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Abstract— The emergent domain of Web Science has a number 

of as-yet unrealized goals.  Among these are : to facilitate 

scientific discourse by supporting the explicit comparison and 
evaluation of hypotheses; to simplify in silico experiments by 

providing an ecosystem of expert analytical strategies that can 

be automatically assembled; to enhance scientific rigor by 

reducing bias, and improving reproducibility; and to integrate 

the knowledge gained from the experiment back into the Web.  

SHARE is a novel orchestration system that automatically 

chains-together Semantic Automated Discovery and 

Integration (SADI)–style Semantic Web Services.  During 

development of SHARE, we noted that many requirements of 

such an end-to-end Web Science research environment were 

being realized.  These include formally-defined, machine-

readable, Web-embedded research hypotheses; an explicit, 

transparent, rigorous, and reproducible research methodology 

utilizing the most up-to-date data and expert-knowledge from 

the community; immediate dissemination and re -use of the 

resulting data and knowledge; and enhanced support for peer-

review.  This manuscript describes how SHARE is now being 
tested as a prototype Web Science framework. 
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I. MOTIVATION AND REQUIREMENTS-GATHERING 

Web Science is a recently-established, cross-disciplinary 
research domain spanning technology, sociology, 
psychology, and policy.  Web Science research considers the 
Web as both a subject of, and/or a platform for, scientific 
investigation.  It is the latter perspective that is the focus of 
this work.  This domain of Web Science includes 
investigations into how Web environments might augment 
many aspects of scientific research, from scientific discourse 
through experimentation to peer-review and publication.  In 
this manuscript, we are interested in how Semantic Web 
technologies might improve the execution of, and 
reproducibility of, high-throughput biomedical research. 

Arguably, the Web is the most important and ubiquitous 
tool in modern biological research; used to collect data, 
submit data for processing, research prior art, and publish 
research results, there are few moments in the day when a 
biological researcher does not have their Web browser open.  
One could therefore argue that we are already engaged in 
"Web Science".  However, the Web, as used by researchers 
today, is merely a conduit through which ideas and results 
are transmitted, usually in a form that the Web itself cannot 
“understand” or take advantage of (i.e. PDF-formatted 
discussions); like a carrier pigeon delivering paper notes, 

current Web Science is done over the web, not within it.  
This significantly under-utilizes the power of modern Web 
technologies – Semantic Web technologies in particular – to 
automatically discover and integrate data, knowledge, and 
analytical resources on a global scale.  Such technologies 
are, therefore, the obvious choice for investigating novel 
Web Science infrastructures to support both the scientist and 
their science.  The desire to understand if and how Web 
Science technologies can be applied is being driven by a 
number of intersecting trends, technical problems, and 
changing requirements in light of increasingly large datasets. 

In Figure 1, Gilliam et al. suggest that the length of time 
between discovery, and the implementation of that discovery 
in-practice, is shrinking rapidly [1].  The rate at which 
discovery and implementation are converging appears 
constant, and the two are predicted to meet in approximately 
2025.  At this point, according to Gilliam, the moment of 
discovery, dissemination, and utilization merge into a single 
event.  While the figure relates to healthcare, the same 
phenomenon likely holds in all areas of life science. 

 
Figure 1.  The time from d iscovery to implementation in Medicine.  

Over  t ime, the delay between discovery and implementation has 

decreased in a near-linear manner.  This pattern converges on the X-
axis in approximately 2025 taken from [1] under c.c. License) 
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In practice, to achieve this end-point, research would be 
conducted in a medium that immediately interpreted and 
disseminated the results of an experiment; disseminated 
these results in a form that immediately (and actively) 
affected the results of other studies; and affected those 
studies without requiring those investigators to be aware of 
the new results or knowledge (since researchers are unable to 
stay-abreast of the literature, even in their own specialized 
field [1]).  Moreover, it would be desirable for the 
experiment to be thoroughly documented, in a machine-
readable manner, with a full provenance record including 
purpose, hypothesis, source, the data and algorithms used, 
versions, etc.   This would allow both machines and humans 
to better assess the reliability, applicability, and validity of 
these results prior to using them in subsequent experiments.  
Despite being projected to be only a decade away, such 
knowledge-generating and knowledge-disseminating 
technologies and frameworks do not yet exist. 

In parallel with the growing requirement for speed in 
knowledge-dissemination, there are increasingly worrisome 
observations of human limitations with respect to managing 
and manipulating these massive and complex datasets, and 
the resulting ease of making errors during data analysis - “the 
most common errors are simple... the most simple errors are 
common” [2].  Many researchers lack the skills to 
programmatically manipulate large datasets, and continue to 
use inappropriate tools to manage 'big data'.  Serious errors 
introduced during data manipulation are difficult to detect by 
the researcher and, because they go un-recorded, are nearly 
impossible to trace during peer-review.  In addition, the 
statistical expertise required to correctly analyze high-
throughput data is rare, and biological researchers are seldom 
adequately trained in appropriate statistical analyses of high-
throughput datasets.  As such, inappropriate approaches, 
including trial-and-error, may be applied until a “sensible” 
answer is found [3].  Finally, because manually-driven 
analyses of high-throughput data can be extremely time-
consuming and monotonous, researchers will sometimes 
inappropriately use a hypothesis-driven approach – 
examining only possibilities that they already believe are 
likely, based on their interpretation of prior biological 
knowledge, or personal bias towards where they believe the 
“sensible” answer would be found [4].  Thus, the scientific 
literature becomes contaminated with errors resulting from 
“fishing for significance”, from research bias, and even from 
outright mistakes.  These problems are becoming pervasive 
in omics-scale science - the affordability and accessibility of 
high-throughput technologies is such that now even small 
groups and individual laboratories can generate datasets that 
far exceed their capacity, both curatorially and statistically, 
to accurately manipulate and evaluate.   

Even more troubling is that peer-review is failing to catch 
serious errors.  While the Baggerly study into high-
throughput publication quality [2] triggered retractions and a 
scientific misconduct investigation [5], the Ioannidis study 
reveals that, even in the prestigious Nature Genetics, more 
than half of the peer-reviewed, high-throughput studies 
cannot be replicated [6].  The failure of peer-review to detect 
non-reproducible research is, at least in part, because the 

analytical methodology is not adequately described [6], but 
perhaps equally because a proper evaluation of an 
experiment that controlled for errors would necessitate a re-
execution of the experiment itself – something that is not 
reasonable to expect from reviewers.  Thus, in the “big data” 
world, traditional peer-review is demonstrably ineffective. 

In recognition of these limitations, the Institute of 
Medicine in 2012 published several recommendations 
relating to proper conduct of high-throughput analyses [7].  
These include: rigorously-described, annotated, and followed 
data management procedures; “locking down” the 
computational analysis pipeline once it has been selected; 
and publishing the workflow of this analytical pipeline in a 
formal manner, together with the full starting and result 
datasets.  These recommendations help ensure that (a) errors 
are not introduced through manual data manipulation, (b) 
there can be no human-intervention in the data as it passes 
through the analytical process, and (c) that third-parties can 
properly evaluate the data, the analytical methodology, and 
the result at the time of peer-review.  While formal workflow 
technologies have proven effective at resolving some of 
these issues [8], integration of workflows into the overall 
scientific process continues to be ad hoc, and workflows 
themselves tend to be sparsely documented, difficult to 
review, difficult to re-use and re-purpose, and are not 
integrated with other forms of Web knowledge and expertise 
[9].   

We lack the frameworks, standards, and infrastructures 
required to meet most of the intersecting trends, 
requirements and recommendations described above; 
moreover, these requirements appear to necessitate 
mechanization of much of the scientific process.  As such, 
there is now some urgency around the necessary and 
inevitable creation of next-generation Web Science 
technologies, frameworks, and infrastructures to support the 
activities of high-throughput researchers. 

In the remainder of this work-in-progress manuscript, we 
first describe, in Section II, the results of our examination of 
a prototype Semantic Web Service-based Web Science 
platform.  We then discuss, in Section III, the underlying 
technologies that were used in that prototype, and how we 
propose to further examine these technologies.  We then 
conclude in Section IV with a brief discussion of related 
projects, and the potential impact such platforms might have 
on the scientific process. 

II. A PROTOTYPE WEB SCIENCE RESEARCH PLATFORM 

Almost ubiquitously, scientific Web Services exhibit a 
set of features/behaviors that make them easier to connect 
into workflows compared to business-oriented Services [10].  
We leveraged this to create a prototype Semantic Web 
Service workflow orchestration engine, and the results of 
these studies were recently published [9].  We demonstrated 
that, by constructing and publishing in the Web a semantic 
model – an ontology – describing a hypothetical biological 
phenomenon (Figure 2, left), we were able to automatically 
synthesize and execute an integrative analytical workflow 
(Figure 2, right) that discovered and/or synthesized data 
matching that model.  Put concisely, by building a formal 

72Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing



model representing a hypothetical biological scenario, we 
were able to automatically find data compatible with that 
scenario without introducing (manual) bias.  Moreover, the 
hypothetical model, the analytical workflow, and the result, 
were: (a) explicit and machine-readable; (b) inherently 
connected into local and remote data-sets on the Web, (c) a 
merger of explicit local and remote biological data, 
knowledge and analytical expertise, and (d) automatically 
published on the Web for peer-review and re-use. 

III. TECHNOLOGIES AND APPROACH 

The Web Science research platform above utilized both 
standard Semantic Web technologies, as well as novel tools 
developed in our group.  The core technologies were: 

Resource Description Framework (RDF) - a data 
syntax consisting of statements in the form of “triples” of 
subject, predicate, and object, where each component of the 
triple is a Uniform Resource Identifier (URI).   

Web Ontology Language (OWL) - a description logic 
used to create machine-readable assertions that direct the 
automated interpretation of sets of RDF triples.  It is worth 
noting that this use of OWL – for ad hoc data interpretation – 
is not typical within the Life Sciences community, where 
OWL is more often used to create concept hierarchies, or as 
a data template or schema.  A Web Science research 
platform, however, requires discovery of data matching a 
hypothetical model from a 'mashup' of multiple disparate 
external data resources that will not have a predictable 
structure.  As such, biological knowledge representing 
hypotheses is modeled in OWL, and this model is used to 
both formulate the experimental workflow (see “SHARE” 
below) as well as to automatically discover matching data 
hidden within vast integrated datasets. 

Semantic Automated Discovery and Integration 
(SADI) [11] is our set of design patterns for scientific 
Semantic Web Service publishing.  SADI Services are 
distinct in that they require Web Service publishers to (a) 
consume and produce RDF natively; (b) model their input 
and output as OWL classes; and (c) explicitly model the 
semantic relationship between input and output data through 
properties in the output class.  The SADI design patterns 
dramatically improve the ability of software to automatically 
discover appropriate data retrieval and analysis services, and 
chain these into complex analytical workflows [11]. 

Semantic Health and Research Environment 
(SHARE) [12] is a specialized SPARQL-DL query engine 
that (a) responds to SPARQL queries by mapping query 
clauses to SADI Semantic Web Services, and (b) finds 
instances of an OWL ontological class by recursively 
mapping the class-defining property restrictions to SADI 
service invocations, then pipelining those services into an 
automatically-executed workflow.  Succinctly, given the 
OWL model of a biological concept, it will attempt to find 
data on the Web consistent with that model.  What is most 
important to note about SHARE is that is capable of 
automatically mapping a biological model onto a 
computational workflow made-up of SADI services.  Since 
our belief is that a Web Science research platform should 
automatically evaluate arbitrary biological hypotheses, it is 
this separation of, and automated mapping between, the 
formal biological question, and the formal computational 
solution, that led us investigate SHARE's utility and 
behaviors further.  In particular, the Web Science-like 
features of the SHARE in silico research platform include: 

1) That the research process is entirely Web-embedded 
2) Distributed expert-knowledge encoded in OWL is 

used, through OWL imports, both to construct the 
hypothesis as well as to drive the formulation of the 
solution; thus, a researcher need not possess all of 
the knowledge the experiment requires. 

3) The experimental workflow is explicit, and no 
manual intervention occurs during the execution of 
the experiment. 

4) The experimental workflow can be re-generated and 
re-run over the same dataset (reproducibility) and 
more importantly, will automatically adapt to a new 
dataset (re-usability) due to SHARE's ability to 
dynamically discover appropriate Services based on 
both the specific dataset and the OWL model [9]. 

5) The experimental workflow is self-annotating, as a 
result of being derived from a biological model; 
thus, review of the experiment is dramatically 
simplified with no additional human curation. 

6) The starting datasets, and result datasets, are 
encoded in RDF, and thus are by nature a part of the 
Web.  These, together with the initiating OWL 
model and workflow, aid third-party evaluation. 

 
To investigate this Web Science platform further, we are 

now attempting to determine the extent to which common 
high-throughput life science problems can be modeled in 
OWL, and test the resiliency of the SHARE OWL-to-

 
 

Figure 2.  Conversion of models into analytical workflows:  A 

biological model, in this case describing the chain of properties that 

would be expected of proteins that interact in a particular organis m, is 

constructed in OW L (left). The SHARE software then analyses the 

knowledge in this model, and constructs an analytical workflow of inter -

connected SADI Semantic Web Services (right) which is capable of 

generating data that conforms to that model.  
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workflow transformations.  In particular, the limitations of 
the OWL/OWL-2 languages are well-known, and we 
anticipate that certain hypothetical constructs will require 
other types of semantics or logical filters, such as rules 
and/or the filters available within the SPARQL language 
itself.  To explore the boundaries of what types of in silico 
hypotheses can be modeled using available logics and rules 
languages, the following experiments are being conducted: 

1) Select 15-20 peer-reviewed papers spanning a broad 
range of high-throughput experimental scenarios, 
ensuring that the datasets and Services required to 
execute the experiment are available. 

2) Empirically attempt to model these in OWL. 
3) For any hypothetical construct asserted in the 

publication that cannot be modeled in OWL, 
attempt to model it using an alternative tool such as 
rules or using query filters. 

4) For any construct that cannot be modeled using any 
available tool or language, construct an appropriate 
Web Service that will generate data conforming to 
this construct (while we acknowledge that building 
a Web Service to resolve every difficult case is not 
a scalable solution, it ensures that we can progress 
to the end of the investigation). 

5) Manually construct a workflow, in collaboration 
with biological researchers, that represents their 
expert solution to the hypothesis. 

6) Provide the OWL/rules model to SHARE; examine 
and compare the workflow that is automatically 
constructed. 

7) Similarly, compare the outputs of the two 
workflows to determine if any methodological 
differences were consequential.  Biologists will also 
evaluate the automatically-generated output. 

IV. DISCUSSION AND CONCLUSION 

Approaches to research methodology and scientific 
publishing have changed very little with the advent of the 
Web, and remain largely unaffected by the emergence of 
powerful Semantic Web standards and tools.  We believe  
that, by continuing to develop the technologies described 
here, we can dramatically change the way in silico research 
is conducted and disseminated by establishing the 
fundamental concepts of “Web Science” – a novel approach 
to scientific research where hypotheses and experiments are 
explicitly described, publicly shared, intimately linked into 
existing data and knowledge, dynamically executed in an 
unbiased manner using the encoded expertise of the global 
community, and automatically published with a full 
provenance record, enabling rigorous peer-review.  We 
propose, further, that formal semantic models can (and 
should) be used as the mediators of scientific discourse and 
disagreement.  

The objective with this report is to present these ideas to 
the community in order to: raise awareness of the project; 
foster debate about its plausibility and utility; and encourage 
both collaborative and independent pursuit of similar 
research problems with the goal of rapidly bringing Web 
Science to fruition.  In this regard, we are currently 

collaborating with the HyQue project [13] which utilizes 
RDF/OWL to model data and knowledge, and evaluates 
hypotheses formulated as SPARQL queries using a novel 
ontology.  The significant differences are that SHARE uses 
distributed resources rather than a warehouse; utilizes Web 
Services, thus can execute analyses in addition to static data 
retrievals; and does not utilize any project-specific 
ontologies.  Nevertheless, these independently-derived, yet 
highly similar, Web Science research environments suggest 
that the potential “solution space” for Web Science 
infrastructures may be very small. 
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