
Performance Measurement for CEP Systems

Alexander Wahl and Bernhard Hollunder
Department of Computer Science

Furtwangen University of Applied Science
Robert-Gerwing-Platz 1, D-78120 Furtwangen, Germany

alexander.wahl@hs-furtwangen.de, bernhard.hollunder@hs-furtwangen.de

Abstract—Today, Complex Event Processing (CEP) is often
used in combination with service-oriented architectures. Sev-
eral CEP products from different vendors are available, each
of them with its own characteristics and behaviors. In this
paper we introduce a concept that is able to compare different
CEP products in an automated manner. We achieve that by
using web service technology. We show how to build a testing
environment that includes i) an event emitting component
with stable interface, ii) an interchangeable CEP component
based on this interface and iii) a measurement and evaluation
component. The presented concept is capable to perform
different test scenarios fully automated. In this paper three
exemplary tests are performed on three selected CEP products.

Keywords-complex event processing; web services; testing
architecture; performance testing.

I. INTRODUCTION

Processing of events is a prevalent necessity in todays in-
formation systems. Collected events of any kind are detected
automatically and systematically analyzed, combined, rated
and processed using Complex Event Processing (CEP) [1]
systems. The application of CEP in information technology
ranges from sensor networks to operational applications,
like business activity monitoring (BAM), algorithmic trading
systems and service oriented architectures (SOA).

But, what is CEP? According to the Event Processing
Glossary, CEP is “Computing that performs operations on
complex events, including reading, creating, transforming,
abstracting, or discarding them” [2]. In more detail, the two
main components of a CEP system are a set of CEP rules
and a CEP engine. A CEP rule is a prescribed method for
processing events that reflects a certain condition. An event
thereby is a kind of indicator to something that happened,
like e.g., a financial trade, a key stroke or a method call
within an application. By correlations of these events a CEP
rule evaluates if a certain condition is satisfied. If a condition
is satisfied, the rule fires.

One substantial feature of CEP systems is the realtime
processing of events. And in general, the faster the pro-
cessing of events is performed by the system the better.
A result that is detected more rapidly may be a valuable
benefit. Today, numerous CEP implementations of different
vendors are available. They are widely varying in the sup-

Figure 1. Main components of the concept

ported platforms, the scope of operations, the performance
of processing, rule languages, etc.

In this work, we will introduce a concept to measure
the performance of different CEP systems in an automated
manner. We thereby focus on i) interchangeability of CEP
engines, ii) reproducibility and comparability of the test
scenarios, and iii) the automation of measurement without
user interaction. Our solution consists of three components,
which are shown in Figure 1: i) a test driver component that
generates reproducible sets of events, ii) the encapsulated,
interchangeable CEP system component, and iii) a mea-
surement evaluation component to calculate measurement
results. Based on this solution, three exemplary test kinds
are performed: latency test, pollution test and load test.

This paper is structured as follows: After a brief intro-
duction in this section, Section II gives an overview on
related work. In Section III, the requirements of the concept
will be defined, followed by the description of the concept
itself in Section IV. Test candidates and test scenarios are
described in Section V. A detailed description of the test
setup is provided by Section VI. The test results are shown
in Section VII. In the final section, we will conclude the
paper.

II. RELATED WORK

In the context of event processing systems, there are some
frequently stressed benchmarks: Linear Road benchmark [3],
NEXMark [4], BiCEP [5] and SPECjms2007 [6]. But, there
is no general accepted benchmark for CEP systems.

White et al. [7] described in their work a performance
study for the WebLogic event server (now Oracle CEP). In
that work, solely latency testing is performed on a single
CEP system.

116Copyright (c) IARIA, 2012. ISBN: 978-1-61208-215-8

SERVICE COMPUTATION 2012 : The Fourth International Conferences on Advanced Service Computing

Kounev and Sach [6] provide an overview of techniques
for benchmarking and performance modeling of event-based
systems. They introduce a benchmark, SPECjms2007, to
measure the performance of message-oriented middleware.

In 2007, Bizarro introduced BiCEP [5], a project to
benchmark CEP systems. His main goal was to identify
core CEP requirements and to develop a set of synthetic
benchmarks. In the following years Mendes, Bizarro and
Marques built FINCoS, a framework that provides a flexible
and neutral approach for testing CEP systems [8]. FINCoS
introduces particular adapters to achieve a neutral event rep-
resentation for various CEP systems. In this work, we wrap
the whole CEP system using Web service (WS) technology.
In FINCoS, a controller is defined acting as an interface
between the framework and the user. Our concept proposes
to perform tests automatically and without user interaction.

In a further publication, Mendes et al. [9] use their
framework to perform different performance tests on three
CEP engines - Esper and two developer versions of not
further specified commercial products. They run “micro-
benchmarks” while they vary query parameters like window
size, windows expiration type, predicate selectivity, and
data values. So, they focus on the impact of variations of
CEP rules. Beside they perform some kind of load test.
The results thereby showed a similar behavior in memory
consumption like Esper did in our tests. In summary, Mendes
et al. did run performance tests, but their focus is different
to ours.

In 2010, Fraunhofer IAO published a comprehensive
survey of event processing tools available in the market
[10]. It provides extensive information on supported plat-
forms, licensing and features. This study lists several event
processing tools, but performance considerations are out of
scope.

III. REQUIREMENTS ON THE CONCEPT

Comparing sets of implementations from different ven-
dors are common tasks. Before a test scenario may be
defined it is essential to specify the requirements towards
it.

A first requirement is to ensure, that equal sets of events
are emitted on every repeted test execution. Ideally, the
component that creates events stays the same in all scenarios
in order to eliminate any influence on the measurement itself.
Next, test scenarios and measurements must be reproducible.

The aim is to create test scenarios that differ solely in
the CEP engine used. The solution therefore requires to
support the exchange of the CEP engine. However, some
CEP engines are restricted to certain platforms. Therefore,
it is desirable to keep event generating component and the
CEP component separated (following the principle of loose
coupling). At best the two components are able to run on
different nodes.

Figure 2. Detailed overview on the components of the concept

The concept requires to perform different test cases. For
this work it has to run three exemplary tests, namely latency
tests, pollution tests and load tests.

A major requirement is that the test cases need to run
automated without user interaction, e.g., by batch script or
cron job.

Next, the obtained measurements of the tests need to be
analyzed and meaningful statistics have to be generated and
presented to the user. In order to ensure comparability of
results and statistics the corresponding component is not to
be modified at all.

IV. CONCEPT

The requirements suggest the usage of three main compo-
nents (see Figure 1). One is an interchangeable component
wrapping the CEP system. The two others are the test
driver component and the measurement evaluation com-
ponent. Between test driver component and CEP system
component, as well as between CEP system component and
measurement evaluation component, stable interfaces are
introduced. Figure 2 shows the components in more detail.

A. Test driver component

In Figure 2, the uppermost component is the test driver.
The responsibility of this component is to produce and emit
events. This component reflects the application scenario.
We use a WS and a corresponding WS client to reflect a
SOA environment as application scenario. In Figure 2, WS
and WS client are represented by Driver WS and Driver
client. The communication between Driver WS and Driver
client follows a request-response pattern based on messages
(further named test driver messages) using the Simple Object

117Copyright (c) IARIA, 2012. ISBN: 978-1-61208-215-8

SERVICE COMPUTATION 2012 : The Fourth International Conferences on Advanced Service Computing

Access Protocol (SOAP) [11]. The event emitter, in brief, is
linked to the communication path of driver WS and client. It
analyzes the interchanged SOAP messages and emits events
based on the gathered information. The event emitter itself
is implemented as a WS client - as we will see in Section
IV-B.

A requirement of the event emitter component is to
generate reproducible sets of events. A set of events thereby
has two aspects. The first aspect concerns the chronological
order, which means that sequence of events and the times-
pans between these events stay exactly the same at any time
a specific set of events is applied. The second aspect is that,
using different types of events, the sequence of emitted event
types also stays the same.

As we mentioned before, the test driver component gen-
erates sets of events. In our application scenario four events,
e1, e2, e3 and e4, are emitted each time test driver messages
are exchanged. Suppose that these four events form a set.
How does the CEP engine determine which events relate to
each other? We, therefore, introduce an ID for each exchange
of test driver messages - and thereby also for each set of
events. This ID becomes a parameter of the emitted events.
With that the CEP engine can determine which events relate
to a certain set and afterwards processes these events.

B. CEP engine component

The CEP engine component is formed by four main parts:
a CEP engine, CEP rules, CEP WS and CEP result interface.
The CEP engine processes incoming events based on CEP
rules. The CEP rules and the CEP engine are the core of
the CEP system component. CEP rules reflect conditions
that are to be satisfied by the system, e.g., the occurence of
subsequent events within a certain timespan. Each CEP rule
has at least one event inboud stream and fires a result event
via an output stream once the condition is satisfied. For the
result event a complex event is typically used, which means
that it is a more abstract event. A complex event thereby
contains a set of incoming events. In our case, a complex
event e5(e1, e2, e3, e4) is generated.

But, what if more than one driver message exchange is
performed? Or in other words: What if more than one set
of event is emitted? How can the CEP engine correlate the
events of a set? Therefore, the ID parameters of the events
are needed. The CEP system is advised to correlates only
event with the same ID.

The evaluation of CEP formulas essentially requires
events to be passed to the CEP engines input stream. This
input stream is exposed to the event emitter component.
In more detail, CEP WS defines a unique interface for all
CEP systems that accepts events of any structure and routes
it to the event inbound stream. The second interface of
the CEP system deals with the result events of the CEP
system. Next to the event outbound stream is the CEP result
interface. A component that is interested in the result events

can subscribe itself here. The mechanism behind follows the
observer pattern: The CEP result client subscribes at the CEP
result interface. Every time a result event occurs, the CEP
result client is notified and is provided with the CEP result
event. Again, by this mechanism a stable interface, similar to
the CEP WS, is created between the CEP system component
and the measurement evaluation component. CEP WS and
CEP result interface together encapsulate the CEP system
and ensure interchangeability.

Interchangeability of the CEP engine component is
achieved by defining two stable interfaces: i) Event emitter
and CEP WS, and ii) CEP result interface and CEP result
client. By the definition of such stable interfaces, and by
using WS technology, we achieve the following: i) the CEP
component can be designed considering these interfaces,
ii) interoperability of the components is achieved by using
WS, and iii) no adjustments in code is needed if a CEP
component is exchanged. To clarify the latter: Consider
the transition from Test driver component to CEP system
component. Using different CEP systems each of them can
define, for example, its own type of event inbound stream.
Therefore adapters between event emitter and event inbound
stream are necessary. Once the CEP system is exchanged the
event emitter has to use the corresponding adapter, which
required to modify the event emitter. By introducing a stable
interface the event emitter can use this interface and does not
need any changes at all. There is still an adapter needed, but
by that means it can be hidden within the CEP system. The
adapter then just requires to implement the stable interface.
The same applies at the transition between CEP system
component and measurement and evaluation component.

C. Measurement evaluation component

The aim of the measurement evaluation component is
to perform the calculation necessary to analyze the perfor-
mance of the individual CEP engine components. Its first
component is the CEP result client - a client for the event
outbound WS of the CEP engine component. By that client,
the component receives the result events that include all
the information needed for the performance measurement.
Based on these information from the result events, the
measurement evaluator determines the performance of a CEP
engine component.

D. Automated measurement

As described before, the proposed concept provides three
main components. The first component represents the ap-
plication scenario and acts as the test driver. In our case
it consist of an application server including a deployed
Driver WS. Automated startup of an application server is
a commonly performed task. A typical WS client can be
seen as an application, which again can be started easily in
an automated manner, e.g., by batch script.

118Copyright (c) IARIA, 2012. ISBN: 978-1-61208-215-8

SERVICE COMPUTATION 2012 : The Fourth International Conferences on Advanced Service Computing

We encapsulated the complete CEP system using WS
technology. Thereby, an automated interchange of CEP
systems is equivalent to deploying and undeploying the
CEP WS of the corresponding CEP system. Again, for an
application server this is a commonly performed task and
can be automated.

Another option is the usage of several dedicated machines
respectively virtual machines (VMs): One for Test driver
component and measurement evaluation component, and one
per CEP system. Automation of measurement in that case
is reduced to start and stop the machines.

V. TEST CANDIDATES AND TEST SCENARIOS

A decision on the usage of a CEP Engine of a specific
vendor rises some interesting questions. For example: If
events are emitted to the CEP engine, how long does it take
to process the events and to generate a result event? What
happens if events that are irrelevant for the CEP rules are
emitted? What is the impact on the result calculation time?
How does the CEP engine behave on certain event loads?
How complex are the rule sets that are necessary to describe
a condition?

A. Test candidates

There are several CEP engines available from different
vendors. In this work we choose three CEP engines for
testing: i) Microsoft SQL Server StreamInsight 1.1 [12], ii)
EsperTech Esper 4.3 [13], and iii) JBoss Drools Fusion 5.3.0
[14]. A first difference arises while comparing the rule sets,
as we will show in the following paragraphs. We will use an
example that fits to the application scenario described before
(WS and client). The task is to collect four related events
of the driver message exchange. Once all four events are
detected a complex event, the CEP result event, is created.

1) StreamInsight: Microsoft StreamInsight is based on
the Microsoft SQL Server and has a high-throughput stream
processing architecture. It is equipped with several adapters
for input and output event streams. LINQ is used as query
language to specify the CEP rules. The corresponding CEP
rule is as follows:

var filtered = from e in inputstream
group e by e.ProcessId into con
from item in con.HoppingWindow(
TimeSpan.FromSeconds(180),
TimeSpan.FromSeconds(3),
WindowInputPolicy.ClipToWindow,
HoppingWindowOutputPolicy.ClipToWindowEnd)
select new TimeAggregation()
{

Id = con.Key,
Value = (int)item.Count(),
TimeStart = item.Min(t=>t.Timestamp),
TimeEnd = item.Max(t=>t.Timestamp),

};
var filteredFromValue = from e in filtered

where e.value>=4
select e;

2) Esper: EsperTech Esper is an open-source CEP engine
available under GNU General Public License (GPL) license.
It is available for Java as Esper and for .NET as NEsper. It
offers the Event Processing Language (EPL) to specify CEP
formulas. The CEP rule is defined by
String expression =
‘‘insert into CEP.LatencyEvent’’ +
‘‘select one.timestamp,’’ +

‘‘two.timestamp,’’+
‘‘three.timestamp,’’+
‘‘four.timestamp’’+

‘‘from CEP.inputStream1.win::time(180) as one,’’ +
‘‘CEP.inputStream2.win::time(180) as two,’’ +
‘‘CEP.inputStream3.win::time(180) as three,’’ +
‘‘CEP.inputStream4.win::time(180) as four’’ +

‘‘where four.id = two.id and ‘‘ +
‘‘three.if = one.id’’;

statement =
epService.getEPAdministrator().createEPL(expression);

3) Drools: Fusion is a module for JBoss Drools to enable
CEP. Like Esper, it is open-source software. It can run
Java and .NET and supports a variety of input adapters.
The Drools Rule Language (DRL) is used to specify CEP
formulas. The CEP rule is
rule’’cep-formula’’
when
$pay:InternalPayload($ide:identifier,

$step:step,
step>=4)

from entry-point StoreOne
$minTime:Number()
fromaccumulate(InternalPayload(identifier==$ide,

step==1,
$id:identifier,
$time:timestamp)

from entry-point StoreOne,
init(long tm=0;),
action(tm=$time;),
result(tm))

then
System.out.println(‘‘step is: ‘‘+$ide+

’’ min ‘‘+$minTime’’);
End

B. Test scenarios

1) Latency test: The following setup applies to our la-
tency test setup: driver WS and its client both emit two
events - one for inbound SOAP message and one for
outbound SOAP message. All four messages include the
timestamp of their creation, and are passed to the CEP
component. Within the CEP engine, the four events are
correlated and combined to a complex event, the result event.
Once the result event occurs at the CEP result client, the
measurement evaluator calculates the overall latency and
estimates the CEP component latency.

2) Pollution test: In a pollution test setup, the CEP engine
is confronted with events that are relevant for a CEP rule
and events that are irrelevant. In the pollution test scenario
a constant rate of events is emitted to the CEP component.
During the test the rate of irrelevant events is increased step
by step. The aim of the CEP component is to filter out the
relevant events. The observed parameters were changes in
latency, CPU load and memory usage.

119Copyright (c) IARIA, 2012. ISBN: 978-1-61208-215-8

SERVICE COMPUTATION 2012 : The Fourth International Conferences on Advanced Service Computing

3) Load test: A load test in brief applies different event
rates to the CEP component. The test starts with one driver
WS and client pair. During the test the amount of driver
WS and client pairs is continuously increased. The observed
parameters were latency, CPU load and memory usage.

VI. TEST SETUP

The testing was performed using different virtual ma-
chines (VM). As virtualization product Oracle VirtualBox
[15] was used. As an alternative several dedicated machines
can be used. The VMs were interconnected using a virtual
network. The operating systems of VM1 and VM2 was Mi-
crosoft Windows 7 with Service Pack 1. VM1 includes the
event emitter component and the measurement component.
For the implementation of the event emitter component WS
technology was used. Communication between event emitter
and CEP WS was based on SOAP messages.

The event emitter were implemented as message in-
spectors. Each time a SOAP message passes the message
inspector its content is analyzed and an event is emitted.
Each event thereby includes a timestamp and an unique
ID, as described before. In our case emitting such an event
means that an event is embedded in a SOAP message and
is sent to the CEP WS of the CEP system component.

The measurement component is part of VM1, which
reduces the number of VMs needed. In consistence with
the driver WS and its client the measurement component
also uses WS technology. The measurement and evaluation
results are provided in database tables.

Within the second VM (VM2) the CEP system component
is implemented. Several instances of VM2 exist, one for
each tested CEP system. The individual instances of VM2
are completely interchangeable and can potentially even run
in parallel - with slight modifications at the event emitter
and separate IP addresses for each instance.

The technology used to implement the event inbound WS
depends on the CEP engine used. In our work either WCF
technology or JAX-WS is used. For interoperability reasons
the binding type ‘basicHttpBinding’ (following the WS-I
Basic Profile [16]) was used for all WS.

VII. TEST RESULTS

As described before, we performed three exemplary tests
using three different CEP systems. For completeness the
results are displayed in this section.

A. Latency test

Comparing the latency all of the three CEP systems
showed similar result. As the main source for fluctuation
the driver message exchange was identified. The CEP system
latency showed no significant differences.

CPU usage of B and C was similar. A, in contrast, has a
significantly higher CPU consumption. In terms of memory
usage A and B showed a modest behavior compared to C.

Table I
POLLUTION TEST RESULTS

CEP system Pollution Latency CPU Memory

A

10events 2.5ms 86% 27M
25events 1.5ms 81% 28.5M
50events 1.7ms 83% 28.4M

100events 2.3ms 89% 29.6M
200events 1.9ms 92% 33.9M

B

10events 0.1ms 24% 85.1M
25events 1ms 25% 88.5M
50events 1ms 23% 89.3M

100events 1ms 24% 97.2M
200events 3ms 24% 93.4M

C

10events 0.1ms 41% 122M
25events 1ms 38% 160M
50events 1ms 50% 164M

100events 1ms 73% 165M
200events 1ms 79% 165M

Table II
LOAD TEST RESULTS

CEP system Threads Events/sec CPU Memory

A

1 8 2% 18.1M
5 40 12% 18.2M

10 80 16% 18.1M
20 128 30% 18.4M
30 128 20% 18.4M

B

1 8 1% 24M
5 40 4% 30M

10 80 7% 33.4M
20 128 10% 42M
30 128 10% 43.2M

C

1 8 1% 65M
5 40 4% 67M

10 80 5% 113M
20 128 9% 120M
30 128 10% 126M

B. Pollution test

The pollution test showed interesting differences between
the CEP systems (see Table I). Regarding the latency change
A showed an overall pretty constant latency. However, in
comparison with B and C the overall latency was signifi-
cantly higher. At the beginning B and C were almost equal
- with slight advantages for C. But at higher pollution rate
the latency of B highly increased, in contrast to C with a
constant latency.

Concerning the average CPU usage, A showed a slight
increase with increasing pollution rate. Its overall CPU usage
was higher that with B and C. For B the average CPU usage
did not change at any pollution rate. With C an increase in
pollution rate resulted in a significant increase of average
CPU usage. A had a low memory usage at any pollution

120Copyright (c) IARIA, 2012. ISBN: 978-1-61208-215-8

SERVICE COMPUTATION 2012 : The Fourth International Conferences on Advanced Service Computing

rate. With B memory usage, again, increased with pollution
rate. C has a constant memory usage for all pollution rates,
but at high level.

C. Load test
Table II shows the results of the load test. We could not

identify significant differences to the results of the latency
test applying load to the test candidates. We will therefore
reinvestigate on load tests in more detail in future work.

For all candidates, the applied load and the CPU usage
correlated. The same applies to the memory usage with B
and C. For A the memory consumption was almost constant.

VIII. CONCLUSION

Today, CEP is commonly used and several products from
different vendors are available in the market. This paper
described a platform to compare different products under
controlled and equal conditions. The test thereby were
performed in an automated manner, which means that no
user interaction was necessary.

We described that a complete CEP system can be encap-
sulated using WS technology. Thereby interchangeability of
CEP systems can be achieved, which further simplifies for
automation of performance tests. The paper also reproduced
characteristics concerning performance and resource consup-
tion already described elsewehere.

In summary, CEP systems can be encapsulated as a whole
by means of WS technology. Thereby, interchangeability of
complete CEP systems can be achieved. With interchange-
ability of CEP systems fully automated performance testing
is available.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
giving us helpful comments.

This work has been partly supported by the German
Ministry of Education and Research (BMBF) under research
contract 17N0709.

REFERENCES

[1] D. Luckham and B. Frasca, “Complex event processing
in distributed systems,” Stanford University, USA, Tech.
Rep. CSL-TR-98-754, Mar. 1998. [Online]. Available:
http://citeseer.nj.nec.com/luckham98complex.html

[2] D. C. Luckham and R. Schulte, “Event Pro-
cessing Glossary – Version 2.0,” 2011. [On-
line]. Available: http://www.complexevents.com/2011/08/23/
event-processing-glossary-version-2-0/, last accessed: May
13, 2012.

[3] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S.
Maskey, E. Ryvkina, M. Stonebraker, and R. Tibbetts,
“Linear road: a stream data management benchmark,” in
Proceedings of the Thirtieth international conference on
Very large data bases - Volume 30, ser. VLDB ’04. VLDB
Endowment, 2004, pp. 480–491. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1316689.1316732, last accessed:
May 13, 2012.

[4] J. Li, J. Maier, V. Papadimos, P. Tucker, and K. Tufte,
“NEXMark Benchmark.” [Online]. Available: http://datalab.
cs.pdx.edu/niagara/NEXMark/, last accessed: May 13, 2012.

[5] P. Bizarro, “BiCEP - Benchmarking Complex Event
Processing Systems,” in Event Processing, ser. Dagstuhl
Seminar Proceedings, Mani Chandy, Opher Etzion, and
Rainer von Ammon, Eds. Dagstuhl and Germany:
Internationales Begegnungs- und Forschungszentrum fuer In-
formatik (IBFI), Schloss Dagstuhl, Germany, 2007. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2007/1143,
last accessed: May 13, 2012.

[6] S. Kounev and K. Sachs, “Benchmarking and Performance
Modeling of Event-Based Systems Modellierung und Be-
wertung von Ereignis-basierten Systemen: It - Information
Technology,” it - Information Technology, vol. 51, no. 5, pp.
262–269, 2009.

[7] S. White, A. Alves, and D. Rorke, “WebLogic event server: a
lightweight, modular application server for event processing,”
in Proceedings of the second international conference on
Distributed event-based systems, ser. DEBS ’08. New York
and NY and USA: ACM, 2008, pp. 193–200.

[8] M. R. N. Mendes, P. Bizarro, and P. Marques, “A framework
for performance evaluation of complex event processing sys-
tems,” in Proceedings of the second international conference
on Distributed event-based systems, ser. DEBS ’08. New
York and NY and USA: ACM, 2008, pp. 313–316.

[9] M. Mendes, P. Bizarro, and P. Marques, “A Performance
Study of Event Processing Systems,” in Performance Eval-
uation and Benchmarking, ser. Lecture Notes in Computer
Science, R. Nambiar and M. Poess, Eds. Springer Berlin /
Heidelberg, 2009, vol. 5895, pp. 221–236.

[10] K. Vidackovic, T. Renner, and S. Rex, Marktuebersicht Real-
Time-Monitoring-Software Event-Processing-Tools im Ue-
berblick. Stuttgart: Fraunhofer-Verlag, 2010.

[11] W3C, “SOAP Version 1.2,” 2007. [Online]. Available:
http://www.w3.org/TR/soap/, last accessed: May 13, 2012.

[12] Microsoft, “Microsoft StreamInsight.” [Online].
Available: http://www.microsoft.com/sqlserver/
en/us/solutions-technologies/business-intelligence/
complex-event-processing.aspx, last accessed: May
13, 2012.

[13] EsperTech, “Esper - Complex Event Processing.” [Online].
Available: http://esper.codehaus.org/, last accessed: May 13,
2012.

[14] JBoss, “Drools Fusion.” [Online]. Available: http://www.
jboss.org/drools/drools-fusion.html, last accessed: May 13,
2012.

[15] Oracle, “VirtualBox.” [Online]. Available: https://www.
virtualbox.org/, last accessed: May 13, 2012.

[16] Web Service Interoperability Organization, “Basic Profile
Version 1.2.” [Online]. Available: http://www.ws-i.org/
Profiles/BasicProfile-1.2.html, last accessed: May 13, 2012.

121Copyright (c) IARIA, 2012. ISBN: 978-1-61208-215-8

SERVICE COMPUTATION 2012 : The Fourth International Conferences on Advanced Service Computing

