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Abstract - Web search engines are very dynamic in 

nature; not only are the backend and data powering the site 

evolving, but the frontend is always adapting to different 

browsers, devices and form-factors, and experiments are often 

running in production. In fact, when it comes to User 

Experience (UX), it is likely that users are always falling into 

some live experiment in production: variation of colors, fonts, 

typography, different Java Scripts and so on. Issues (software 

bugs) can occur on the live site for very particular contexts, 

where a context is defined as a particular configuration of 

browser, market and experiment. As an example, a JavaScript 

error can occur on a certain page, for certain types of queries, 

against a certain market on a particular browser. The problem 

that we’re trying to solve is to devise a probabilistic 

methodology to monitor and detect these particular software 

bugs in production environments by maximizing the chances of 

detecting the most relevant issues from the application users’ 

standpoint. For this purpose, we at the Microsoft Bing 

Experiences Team developed a concept of synthetic 

exploratory monitoring that can focus on the important 

features on the sites and pages, and use invariants (conditions 

that should always hold true, or always hold false, for specific 

contexts), such as security-related invariants, to detect 

potential anomalies in the current context. We make use of 

stochastic models to ensure maximum relevant coverage of 

contexts and devices. We use the power of the Selenium testing 

framework to drive end-to-end automation on browsers and 

devices, the notion of exploratory tests, and a set of heuristics 

and invariants (text-based and image-based) that can auto-

detect problems on the live site in very particular contexts. We 

compare and contrast two machine–learning models: Markov 

Chains and Time-Based Artificial Neural Networks (ANNs). 

We implemented the idea explained in this paper to monitor 

large-scale web sites such as Bing Search Engine where alerts 

are generated automatically whenever the anomaly conditions 

are detected. The solution is easily expandable to other sites. 

We envision, as future work, moving this technology to the 

cloud that would allow easy customization of all parameters 

(browsers used, definition of the finite-state machine, heuristics 

and invariants). This paper explains the fundamental 

principles to create a stochastic monitoring model and 

demonstrates how to apply the principles to large-scale web 

sites and services. We will utilize Bing Search Engine to 

illustrate the techniques explained here. 

Keywords-software testing; large-scale services; quality of 

services; markov chains; artificial neural networks; selenium; 

testing in production; monitoring; stochastic models 

I. SCALING SYSTEMS TO DEVICES, BROWSERS AND 

MARKETS 

In today’s world, whenever a new online system is 

launched, it is usually available across several devices 

(devices that display web contents), browsers and markets 

instantaneously and simultaneously. This poses a significant 

development challenge since: 

a) Different browsers, devices and markets have 

specific requirements and resources that may differ 

from each other, and there is no enforced global 

standard across them.  

b) Support for Cascading Style Sheet (CSS) and 

HTML5 compatibility and support vary 

significantly from browser to browser.  

c) The form-factor for the different devices varies 

significantly. Because of smaller screens, code 

might need to be optimized to show the user 

different data or presentation of the information. 

Despite the development and adoption of 

responsive web design techniques [10], very often 

there is still a need for small code customizations. 

For instance, some devices are large enough to 

display data into two vertical panes (columns), 

where others require the use of a single pane. 

d) Markets are also another important dimension 

given the differences in language grammars as well 

as geo-cultural differences. Large-scale systems 

such as Google, Bing and Facebook are always 

dealing with such challenges. 

Many large-scale web sites are now making use of 

“flights” or “experiments”. An experiment is a way to 

expose a percentage of the site’s users to a different 

treatment of the site (which can be differences in the User 

Interface, middle-tier, backend or even data differences) in 

order to collect early feedback and then make an informed 

decision about the upcoming features for the system. For 

example, a search engine might want to expose 2% of its 

users to a SEarch Results Page (or SERP) that shows only 

eight “blue links” by default instead of ten blue links. The 

telemetry for that experiment is then collected and analyzed 

against the “control” (the ten blue links) and data analysts 

work on distilling the positive and negative aspects of the 

experiment, where positive aspects correspond to user 

metrics moving towards the expected direction (such as 

page load time being reduced, user abandonment reduced, 
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increased dwell time [16], amongst others) and negative 

correspond to the converse. Experiments can overlap with 

each other. At any point in time, there might be tens or even 

hundreds of experiments running in production 

environments [15]. 

The paper is organized as follows: in Section I, we 

describe the complexities involved with monitoring large-

scale services. In Section II, we describe the current state of 

the art. In Sections III and IV, we introduce the ideas of 

Markov Chains and Selenium, respectively. In Sections V, 

we define the concept of exploratory runs. In Section VI, we 

define the concept of subscription-based validation methods. 

In Section VII, we devise the strategy for exploratory runs 

utilizing a stochastic model (such as Markov Chains), 

Selenium and the pre-defined concept of subscription-based 

validation methods to solve the monitoring problem. In 

Section VIII, we explore other stochastic models that can be 

used to solve the monitoring problem, such as Artificial 

Neural Networks. In Section IX, we provide a summary of 

the work as well as the direction for future research. 

II. MONITORING COMPLEXITIES AND STATE OF THE ART 

Since the code is somewhat customized to different user 

experiences (experiments, browsers, devices and markets), 

there is a possibility of encountering specific issues on any 

of these and worst, on combination of these dimensions: a 

specific problem may only happen on an experiment, on a 

given browser, on a given device and for a particular 

market. Some simple lower-bound calculations show the 

complexity and the scale of this problem. If we have around 

30 experiments, 30 browsers, 30 devices and 200 markets, 

the number of possible combinations (assuming no overlaps 

on the experiments) becomes 30*30*30*200 = 5,400,000 

different permutations. Even using well known monitoring 

techniques, such as Gomez [2] or Keynote [3], it becomes 

impossible to monitor all these variations. In reality, though, 

most of these contexts are either not significantly crucial to 

the business or are not valid at all (for example, most of the 

time experiments are limited to either a group of markets or 

a group of browsers), hence understanding the valid and 

important permutations can prune the combinatorial space 

considerably. Notice the usage of the terms “testing” and 

“monitoring” are interchangeable in this paper, both 

indicating the ability to proactively detect anomalies in real 

production environments.   

The current state of the art for monitoring strategies consists 

basically of three approaches: 

a) Synthetic Transactions [2]: market tools such as 

Keynote and Gomez give the capability of building custom, 

synthetic transactions to monitor particular features of web 

services and sites. However, synthetic transactions only 

target very limited set of features that need to be known a-

priori which limits its effectviness when monitoring 

complex and dynamic systems. They are very inefective for 

highly dynamic services. 

b) Performance Counters [14]: web services 

developers have the ability to implement performance 

counters on the server side which can give indications of 

potential system malfunctions. For example, a performance 

counter that tracks “75%tile server side latency” can be the 

initial lead to investigate real user issues with the service (in 

case of spikes or drops, for example). However, 

performance counters have the disadvantages that they 

usually fail to track client-only problems (such as javascript 

errors) and since they aggregate data across all the users, it 

only detects problems when a signficant number of users are 

affected by the problem – issues that affect only a very 

small percentage of users usually go undetected by 

performance counters. 

c) Telemetry: telemetry consists of analysis of time 

series of logs from user activity as well as system probes in 

order to detect anomalies in production [12]. Although 

telemetry analysis has the capability of detecting widespread 

issues with one’s service, it is not a real-time monitoring 

system since the collection, aggregation and availability of 

the data are tasks that usually take signficant time to be 

performed, limiting its ability in detecting anomalies in a 

timely manner.  

    None of the current state of the art methoodologies hence 

is comprehensive enough to actually model the user’s 

behavior and detect in real-time relevant anomalies based on 

the true users’ patterns observed in production 

environments. The work described in this paper is an 

attempt to address this gap. 

III. MARKOV CHAINS 

We use Markov Chains [4] to model the behavior of the 

system, limiting the monitoring space to the most probable 

paths. A Markov Chain is a type of stochastic model based 

on the concept of Finite-State Machines [17]) that 

undergoes transitions from one state to another on a state 

space. It is a random process usually characterized as 

memory-less: the next state depends only on the current 

state and not on the sequence of events that preceded it. For 

search engines, the states in a Markov Chain are web site 

landing pages, such as: the search engine Home Page, the 

search engine Web Results Page, Videos Results Page, 

Images Results Page, Settings Page, and any the other page 

type included in the search engine substrate.  
The actions that lead to a state transition are the different 

actions that can be performed by the end user, mainly 
Searches, Clicks, Tabs, Hovers, and so on. With enough 
anonymous log-based information about the different states 
and actions, one can build a comprehensive Markov Chain 
diagram modelling the proper behavior of the average user of 
the web system in questions. The assumption is that most 
web sites nowadays log information about their users’ 
iterations with the page (in an anonymized manner). The 
picture below (Figure 1) gives an example of a state 
transition, and the table below (Table I) gives an example of 
a simple Markov Chain. Notice that the key aspect here is 
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that each action is associated with a certain probability (the 
“Probability Weightings” column in Table I), calculated 
based on the number (percentage) of users who triggered that 
respective action based on captured data. For example, the 
second row in Table I shows the state as being the “home 
page” and the probability weighting as being “20%”. The 
semantics of such information is that when a user lands (or 
is) in the “Home Page” state, there is a probability of 20% 
that the user will perform the action of “typing a query” and 
hitting enter. The third row tells us that if the user is in the 
same state (“Home Page”) there is also a probability of 15% 
that the user will perform the action of clicking on the “Top 
News” link. The table only shows a partial view of the 
probability weighting distribution.  
 

 
Figure 1. Example of state transitions 

 
TABLE I. EXAMPLE OF MARKOV CHAINS STATES AND 

WEIGHTED TRANSITIONS 
Initial State Final State Action Probability 

Weightings 

Home Page Search Results 

Page 

Typed Query 20% 

Home Page Search Results 

Page 

Clicked on 

“Top News” 

15% 

Home Page Home Page Refresh the 

Page 

5% 

Search 

Results Page 

Search Results 

Page 

Typed Query 60% 

Search 

Results Page 

Non-Search 

Page 

Clicked on 

Ads 

15% 

Search 

Results Page 

Non-Search 

Page 

Clicked on 

Algo Result 

33% 

Images 

Results Page 

Videos Results 

Page 

Click on the 

Videos link 

10% 

Images 

Results Page 

Images Results 

Page 

Click on 

Related 
Images 

25% 

Images 

Results Page 

Images Results 

Page 

Click on 

Related 

Entities 

7% 

Images 

Results Page 

Images Results 

Page 

Refresh the 

Page 

13% 

 
The granularity of the states and the actions is 

something that varies depending on the applications. In the 

example above, the Typed Query action could certainly be 

further refined by specifying the category/class of query 

being typed, such as “Local Query”, “Adult Query” or 

“Electronics”. Likewise the “clicked on” event can be 

grouped into categories (such as “clicked on Algo Results”) 

or further refined down to the domain of the link being 

clicked (such as “clicked on an amazon.com link”). The 

important aspect is to create the chain in such a way that it 

truly encompasses the users’ behavior but keeping it concise 

enough to prune the overall search space. For our project, 

we also added some random aspects to our testing in order 

to provide extra coverage. For example, when the action is 

“Send a new query” we take a random query from a pool of 

pre-defined queries, usually a combination of head and tail 

queries (See “Web Search Queries” [9]). 

Some states are outside the scope of the pages being 

tested. For example, if the scope being tested is all the pages 

under the bing.com domain, any site outside that domain 

would be considered an out-of-scope state. It is important to 

model the chain in such a way that once out of the scope, 

actions will lead to in-scope states (such as clicking the back 

button, or navigating back to the initial state). 

With the Markov Chain created, the monitoring approach 

can be tweaked to randomly follow the paths and 

probabilities specified by the chain. Notice that the approach 

will necessarily focus on the most probable paths (assuming 

a random distribution), which is the desired approach.  

In addition to using a Markov Chain for transitions, another 

important aspect that needs to be taken into consideration is 

the overall distribution of browsers, devices, markets and 

flights (experiments).  

There are two different approaches to integrating 

Markov Chains for these additional dimensions into the 

monitoring system: 

1) Create the Markov Chain to take into account 

browsers, devices, markets and flights 

(experiments). In such cases, there can be multiple 

Markov Chains for each dimension, or combination 

of dimensions, or one Chain where states and 

transitions take into account these dimensions; or, 

alternatively 

2) Create the Markov Chain without the particular 

data about browsers, devices, markets and flights, 

and use an orthogonal table with the distribution of 

the population across these dimensions, and 

randomly switch to a certain dimension as you 

navigate the chain. 

The approach we have taken is the second one. The 
Markov Chain is created with the overall usage pattern 
across all the users in the system. At the same time we get 
the distribution of users across all browsers, devices, markets 
and experiments. In the following hypothetical example 
(Table II), we see several user context distributions across 
browsers, devices, markets and experiments.  We then 
combine these two sources of data (the Markov Chain and 
the User Context Distributions) in order to come up with the 
proper stochastic model for the exploratory tests. Section VII 
explains the details of how these two data sources come 
together. Section VIII explains how the User Context 
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Distribution can be used as input into an Artificial Neural 
Network. 
       TABLE II. EXAMPLE OF USER CONTEXT DISTRIBUTIONS 

Browser Percentage of users 

Internet Explorer 7 6% 

Internet Explorer 8 8% 

Internet Explorer 11 15% 

Firefox 9% 

Others 62% 

 
Device Percentage of users 

Windows Phone 34% 

iPhone 17% 

Kindle Fire 17% 

Android 9% 

Others 23% 

 
Market Percentage of users 

United States 52% 

China 17% 

Brazil 4.5% 

Canada 7% 

Others 19.5% 

 
Experiment Percentage of users 

Experiment #1: light-blue 
background color 

2% 

Experiment #2: larger font size 

for titles 

3% 

Experiment #3: larger images 20% 

Experiment #4: new relevance 

ranker 

1% 

 

A potential limitation of the Markov Chains is the fact 

that transitions from one state to the other do not depend on 

the path taken to get to the current state. This might be seem 

as a limitation of the model if there is a need to build more 

complex, “state-full” scenarios. That can easily be overcome 

by developing more detailed states inside the Markov Chain 

(adding complexity to it). For example, if there is a need to 

model a scenario where users come from page A through 

page B, we can build a state named “AB” that reflects that 

path. 

IV. SELENIUM 

Selenium [6] is a portable software testing framework for 
web applications that provides a record/playback tool for 
authoring tests without learning a test scripting language 
(Selenium IDE). It also provides a test domain-specific 
language (Selenese) to write tests in a number of popular 
programming languages, including Java, C#, Groovy, Perl, 
PHP, Python and Ruby. The tests can then be run against 
most modern web browsers. Selenium deploys on Windows, 
Linux, and Macintosh platforms. The way we use Selenium 
for exploratory tests and monitoring is through Selenium 
WebDrivers. Selenium WebDriver accepts commands and 
sends them to a browser. This is implemented through a 
browser-specific browser driver, which sends commands to a 
browser, and retrieves results. Most browser drivers actually 
launch and access a browser application (such as Firefox or 
Internet Explorer). Selenium WebDriver does not need a 

special server to execute tests. Instead, the WebDriver 
directly starts a browser instance and controls it. There is an 
ongoing effort by the inventors of Selenium to make it an 
internet standard.  

Selenium provides an easy interface to interact with the 
browser, and the same test scripts can be used against many 
supported browsers. The ability to perform clicks, hovers, 
navigation manipulation, simulate different keyboard 
commands to the browser, scroll, change the browser 
settings and even detect and manipulate pop-up windows 
make it ideal for web automation.  

In order to provide extra reliability, one can make use of a 
Selenium Grid. Selenium Grid is a server that allows tests to 
use web browser instances running on remote machines. 
With Selenium Grid, one server acts as the hub. Tests contact 
the hub to obtain access to browser instances. The hub has a 
list of servers that provides access to browser instances 
(WebDriver nodes), and lets tests use these instances. 
Selenium Grid allows running tests in parallel on multiple 
machines, and to manage different browser versions and 
browser configurations centrally (instead of in each 
individual test). 

V. EXPLORATORY RUNS 

The term Exploratory Runs here is loosely used to define 
the process of semi-randomly exploring different parts of a 
system while performing different verifications and 
validations that are pertinent to the current part of the system 
in question. The semi-random nature is accomplished via 
two methods: walking the generated Markov Chain, and 
modifying the context based on the users’ distribution of 
markets, browsers, devices and experiments. The process 
usually starts at the initial page of the system, such as the 
user’s home page. At that point a frequency-weighted 
random set of actions gets triggered based on the weight 
(probability) of the actions in the Markov Chain. It continues 
from that point on following the same approach indefinitely 
or until a certain time amount elapses. The transition of the 
states is implemented via commands in Selenium. Figure 2 
below illustrates a simple Markov Chain being walked 
probabilistically: 

 

 
Figure 2. Schema depicting a simple Markov Chain 

 
Orthogonally to the walk of the Markov Chain, we make 

use of the contexts distribution in the following manner: 
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a) Markov Chain traversal keeps happening randomly 

for a period of time (say N minutes) 

b) After that period of time elapses, a change of 

context happens based on the distribution table 

We use N = 30 minutes, which is based on our 
observations with real Bing user data, 30 minutes is the 
average time for a user web session. After 30 minutes, the 
contexts in which the tool is running may change: browser, 
device, market or experiment. The change is random but 
weighted based on the distribution tables. We utilize a 
number of Selenium Grids, one for each type of Internet 
Explorer (IE) browsers (from version 7 to the latest version), 
and all the grids also contain other browsers, such as Chrome 
and Firefox. Markets also change based on a set of pre-
defined markets (around 200 in our case). The device is 
simulated on the desktop browsers by manipulating the user-
agent. This simulation isn’t ideal as some issues only appear 
or repro on the actual devices, but it is a good stopgap 
solution to catch some types of issues (like features being 
under/over triggered). We also force the exploratory run to 
fall into one (or combination of) experiments by using test 
hooks (in our case query-string parameters that are only 
enabled/visible inside the Microsoft corporate network). The 
automation keeps running indefinitely as a monitoring 
mechanism against production. 

VI. SUBSCRIPTION-BASED VALIDATION MODULES 

It is common to see the schema of a validation module 

(or test case) as a self-contained unit that performs all the 

steps necessary to set up the proper pre-validation before the 

validation takes place, followed by the validation itself, 

culminating with the post-validation (or teardown). 

Schematically we have: 
 

SampleTestCase() 

{ 

  Pre-ValidationSetup(); 

  Validation(); 

  Post-ValidationSetup(); //Teardown 

} 

 

There are many advantages of such scheme: simplicity, 

standard pattern, readability, reproducibility, determinism, to 

name a few. However, such a model does not fit well into the 

exploratory runs mentioned previously. Instead, what we 

want is a subscription-based model where the test case 

subscribes to the current state (or action) if the current state 

(or action) meets certain criteria pertinent to that test. 

Schematically, subscription-based test cases have the 

following format: 

 

SubscriptionBasedSampleTestCase() 

{ 

  If(IsRelevantState(this.CurrentState)) 

    Validation(); 

} 

 

In essence, we are proposing a separation of the validation 

method from the configuration. The test becomes 

opportunistic rather than deterministic: if we reach a 

situation during the traversal of the Markov Chain where the 

test is applicable, then it runs; otherwise it ignores the 

current state. 

An example of a subscription-based test case would be 

the following: suppose that we want to write a test case to 

validate behaviors for a certain segment of queries called 

navigational queries, which are queries that seek a single 

website or web page of a single entity. A query such as 

“sales force” is a navigational query. There are several types 

of validation that can be performed for navigational queries.  

As per the example in Figure 3, when searching on “sales 

force”, we can base validation on: 

a) Correctness of the algorithmic first result returned 

b) Proper attribution for “Official Site” 

c) Proper number, format, truncation for deep-links  

d) Proper placement and usage of inner-search boxes 

The picture below (Figure 3) depicts the items that can 
be subjected to validation: 
 

 
Figure 3. Validation aspects for web-search deep-links 

 

There are two types of tests that can be used in this 

model: 

1) Custom Tests are specific for only certain states (or 

actions). For instance, the deep-links validation 

shown above is an example of custom test since it 

only applies to pages originated from navigational 

queries 

2) Invariant Tests verify general invariants that 

should always be true (or always be false) no 

matter what state we are 

Invariant Tests are very powerful since they apply to all 

states (or actions). It is important and recommended that the 

product being tested be properly instrumented with test 

hooks in order to enable invariant conditions that can then 

be tested through invariant tests. An example of an invariant 

test would be a test that looks for java script errors. No state 

(or action) should lead to a Java script error on the page. We 

instrumented some of the Bing pages so that whenever 

inside the Microsoft corporate network and when a certain 

query string parameter is passed in the URL, any Java script 
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error is caught via a global try/catch and written into a 

hidden HTML div tag [5]. With such instrumentation 

implemented, the invariant test for java script errors 

becomes trivial – basically checking for the presence of the 

java script error div tag. Other types of invariant tests are: 

a) Links: no links should lead to 404 pages 

b) Server Error: no state/action should lead to server 

errors 

c) Security: no state/action should expose any 

security flaw (such as cross-site scripting [13]) 

d) Overlapping: no state/action should contain 

overlapped elements 
Security invariants for instance are implemented by 

scanning the page and attempting to exploit potential 

vulnerabilities. An example would be cross-site scripting 

[13]: all the links and JavaScripts on the page are exercised 

with custom parameters handcrafted in order to exploit 

cross-site scripting vulnerabilities. Since Selenium allows 

the test to actually open and run the browser, if a cross-site 

scripting vulnerability is found the monitoring validation 

can then detect it based on the handcrafted parameter passed 

to the link or JavaScript.  

Selenium also provides a capability of taking the 

screenshot of the current page. This allows the engineers to 

implement image-based test methods, some of which can be 

custom methods (such as the rendering and placement of 

some objects on the page specific to certain contexts) or 

invariants (such as the space between blocks on the page). 

Also, it is important to notice that some of the methods only 

apply to certain contexts (browsers, devices, markets or 

experiments). In such cases, the test needs to verify that the 

current context is relevant for the test in question to be 

executed. 

VII. METHODOLOGY 

Combining all the approaches described in this paper, we 

come up with the following methodology for synthetic 

exploratory testing or monitoring of large-scale web 

systems: 

1) Mine the logs to create the user’s profile Markov 

Chain. A user profile reprsents the states, actions and states 

transitions based upon mining of the logs 

2) Retrieve the percentage distribution of different 

contexts (browsers, devices, markets and experiments) 

3) Create custom and invariant tests that adhere to the 

subscription-based model 

4) Stochastically run through the Markov Chain using 

Selenium or Selenium Grid. When testing search engines a 

key aspect is the generation of relevant queries to be used. It 

can be a combination of top queries based on frequency as 

well as segment-specific queries (such as queries that trigger 

local results or movie results) 

5) Sporadically (time-based) switch contexts based on 

the distribution from #2 

6) At each state (and action), apply the subscription-

based tests from the library (#3). Alert in case of failures. 

We differentiate monitoring from testing in terms of 

running the tests post-production and pre-production, 

respectively. The approach can be used for either one. 

However, we prefer to have deterministic tests as a pre-

production mechanism, leaving the non-deterministic ones 

(such as the stochastic ones based on Markov Chains) as a 

monitoring mechanism (post-production). Also, the 

different tests have different priorities, so not all the tests 

will lead to an escalation (usually the invariant ones are 

deemed higher priority than the custom ones). 

As the approach above executes, over time the critical 

monitoring paths will certainly be covered. Given that the 

approach follows a weighted-probability model, the critical 

paths will be covered more often than the non-critical ones. 

That is desirable since in today’s fast-pace development 

environment of large-scale web systems, only the critical 

problems (the ones affecting the vast majority of users) get 

real attention; others are treated as low priority. The 

stochastic model is an elegant way to ensure highly-

probable coverage of critical scenarios, and yet also cover 

some low-key scenarios.  

Below are two examples of invariant failures when the 

model was applied to Bing.com. We used a set of 5 high-

end servers executing around 1,000,000 state transitions per 

day, and running over 100 validation methods (of which 

15% were invariant ones). The first example (Figure 4) is an 

invariant that looks for HTTP 500 server errors, in this case, 

generated by a combination of experiment and different 

interactions with the site: 

 
Figure 4. Issue discovered through an invariant test method 

 

The second one is a low-priority invariant test based on 

image processing. In this case, the area to the right of the 

end of the search box should always contain background 

color only. But in the case of the German market, whenever 

search filters are present due to the long words in German, 

the placement of the filters (bottom left inside the top right 

rectangle) are going beyond the limits of the search box, 

breaking the pre-specified requirement (the requirements 

consist of User Interface principles and rules determined by 

designers that the code should always adhere to. In this 

particular case the specification clearly calls out that only 

background color can show up at the right side of the search 

box. Such a rule is violated in the case of German strings 

given that strings in the German language are usually longer 
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than the ones in English). Figure 5 shows an example of 

such an issue: 

 

 
Figure 5. Example of an image-based error related to markets 

 

Notice that the use of Markov Chains and context 
distributions allows the monitoring system to be highly 
adaptive: as the user patterns and context distributions 
change over time, the system will adapt itself based on the 
new data. The other important aspect is that the validation 
and monitoring mechanisms can certainly be extended to 
more than functional use, such as covering security concerns. 
At each step during the traversal of the Chain, we can also 
plug-in penetration tests which would be characterized as 
invariant methods. 

VIII. TIME-BASED NEURAL NETWORKS 

One of the limitations of Markov Chains is the fact that 

there is a need to introduce into the chains specific 

weighted-random events in order to account for the different 

contexts [11]. An alternative to overcome such limitation is 

to use a prediction model to, given a particular state and 

time for a user, predict the next state that the user is going to 

be based on the training data. The model that we selected 

was Artificial Neural Networks (ANNs [7]). The idea is to 

use features related to the current and previous states 

(pages), current and previous actions, current context, and 

generate the next most probable state, action and contexts. 

However, since the execution will have a temporal factor, 

there was an attempt to introduce a time-based feature into 

the ANN: the information about the user is segmented on a 

per-time unit, in our case every second. Such approach is 

similar to a Time Delay Neural Network (TDNN [8]). 

Mathematically speaking, the function F that the ANN will 

implement would then be: 
 

F(States, Actions, Context, Time) = {State’, Action’, Context’) 
 

Here, we use the previous three states that the user has 

been previously (three previous pages visited), the 

corresponding three previous actions, the current context 

(which is a tuple consisting of browser, device, market and 

experiment) and the current time unit of the day in seconds 

(from 0 to 86,399). Figure 6 below depicts the ANN used. 

 

 
Figure 6. Time-based ANN 

 

We decided to try the feed the network with the three 

previous pages and actions in order to have more accurate 

prediction. Trying with further states and actions did not 

improve its precision numbers (around 65% precision, see 

Table III below). We obtained the maximum precision 

numbers with the schema aforementioned: 12 input nodes 

where we split the time feature into two features: hour of the 

day (0-23) and seconds of the hour (0-59), 36 nodes in the 

middle (hidden) layer and 6 output nodes consisting of the 

state, actions, browser, device, market and experiment that 

the user should be in. During the execution, the ANN is fed 

with the current information about the user and the new 

information is given, changing the current user. Notice that 

the benefit of this new model is that it can be expanded to 

use other features too, and we do not need to rely on a 

weighted-random parallel mechanism to take into account 

the user’s context. Also, given that the execution of the 

action usually takes over a second, it is very likely that the 

next input to the ANN will contain a different time 

parameter hence likely leading to a different output (the 

concern was that during the execution mode, the input 

would be consistently the same, hence producing the same 

output. It was not the case since the execution of each step 

took longer than 1 second). The learning model utilized was 

the error back-propagation [9]. We utilized a data set 

consisting of 1.5 million impressions in a 24h timeframe, 

proportionally sampled and distributed over the 24h 

window. 80% of this data was used as the training set 

whereas the remaining 20% was used as a test set.  

With the Time-Based ANN fully trained, we swapped 

the model in the execution engine (Section VIII.4) with the 

Time-Based ANN. everything else in the methodology 

remained the same as described in Section VIII. Table III 

below depicts some comparative data between the Markov 

Chain Model and the Time-Based ANN model: 
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TABLE III. COMPARISON BETWEEN MARKOV CHAINS AND 
ANN FOR MONITORING 

 Markov 
Chains 

Time-based 
ANN 

Training Time ~10min ~60min 

Execution 
Time 

400ms 30ms 

Precision N/A 65% 

Min-Time-To-
Failure 
(MTTF) 

30min 108min 

 

As one can see, due to the nature of the error back-

propagation algorithm (with the high number of interactions 

for convergence), the time for the function to converge takes 

approximately six times longer compared to the training of 

the Markov Chain (which consists primarily of creating the 

weighted transitions). On the other hand, once the ANN is 

properly trained, its execution is significantly faster than the 

Markov Chain (likely attributed to the heavy weighted-

random computations on the Markov Chains). The precision 

achieved for the ANN was not very high, around 65% for 

the test set, likely due to the fact that the time-based concept 

does not give a very predictable aspect to the back-

propagation function despite its convergence. The Min-

Time-To-Failure (MTTF) is characterized as the minimum 

time during the monitoring aspect to find the first 

monitoring failure or potential failure. In this aspect the 

Markov Chain converges faster than the Time-Based ANN. 

We believe this fact is related to the low precision for the 

Time-Based ANN. Our conclusion is that the Time-Based 

ANN gives a more elastic and expandable model where 

more features can be added in order to improve its 

precision; however the Markov Chain still gives the best 

outlook in terms of speed of training as well as better 

modeling the user’s behavior. The Markov Chains are also 

significantly easier to implement compared to ANNs. Future 

work will be focused on augmentation of the ANN in order 

to improve its precision. 

IX. CONCLUSION AND FUTURE WORK 

Monitoring large-scale dynamic web sites across multiple 
browsers, devices, markets and experiments is a very 
complex task. In this paper, we have proposed a way to 
model the users’ behavior via two stochastic methods: 
Markov Chains and Time-based Artificial Neural Networks. 
We compared these two methods in terms of their 
complexities, precisions and overall fitness for the problem 
of monitoring large-scale services. We combined Markov 
Chains and Selenium to recreate the same conditions 
experienced by real users in production. In addition, the 
validation approach is also changed from self-contained 
validation methods to a subscription-based model where the 

validation method subscribes to only the applicable states. 
Finally, validations can be invariant ones (applicable to all 
states) or custom ones (applicable to specific states). Future 
work will be focused on the time-based artificial neural 
network in order to achieve higher precision and better 
suitability for the problem of monitoring of web services. We 
presented an instance of the solution to monitor web search 
engines, but the same approach can be used to monitor other 
types of dynamic web services. 
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