of the Markov Chains is the fact

that transitions from one state to the other do not depend on

the path taken to get to the current state. This might be seem

as a limitation of the model if there is a need to build more

complex, “state-full” scenarios. That can easily be overcome

by developing more detailed states inside the Markov Chain

(adding complexity to it). For example, if there is a need to

model a scenario where users come from page A through

page B, we can build a state named “AB” that reflects that

path.

IV. SELENIUM

Selenium [6] is a portable software testing framework for
web applications that provides a record/playback tool for
authoring tests without learning a test scripting language
(Selenium IDE). It also provides a test domain-specific
language (Selenese) to write tests in a number of popular
programming languages, including Java, C#, Groovy, Perl,
PHP, Python and Ruby. The tests can then be run against
most modern web browsers. Selenium deploys on Windows,
Linux, and Macintosh platforms. The way we use Selenium
for exploratory tests and monitoring is through Selenium
WebDrivers. Selenium WebDriver accepts commands and
sends them to a browser. This is implemented through a
browser-specific browser driver, which sends commands to a
browser, and retrieves results. Most browser drivers actually
launch and access a browser application (such as Firefox or
Internet Explorer). Selenium WebDriver does not need a

special server to execute tests. Instead, the WebDriver
directly starts a browser instance and controls it. There is an
ongoing effort by the inventors of Selenium to make it an
internet standard.

Selenium provides an easy interface to interact with the
browser, and the same test scripts can be used against many
supported browsers. The ability to perform clicks, hovers,
navigation manipulation, simulate different keyboard
commands to the browser, scroll, change the browser
settings and even detect and manipulate pop-up windows
make it ideal for web automation.

In order to provide extra reliability, one can make use of a
Selenium Grid. Selenium Grid is a server that allows tests to
use web browser instances running on remote machines.
With Selenium Grid, one server acts as the hub. Tests contact
the hub to obtain access to browser instances. The hub has a
list of servers that provides access to browser instances
(WebDriver nodes), and lets tests use these instances.
Selenium Grid allows running tests in parallel on multiple
machines, and to manage different browser versions and
browser configurations centrally (instead of in each
individual test).

V. EXPLORATORY RUNS

The term Exploratory Runs here is loosely used to define
the process of semi-randomly exploring different parts of a
system while performing different verifications and
validations that are pertinent to the current part of the system
in question. The semi-random nature is accomplished via
two methods: walking the generated Markov Chain, and
modifying the context based on the users’ distribution of
markets, browsers, devices and experiments. The process
usually starts at the initial page of the system, such as the
user’s home page. At that point a frequency-weighted
random set of actions gets triggered based on the weight
(probability) of the actions in the Markov Chain. It continues
from that point on following the same approach indefinitely
or until a certain time amount elapses. The transition of the
states is implemented via commands in Selenium. Figure 2
below illustrates a simple Markov Chain being walked
probabilistically:

Figure 2. Schema depicting a simple Markov Chain

Orthogonally to the walk of the Markov Chain, we make

use of the contexts distribution in the following manner:

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

a) Markov Chain traversal keeps happening randomly

for a period of time (say N minutes)

b) After that period of time elapses, a change of

context happens based on the distribution table

We use N = 30 minutes, which is based on our
observations with real Bing user data, 30 minutes is the
average time for a user web session. After 30 minutes, the
contexts in which the tool is running may change: browser,
device, market or experiment. The change is random but
weighted based on the distribution tables. We utilize a
number of Selenium Grids, one for each type of Internet
Explorer (IE) browsers (from version 7 to the latest version),
and all the grids also contain other browsers, such as Chrome
and Firefox. Markets also change based on a set of pre-
defined markets (around 200 in our case). The device is
simulated on the desktop browsers by manipulating the user-
agent. This simulation isn’t ideal as some issues only appear
or repro on the actual devices, but it is a good stopgap
solution to catch some types of issues (like features being
under/over triggered). We also force the exploratory run to
fall into one (or combination of) experiments by using test
hooks (in our case query-string parameters that are only
enabled/visible inside the Microsoft corporate network). The
automation keeps running indefinitely as a monitoring
mechanism against production.

VI. SUBSCRIPTION-BASED VALIDATION MODULES

It is common to see the schema of a validation module

(or test case) as a self-contained unit that performs all the

steps necessary to set up the proper pre-validation before the

validation takes place, followed by the validation itself,

culminating with the post-validation (or teardown).

Schematically we have:

SampleTestCase()

{

 Pre-ValidationSetup();

 Validation();

 Post-ValidationSetup(); //Teardown

}

There are many advantages of such scheme: simplicity,

standard pattern, readability, reproducibility, determinism, to

name a few. However, such a model does not fit well into the

exploratory runs mentioned previously. Instead, what we

want is a subscription-based model where the test case

subscribes to the current state (or action) if the current state

(or action) meets certain criteria pertinent to that test.

Schematically, subscription-based test cases have the

following format:

SubscriptionBasedSampleTestCase()

{

 If(IsRelevantState(this.CurrentState))

 Validation();

}

In essence, we are proposing a separation of the validation

method from the configuration. The test becomes

opportunistic rather than deterministic: if we reach a

situation during the traversal of the Markov Chain where the

test is applicable, then it runs; otherwise it ignores the

current state.

An example of a subscription-based test case would be

the following: suppose that we want to write a test case to

validate behaviors for a certain segment of queries called

navigational queries, which are queries that seek a single

website or web page of a single entity. A query such as

“sales force” is a navigational query. There are several types

of validation that can be performed for navigational queries.

As per the example in Figure 3, when searching on “sales

force”, we can base validation on:

a) Correctness of the algorithmic first result returned

b) Proper attribution for “Official Site”

c) Proper number, format, truncation for deep-links

d) Proper placement and usage of inner-search boxes

The picture below (Figure 3) depicts the items that can
be subjected to validation:

Figure 3. Validation aspects for web-search deep-links

There are two types of tests that can be used in this

model:

1) Custom Tests are specific for only certain states (or

actions). For instance, the deep-links validation

shown above is an example of custom test since it

only applies to pages originated from navigational

queries

2) Invariant Tests verify general invariants that

should always be true (or always be false) no

matter what state we are

Invariant Tests are very powerful since they apply to all

states (or actions). It is important and recommended that the

product being tested be properly instrumented with test

hooks in order to enable invariant conditions that can then

be tested through invariant tests. An example of an invariant

test would be a test that looks for java script errors. No state

(or action) should lead to a Java script error on the page. We

instrumented some of the Bing pages so that whenever

inside the Microsoft corporate network and when a certain

query string parameter is passed in the URL, any Java script

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

error is caught via a global try/catch and written into a

hidden HTML div tag [5]. With such instrumentation

implemented, the invariant test for java script errors

becomes trivial – basically checking for the presence of the

java script error div tag. Other types of invariant tests are:

a) Links: no links should lead to 404 pages

b) Server Error: no state/action should lead to server

errors

c) Security: no state/action should expose any

security flaw (such as cross-site scripting [13])

d) Overlapping: no state/action should contain

overlapped elements
Security invariants for instance are implemented by

scanning the page and attempting to exploit potential

vulnerabilities. An example would be cross-site scripting

[13]: all the links and JavaScripts on the page are exercised

with custom parameters handcrafted in order to exploit

cross-site scripting vulnerabilities. Since Selenium allows

the test to actually open and run the browser, if a cross-site

scripting vulnerability is found the monitoring validation

can then detect it based on the handcrafted parameter passed

to the link or JavaScript.

Selenium also provides a capability of taking the

screenshot of the current page. This allows the engineers to

implement image-based test methods, some of which can be

custom methods (such as the rendering and placement of

some objects on the page specific to certain contexts) or

invariants (such as the space between blocks on the page).

Also, it is important to notice that some of the methods only

apply to certain contexts (browsers, devices, markets or

experiments). In such cases, the test needs to verify that the

current context is relevant for the test in question to be

executed.

VII. METHODOLOGY

Combining all the approaches described in this paper, we

come up with the following methodology for synthetic

exploratory testing or monitoring of large-scale web

systems:

1) Mine the logs to create the user’s profile Markov

Chain. A user profile reprsents the states, actions and states

transitions based upon mining of the logs

2) Retrieve the percentage distribution of different

contexts (browsers, devices, markets and experiments)

3) Create custom and invariant tests that adhere to the

subscription-based model

4) Stochastically run through the Markov Chain using

Selenium or Selenium Grid. When testing search engines a

key aspect is the generation of relevant queries to be used. It

can be a combination of top queries based on frequency as

well as segment-specific queries (such as queries that trigger

local results or movie results)

5) Sporadically (time-based) switch contexts based on

the distribution from #2

6) At each state (and action), apply the subscription-

based tests from the library (#3). Alert in case of failures.

We differentiate monitoring from testing in terms of

running the tests post-production and pre-production,

respectively. The approach can be used for either one.

However, we prefer to have deterministic tests as a pre-

production mechanism, leaving the non-deterministic ones

(such as the stochastic ones based on Markov Chains) as a

monitoring mechanism (post-production). Also, the

different tests have different priorities, so not all the tests

will lead to an escalation (usually the invariant ones are

deemed higher priority than the custom ones).

As the approach above executes, over time the critical

monitoring paths will certainly be covered. Given that the

approach follows a weighted-probability model, the critical

paths will be covered more often than the non-critical ones.

That is desirable since in today’s fast-pace development

environment of large-scale web systems, only the critical

problems (the ones affecting the vast majority of users) get

real attention; others are treated as low priority. The

stochastic model is an elegant way to ensure highly-

probable coverage of critical scenarios, and yet also cover

some low-key scenarios.

Below are two examples of invariant failures when the

model was applied to Bing.com. We used a set of 5 high-

end servers executing around 1,000,000 state transitions per

day, and running over 100 validation methods (of which

15% were invariant ones). The first example (Figure 4) is an

invariant that looks for HTTP 500 server errors, in this case,

generated by a combination of experiment and different

interactions with the site:

Figure 4. Issue discovered through an invariant test method

The second one is a low-priority invariant test based on

image processing. In this case, the area to the right of the

end of the search box should always contain background

color only. But in the case of the German market, whenever

search filters are present due to the long words in German,

the placement of the filters (bottom left inside the top right

rectangle) are going beyond the limits of the search box,

breaking the pre-specified requirement (the requirements

consist of User Interface principles and rules determined by

designers that the code should always adhere to. In this

particular case the specification clearly calls out that only

background color can show up at the right side of the search

box. Such a rule is violated in the case of German strings

given that strings in the German language are usually longer

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

than the ones in English). Figure 5 shows an example of

such an issue:

Figure 5. Example of an image-based error related to markets

Notice that the use of Markov Chains and context
distributions allows the monitoring system to be highly
adaptive: as the user patterns and context distributions
change over time, the system will adapt itself based on the
new data. The other important aspect is that the validation
and monitoring mechanisms can certainly be extended to
more than functional use, such as covering security concerns.
At each step during the traversal of the Chain, we can also
plug-in penetration tests which would be characterized as
invariant methods.

VIII. TIME-BASED NEURAL NETWORKS

One of the limitations of Markov Chains is the fact that

there is a need to introduce into the chains specific

weighted-random events in order to account for the different

contexts [11]. An alternative to overcome such limitation is

to use a prediction model to, given a particular state and

time for a user, predict the next state that the user is going to

be based on the training data. The model that we selected

was Artificial Neural Networks (ANNs [7]). The idea is to

use features related to the current and previous states

(pages), current and previous actions, current context, and

generate the next most probable state, action and contexts.

However, since the execution will have a temporal factor,

there was an attempt to introduce a time-based feature into

the ANN: the information about the user is segmented on a

per-time unit, in our case every second. Such approach is

similar to a Time Delay Neural Network (TDNN [8]).

Mathematically speaking, the function F that the ANN will

implement would then be:

F(States, Actions, Context, Time) = {State’, Action’, Context’)

Here, we use the previous three states that the user has

been previously (three previous pages visited), the

corresponding three previous actions, the current context

(which is a tuple consisting of browser, device, market and

experiment) and the current time unit of the day in seconds

(from 0 to 86,399). Figure 6 below depicts the ANN used.

Figure 6. Time-based ANN

We decided to try the feed the network with the three

previous pages and actions in order to have more accurate

prediction. Trying with further states and actions did not

improve its precision numbers (around 65% precision, see

Table III below). We obtained the maximum precision

numbers with the schema aforementioned: 12 input nodes

where we split the time feature into two features: hour of the

day (0-23) and seconds of the hour (0-59), 36 nodes in the

middle (hidden) layer and 6 output nodes consisting of the

state, actions, browser, device, market and experiment that

the user should be in. During the execution, the ANN is fed

with the current information about the user and the new

information is given, changing the current user. Notice that

the benefit of this new model is that it can be expanded to

use other features too, and we do not need to rely on a

weighted-random parallel mechanism to take into account

the user’s context. Also, given that the execution of the

action usually takes over a second, it is very likely that the

next input to the ANN will contain a different time

parameter hence likely leading to a different output (the

concern was that during the execution mode, the input

would be consistently the same, hence producing the same

output. It was not the case since the execution of each step

took longer than 1 second). The learning model utilized was

the error back-propagation [9]. We utilized a data set

consisting of 1.5 million impressions in a 24h timeframe,

proportionally sampled and distributed over the 24h

window. 80% of this data was used as the training set

whereas the remaining 20% was used as a test set.

With the Time-Based ANN fully trained, we swapped

the model in the execution engine (Section VIII.4) with the

Time-Based ANN. everything else in the methodology

remained the same as described in Section VIII. Table III

below depicts some comparative data between the Markov

Chain Model and the Time-Based ANN model:

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

TABLE III. COMPARISON BETWEEN MARKOV CHAINS AND
ANN FOR MONITORING

 Markov
Chains

Time-based
ANN

Training Time ~10min ~60min

Execution
Time

400ms 30ms

Precision N/A 65%

Min-Time-To-
Failure
(MTTF)

30min 108min

As one can see, due to the nature of the error back-

propagation algorithm (with the high number of interactions

for convergence), the time for the function to converge takes

approximately six times longer compared to the training of

the Markov Chain (which consists primarily of creating the

weighted transitions). On the other hand, once the ANN is

properly trained, its execution is significantly faster than the

Markov Chain (likely attributed to the heavy weighted-

random computations on the Markov Chains). The precision

achieved for the ANN was not very high, around 65% for

the test set, likely due to the fact that the time-based concept

does not give a very predictable aspect to the back-

propagation function despite its convergence. The Min-

Time-To-Failure (MTTF) is characterized as the minimum

time during the monitoring aspect to find the first

monitoring failure or potential failure. In this aspect the

Markov Chain converges faster than the Time-Based ANN.

We believe this fact is related to the low precision for the

Time-Based ANN. Our conclusion is that the Time-Based

ANN gives a more elastic and expandable model where

more features can be added in order to improve its

precision; however the Markov Chain still gives the best

outlook in terms of speed of training as well as better

modeling the user’s behavior. The Markov Chains are also

significantly easier to implement compared to ANNs. Future

work will be focused on augmentation of the ANN in order

to improve its precision.

IX. CONCLUSION AND FUTURE WORK

Monitoring large-scale dynamic web sites across multiple
browsers, devices, markets and experiments is a very
complex task. In this paper, we have proposed a way to
model the users’ behavior via two stochastic methods:
Markov Chains and Time-based Artificial Neural Networks.
We compared these two methods in terms of their
complexities, precisions and overall fitness for the problem
of monitoring large-scale services. We combined Markov
Chains and Selenium to recreate the same conditions
experienced by real users in production. In addition, the
validation approach is also changed from self-contained
validation methods to a subscription-based model where the

validation method subscribes to only the applicable states.
Finally, validations can be invariant ones (applicable to all
states) or custom ones (applicable to specific states). Future
work will be focused on the time-based artificial neural
network in order to achieve higher precision and better
suitability for the problem of monitoring of web services. We
presented an instance of the solution to monitor web search
engines, but the same approach can be used to monitor other
types of dynamic web services.

REFERENCES

[1] M. De Barros and C. Alex “Agile quality-centric development

process of large-scale web systems”, Swiss Testing Day 2014,

March. 2014

[2] Gomez Network [Online]. Available from

https://www.gomeznetworks.com/?g=1 2014.12.29

[3] Keynote [Online]. Available from http://www.keynote.com/

2014.12.29

[4] M. De Barros, J. Shiau, C. Shang, K. Gidewall, H. Shi, and J.

Forsmann, “Web Services Wind Tunnel: On Performance Testing

Large-Scale Stateful Web Services”, 37th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks,

2007

[5] The HTML <div> tag [Online]. Available from

http://www.w3schools.com/tags/tag_div.asp 2015.01.12

[6] Selenium HQ Browser Automation [Online]. Available from

http://docs.seleniumhq.org/ 2014.12.29

[7] Neural Networks [Online]. Available from

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.

html 2015.01.12

[8] Neural Network, Component of Measuring Set for Error

Reduction [Online]. Available from

http://www.measurement.sk/2004/S1/Vojtko.pdf 2015.01.12

[9] Error Backpropagation [Online]. Available from

http://www.willamette.edu/~gorr/classes/cs449/backprop.html

2015.01.12

[10] E. Marcotte, "Responsive Web design", A List Apart, May.

2005

[11] M. De Barros, “Automated Synthetic Exploratory Monitoring

of Dynamic Web Sites Using Selenium”, PNSQC 2014, October.

2014

[12] R. Ramakrishnan, “Big Data @ Microsoft” [Online]. Avaiable

from http://research.microsoft.com/en-us/events/fs2013/raghu-

ramakrishnan_bigdataplatforms.pdf 2015.01.15

[13] S. Cook, “A Web Developer’s Guide to Cross-Site Scripting”

[Online]. Available from

https://www.grc.com/sn/files/A_Web_Developers_Guide_to_Cros

s_Site_Scripting.pdf 2014.12.29

[14] Web Service Counters for the WWW Service [Online].

Available from https://technet.microsoft.com/en-

us/library/cc786217(v=WS.10).aspx 2015.01.16

[15] User Experience at Google “Focus on the user and all else will

follow”, CHI 2008 Proceedings, April. 2008

[16] C. Liu, R. W. White, and S. Dumais, “Understanding Web

Browsing Behaviors through Weibull Analysis of Dwell Time

[17] M. Arbib, A. Theories of Abstract Automata (1st ed.).

Englewood Cliffs, N.J.: Prentice-Hall, Inc. ISBN 0-13-913368-2,

1969

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

