
Using QoS for Relevance Feedback in Service Discovery: A Preliminary Empirical 

Investigation 

Konstantinos Zachos, Neil Maiden 

Centre for HCI Design, City University 

London, UK 

{kzachos, n.a.m.maiden}@soi.city.ac.uk 

Glen Dobson, Pete Sawyer 

Computing Department, Lancaster University 

Lancaster, UK 

{dobsong, sawyer}@comp.lancs.ac.uk

 

 
Abstract—Service-centric systems pose new challenges and 

opportunities for requirements processes and techniques. This 

paper describes our requirements-based service discovery tool 

that exploits an ontology-based quality specification 

mechanism to receive early feedback on candidate services that 

best match quality requirements. An empirical evaluation of 

the tool is presented that assesses the feasibility of the 

approach to filtering candidate services based upon quality 

using real-world scenarios from our industrial partners. The 

results reveal that commitment to a common ontology helps 

achieving the desired quality-based filtering. 

Keywords – Service Discovery; QoS; Quality-based filtering. 

I.  DEVELOPING WITH WEB SERVICES 

Service-centric system engineering is an important 
emerging paradigm in which applications are constructed 
from reusable component services [1]. One important 
consequence for requirements processes is that service 
registries available over the Internet provide users with 
immediate access to elements of the solution space. In the 
SeCSE Project [4] we have developed tools and techniques 
to form and execute queries on service registries from 
requirements specifications.  

SeCSE supports an iterative requirements discovery 
process as shown in Fig. 1 [5]. Requirements analysts form 
service queries from requirements specifications to retrieve 
web services compliant with the requirements. Descriptions 
of retrieved services are presented to analysts who use them 
to enable more accurate service retrieval in a cyclical 
retrieval and requirement refinement process. 

Service
queries

Service

registry

Changed

requirements

Discovered

services

Service query(s)

Requirements
specification

Requirements

analysts

+ service

consumers

Requirements analysts

+ service consumers  
Figure 1.  SeCSE‟s Requirements Process  

To ensure industrial uptake SeCSE‟s requirements 
process uses established techniques based on structured 
natural language. Analysts specify service-centric system 
behaviour with UML use case specifications and required 

system properties in a testable form with VOLERE shells 
[7]. The process extends the Rational Unified Process (RUP) 
[8] without mandating additional specification or service 
retrieval activities. 

Our approach builds on Fischer et al.‟s [6] observations 
about how design queries are incrementally improved by 
critiquing results from previous queries. Relevance feedback, 
as this is known, provides information about whether 
requirements can be satisfied by available services, to guide 
the analysts to consider alternative build, buy or lease 
alternatives or explore trade-offs to see whether most 
requirements can be met at acceptable cost by the available 
services. 

To support this process of requirements-based service 
discovery we have also developed a means to represent 
service semantics. Relevance feedback may be used to 
inform analysts‟ formulation of requirements based on 
representations of service semantics held in service 
registries. Crucially, this may include information about non-
functional service characteristics. Of particular interest are 
the set of characteristics that broadly fall into the area of 
Quality of Service (QoS). With SeCSE it is possible to get an 
early indication of the quality of available services and 
therefore the potential quality achievable in the final 
application. Along with information about discovered 
services‟ functionality, QoS information can be fed back into 
the requirements in order to help formulate requirements for 
acceptable QoS characteristics for the future system.  

QoS has been identified [13] as a key element in the 
wider uptake of web services, particularly in a competitive 
market in third-party services [2]. Here, the consumer has no 
control over the service provision and implementation, and 
so assessing QoS is vital in establishing trust in a service. It 
is therefore desirable for the service consumer to be able to 
clearly state QoS requirements and identify the level of 
service compliance with those requirements. In recent years, 
we have reported new tools and techniques to increase 
requirements completeness from retrieved web services 
based on functional requirements [e.g. [14],[16],[17]]. In this 
paper we present new techniques to match non-functional 
requirements to service qualities during service selection 
using an ontology.  

There are many QoS properties and for any property, 
there are often several metrics with which it may be 
expressed. This creates problems for QoS-informed service 
discovery since the analyst and service provider may express 
required and provided QoS properties in different ways. 

75

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2



Where different metrics are used false negatives will result 
from simple syntactic matching. As we have reported 
previously [15], a key feature of our tools is that these tools 
can tolerate such inconsistencies. When we last reported on 
this work, however, we had not yet performed an empirical 
evaluation of our work. To remedy this, this paper reports 
results from an industrial evaluation that was designed to 
answer our central hypothesis, that the SeCSE service 
specification and SeCSE’s requirements-based discovery 
tools are tolerant of mismatches between how a service 
provider specifies their services' QoS properties, and how a 
service consumer specifies their QoS requirements. In other 
words, the analyst is insulated from needing to know the 
metrics and units used by different service providers, 
provided they (the analyst) use a recognized metric/metrics 
and unit/units when they specify their requirement.  

Section 2 describes SeCSE‟s requirements-based service 
discovery environment and the QoSOnt ontology. Section 3 
introduces the evaluation method, and Section 4 reports 
results from the evaluation. Section 5 uses this data to 
answer the central hypothesis and discusses threats to 
validity of the results. The paper ends with implications of 
the results for iterative requirements-based service discovery 
processes and service discovery algorithms to support this 
process. 

II. DISCOVERING AND SELECTING SERVICES USING QOS 

REQUIREMENTS 

To support SeCSE‟s requirements process we 
implemented the SeCSE service specification and discovery 
environment. It has 4 main components: (i) Service 
Registries – a federated and heterogeneous mechanism for 
storing service descriptions along with the Service 
Specification Tool with which service providers can populate 
the Service Registries; (ii) the UCaRE Requirements 
Component, which supports web-enabled specification of 
requirements and use cases, and formulation of service 
queries from these specifications; (iii) the Service Querying 
Component, which uses service queries to discover web 
services with different types of similarity; and (iv) the 
Service Explorer Component that displays the descriptions of 
retrieved services to enable analysts to understand, select 
between and use these services to discover new 
requirements. 

A. The Test Scenario 

To clarify our discussion we will present the test scenario 
for the evaluation. This has been taken from a system 
developed by SeCSE‟s industrial partners that integrates 
various services into a client within an in-car device. The 
services include map/point of interest services; weather 
services; car park booking services; telecoms services, and 
logistical services [3].  The use case that has been used for 
the purpose of this evaluation to test the hypothesis described 
in the introduction is partly shown in Table 1 –Acquiring 
Weather Information use case. Table 2 defines two simple 
associated requirements. The first, a functional requirement 
(FR61), specifies what the service shall do, and the second, 

the non-functional requirement (AR7), specifies desirable 
qualities of the service. 

TABLE I.  PART OF ACQUIRING WEATHER INFORMATION USE CASE 

Name Acquiring weather information  

Précis A driver is driving his car. The driver requests weather 

forecast information for a selected destination using the 
car‟s on-board weather forecast information service. The 

service retrieves information about weather forecasts for 

the selected destination based on the estimated arrival 
time. The service displays the information to the driver. 

Actors Driver, On-board weather forecast information service  

Problem  

Statement 

The driver needs information that is relevant and useful to 

him/her and his/her location.  

TABLE II.  REQUIREMENTS ON THE ON-BOARD WEATHER FORECAST 

INFORMATION SYSTEM 

FR61: The system shall provide weather forecasts based on GPS 

coordinates and estimated arrival time. 

AR7: The system must be available remotely in order to be integrated 

into the in-car device. 

B. The Service Registries 

The SeCSE environment discovers web services 
specified within registries that link to service 
implementations that applications invoke. However, 
registries such as UDDI (Universal Description, Discovery 
and Integration) are inadequate for retrieving services using 
semantic criteria such as QoS and exception handling. To 
counter this shortcoming SeCSE has defined an extensible 
faceted specification mechanism [9]. Facets are projections 
over service properties and serve to partition a service 
specification according to the properties that the service 
provider wishes to make public. There are currently 10 facet 
types that can be used to describe a service. Those that are 
relevant here are signature, which mimics the WSDL (Web 
Services Description Language) specification of service 
binding and signature information and is always needed, a 
description facet which provides a brief natural language 
service description designed to aid discovery and selection 
by SeCSE‟s discovery tools, and the QoS facet used to 
describe a service‟s QoS characteristics.  Although we 
commonly assume that the service provider is responsible for 
providing service facets, some could be provided or 
authenticated by third parties. This applies particularly to the 
QoS facet where the information may be the service‟s QoS 
that is claimed by the service provider, or it may represent 
data on the service‟s actual QoS as monitored by a third 
party.  

Service discovery in SeCSE uses the description and QoS 
facets to retrieve web services [[15],[17]]. The role of the 
QoS facet in service discovery is to refine selection of 
services discovered using the description facet. Retrieved 
service descriptions are presented to requirements analysts 
and service consumers to enable them to select the most 
appropriate services based upon their QoS requirements. A 
full description of the part of the SeCSE conceptual model 
that relates to QoS and the QoS facet is provided in [15]. 

 
 

76

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2



Figure 2.  Example use case specification specified in UCaRE 

C. The UCaRE Requirement Component 

Analysts express requirements for new applications using 
UCaRE [18], a web-based .NET application depicted in Fig. 
2. A requirements analyst manages requirements and use 
cases through a web client. 

At the start of SeCSE‟s requirements process, analysts 
work with future service consumers to develop simple use 
case précis that describe the required behaviour of the 
service-centric application.  Table 1 includes the précis for 
the Acquiring Weather Information use case.   

UCaRE supports the analyst in using the VOLERE shell 
to specify requirements such as AR7. VOLERE enables the 
analyst to specify the requirement‟s type, rationale, source, 
owner and importance scores. For non-functional 

requirements, UCaRE also supports the specification of 
measurable fit criteria (MFC) that are essential for selecting 
between discovered services on QoS criteria. MFCs are 
quantified goals that describe in detail how the system must 
behave in order to be deemed to have satisfied the 
requirement. While the description of the requirement is 
written in the language of the stakeholders, the MFC is 
written in a precise quantified manner so that solutions can 
be tested against the requirement. By stating requirements 
with measurable fit criteria that are aligned with the metrics 
of QoSOnt it is possible to use these to directly compare 
against the QoS facet. Fig. 3 shows the measurable fit 
criterion for the availability requirement AR7 that was used 
in the evaluation to filter the resulting list of candidate 
services relating to QoS.  

77

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2



The availability requirement in Fig. 3 shows that even if 
there was a broad agreement on the important characteristics 
of quality it is highly likely that a degree of translation would 
be required to allow different parties to compare QoS. For 
instance, even if exactly the same metric is used (say, mean 
time to repair) by both analyst and service provider it may be 
stated in any unit of time. Simple syntactic matching would 
lead to many false negatives in this case. Consider that the 
requirement AR7 of at least 80% availability (as percentage 
uptime over some period) has been specified for a weather 
service. Imagine that a specification of a candidate service 

includes a QoS property with a mean time between failure of 
42 days and a mean time to repair of 1 hour. Without 
conversion capabilities the service‟s QoS property would not 
match the requirement and would give a false negative. 
However, with the integration of QoSOnt (section 2.5) 
mismatches of this kind are avoided. The metrics are first 
converted to compatible units (42 days = 1008 hours). The 
availability metric is then computed from these two 
component metrics 1008/(1 + 1008), allowing the inference 
that the availability of the service is 99.9%, thus that it meets 
the requirement. 

Figure 3.  Measurable fit criterion for the availability requirement AR7 

D. Service Querying and Service Explorer Components 

In the SeCSE service discovery environment analysts can 
manipulate specified use cases and requirements to generate 
service queries. These are fired at service registries with the 
EDDiE service discovery engine [17] to retrieve web 
services from the same domain as the current problem. 
EDDiE implements advanced term disambiguation and 
query expansion algorithms to add different terms with 
similar meanings to the query using the WordNet online 
lexicon, thus increasing the number of web services retrieved 
from the registries. 

     The service discovery environment presents retrieved 
services to analysts and service consumers in the Service 
Explorer Component (as shown in Fig. 4). It orders services 
that attain a minimum threshold of relevance in a ranked 
order. The analyst can click on each service to view all 
properties of the service description facet and view each 
property next to its corresponding use case and requirement 
property to enable comparison. The Service Explorer 
component also provides functionality with which to select 
between retrieved services and refine the services available 
based on a service‟s QoS information. 

78

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2



E. QoSOnt as a means to filter and select candidate 

services 

The SeCSE QoS Facet makes use of the QoS Ontology, 
QoSOnt [10] that implements the OMG model of QoS [12] 
using the OWL [11] ontology language. An ontology is a 
description of the concepts which exist in some domain and 
the relationships between them. QoSOnt does not just 
provide a set of terms but provides a machine interpretable 
model of QoS knowledge. The structure of QoSOnt, which is 
really three linked ontologies that model QoS properties, 
QoS metrics and units, is further described in [10]. 

Returning to our consideration of comparing the quality 
of candidate services during the requirements phase; 
determining whether a service supports certain metrics is of 
limited use without being able to compare the analyst‟s 
requirements against the services‟ capabilities. This is where 
the use of QoSOnt provides great advantages for this usage 
scenario. 

It is through commitment to the same ontology (QoSOnt) 
in the specification tool, registry and discovery tool that 
comparison between service quality is made possible. 
UCaRE prompts the user to specify MFCs using terms 
directly from the ontology. This means that if the underlying 
ontology evolves then these changes will automatically be 
reflected in the tool. The SeCSE specification tool [9] uses 
the same approach, meaning that service QoS requirements 
are stated in compatible terms. 

In practice this does mean that some level of agreement 
on a QoS vocabulary is a pre-requisite. However the use of 
an ontology easily allows the use of multiple synonyms and 
the expression of new concepts in terms of other existing 
concepts. 

III. EVALUATION METHOD 

We made use of a scenario from SeCSE‟s industrial 
partners in the design of our experiment. For each service 
involved in the scenario the industrial partners specified and 
published a QoS facet and a description facet. They then 
described the corresponding use case using the UCaRE tool. 
With these artifacts in place it was possible to attempt 
requirements-based service discovery, i.e. matching the use 
case requirements against the service descriptions in the 
SeCSE registry.  

In order to evaluate how useful this was we needed more 
data however. In particular, in order to assess whether the 
conversion capabilities provided by QoSOnt were allowing a 
greater number of candidate services to be compared, we 
needed more examples of QoS facets. At the same time, in 
order to be evaluated using UCaRE the description facet of 
the corresponding services had to remain largely the same. 
To achieve this we took the specifications of industrial 
partners and created dummy service specifications in which 
the description was unaltered, but the QoS facet was varied. 
In the dummy services the units of various metrics were 
altered to compatible units assuming a uniform random 
distribution. Where another way of expressing metrics was 
known, metrics were also re-expressed randomly in the 
dummy versions of the services. Having populated the 

registry with dummy services for each original service we 
then re-ran the discovery and QoS-based filtering process in 
UCaRE. 

We focused the experiment on the QoS availability 
characteristic. Availability is a crucial service property for 
many applications, and the scenarios provided by our 
industrial partners reflected this. Further, there are several 
metrics that can be used to express availability and 
availability can be considered a compound of some metrics 
that actually represent other QoS characteristics. Finally, 
different metrics can use different units. As we described 
earlier, these factors all meant that a scenario in which 
availability was a crucial QoS characteristic had the potential 
to provide a test of our hypothesis. 

A. Requirements-based Test Queries 

A service query was formed from specification elements 
for the Acquiring Weather Information use case, including 
the availability requirement AR7 that provided the basis of 
the service query evaluation. The service query was then 
used to discover services in the SeCSE registry using 
EDDiE. Once generated and fired at the SeCSE service 
registry to retrieve similar web services, the Service Explorer 
component presents discovered services as shown in Fig. 4.  

 
Figure 4.  Discovered service descriptions shown in the Service Explorer 

The Service Explorer orders services that attain a 
minimum threshold of relevance in a ranked order. Each 
service can be selected to view all properties of the service 
description facet and view each property next to its 
corresponding use case and requirement property to enable 
comparison. 

 The Service Explorer component also provides 
functionality with which to select between retrieved services 
and refine the services available based on a service‟s QoS 
information. Fig. 5 shows part of the list of services that have 
been evaluated based on the metrics. Satisfied indicates that 
the availability of a service is at least 99.9% and thus that it 
meets the relevant measurable fit criterion. On the other 
hand, Unsatisfied indicates that the availability of a service is 
below 99.9% and thus that it does not meet the relevant 
measurable fit criterion.   

B. The QoS Specifications used in the SeCSE Registry 

To evaluate whether QoSOnt can provide benefits to the 
discovery process, we seeded the SeCSE repository with 14 
dummy specifications. These represented clones of the real 
weather forecast service, ForecastService, which acted as the 
baseline. Each clone specified its Availability QoS properties  

79

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2



Figure 5.  Discovered services evaluated based on QoS 

differently from the baseline. As summarised in the 
following table, in some cases this involved the use of 
different units, in others the use of different metrics, i.e. 
percentage uptime, Mean Time Between Failure (MTBF) 
and Mean Time To Repair (MTTR).  

Seven of the 14 dummy specifications used different QoS 
metrics to the baseline specification. Instead of directly 
specifying an Availability metric, the MTBF and MTTR 
properties were specified. QoSOnt can infer an availability 
measurement by combining other metrics, and the purpose of 
these seven specifications was to evaluate this ability.  

Seven of the dummy specifications also used different 
units in order to specify the metrics. QoSOnt is able to 
convert between different units (for example, hours and 
minutes), and these specifications would help evaluate this. 
The baseline and dummy specifications are summarized in 
Table 3 below. 

IV. EVALUATION RESULTS  

Table 3 shows the expected outcome of performing a 
QoSOnt supported discovery activity on these specifications, 
based on the use case described in section 2.1 (99.9% 
availability). Table 3 also shows the converted availability 
value that QoSOnt should infer for the specifications that do 
not directly specify their availability. The final two columns 
show the expected and actual result from applying QoSOnt 
and the service discovery tools to the registry containing the 
set of service descriptions. 

As shown in Table 3, by using the conversion 
functionality provided within QoSOnt UCaRE/EDDiE was 
able to determine a %ageUptime metric for 13 of the 15 
Weather Forecast services. Seven of these services were 
found to satisfy the required Availability measurement as 
described within the use case. Dummy services 2, 5, 6, 7, 9, 
11 and 12 all used different metrics and units, and QoSOnt 
successfully performed conversions to infer availability 
values for them. Dummy services 8 and 10 were not 
returned. In the case of number 8 this was because it only 
contained one metric, MTBFs, and this on its own was not 
enough to infer an availability value (MTTR being required 

as well). Dummy service 10, on the other hand, contained no 
metrics that could be used to derive an availability value. 

We re-ran the experiment without support from QoSOnt. 
Here, only syntactic matching was possible and only 5 
results were obtained. All 5 were for service descriptions that 
used the percentage uptime metric: the baseline service and 
dummy services 4, 13, 14 and 15. The other services that 
satisfied the requirement but expressed using a different 
metric (2, 3, 5 and 6) were not found. Overall, in this 
experiment, by not using QoSOnt only 43% of the service 
specifications that would actually satisfy the use case were 
discovered. 

V. HYPOTHESIS REVISITED 

We used results and data from the evaluation to 
demonstrate QoSOnt‟s ability to convert between metrics 
and units for any (QoS characteristic, metric, unit) tuple that 
is known to it. Hence, we have provided evidence to support 
our hypothesis, that the SeCSE service specification and 
SeCSE’s requirements-based discovery tools are tolerant of 
mismatches between how a service provider specifies their 
services' QoS properties, and how a service consumer 
specifies their QoS requirements. Of course, this is only true 
where both service consumer and service provider use 
characteristics, metrics and units known to the ontology. 
However, integration of QoSOnt in SeCSE‟s service 
specification and service discovery tools make consistency 
easy to achieve in a way that is transparent to both actors. It 
is this transparency that is crucial if the vision of an open 
service marketplace, with all the diversity of practice that 
implies, is ever to be realised.  

Clearly there are threats to results validity. One threat to 
the conclusion validity of the evaluation results is the sample 
size – 1 service query from 1 use case specification with 1 
quality type fired at 1 registry. However the current small 
body of research into matching non-functional requirements 
to service qualities during service selection led us to run a 
formative-predictive evaluation to generate a first set of 
results to provide a framework and focus for more 
subsequent rigorous evaluation. 

80

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2



VI. CONCLUSIONS 

In this paper we have described an empirical evaluation 
that assessed the feasibility of an approach to filtering 
candidate services based upon QoS. The approach in 
question relied upon the use of the QoSOnt ontology both in 
the QoS facets used to specify services and in the measurable 
fit criteria stated in service requirements. We have 
demonstrated that commitment to a common ontology did 
aid in achieving the desired QoS-based filtering. We have 
also begun to demonstrate the wider advantages of the use of 
such ontology. In particular the supporting conversion rules 
were found to avoid a number of cases, which would have 
produced false negative matches. 

Our experiment showed that the number of comparisons, 
which were made possible only with conversion capabilities, 
could potentially be significant. In practice it is not clear how 
the use of different metrics and units would vary across the 
population, but in the absence of such knowledge we believe 
that our experiment gives us a first approximation of the 
effects of conversion in service selection.   

Although more direct evaluations are needed to answer 
questions like „Do the QoS facet and QoSOnt assist QoS-
critical service discovery?‟ – evaluations that are planned to 
be undertaken in the near future – the results presented in 
this paper support our hypothesis that the SeCSE 
specification and requirements-based service discovery 
mechanisms are tolerant of mismatches between how a 
service provider specifies their services' QoS properties, and 
how a service consumer specifies their QoS requirements. 
By implementing the OMG model of QoS [12] in QoSOnt 
we have tried to ensure coverage of recognised QoS 
properties. New QoS properties may emerge that have 
particular utility for service-centric systems. QoSOnt will 
need to evolve as this happens and has been released as open 
source to help encourage a user community to play its role in 
maintaining its relevance to service-centric systems 
engineering.  

REFERENCES 

[1] I. Sommerville. “Service-Oriented Engineering” in Software 
Engineering, 8th Edition, Pearson Education, 2006, 743-770. 

[2] J. Bloomburg, “Competitive SOA”, ZapFlash, 2007. 

[3] SeCSE, “Enriched mixed scenario for final demonstration” 
Deliverable A6.D18, http://www.secse-
project.eu/?page_id=102&page=3, (last accessed 10/11/09) 

[4] EU Integrated Project 511680, “Service Centric System Engineering 
(SeCSE)”, http://www.secse-project.eu/, (last accessed 21/07/10) 

[5] S.V. Jones, N.A.M Maiden, K. Zachos, and X. Zhu, “How Service-
Centric Systems Change the Requirements Process”, Proc. 
REFSQ‟2005 Workshop, 2005, pp.13-14 

[6] G. Fischer, S. Henninger, and D. Redmiles, „Intertwining Query 
Construction and Relevance Evaluation‟, Proc. CHI‟91, 1991, pp. 55-
62. 

[7] S. Robertson and J. Robertson, Mastering the Requirements Process, 
Addison-Wesley-Longman, 1999. 

[8] I. Jacobson, G. Booch, and J. Rumbaugh, „Unified Software 
Development Process‟, Addison-Wesley-Longman, 2000. 

[9] J. Walkerdine, J., Hutchinson, P. Sawyer, G. Dobson, and V. Onditi, 
"A Faceted Approach to Service Specification", Proc. 2nd Int‟l Conf. 
on ICIW, Mauritius, 2007. 

[10] G. Dobson, R. Lock, and I. Sommerville, “Quality of Service 
Requirements Specification using an Ontology” Proc. SOCCER at 
13th Int‟l RE Conf. (RE 05), 2005. 

[11] D. L. McGuinness and F. van Harmelen (eds.) “OWL Web Ontology 
Language Overview”, W3C Recommendation, 
http://www.w3.org/TR/owl-features/, 2004, (last accessed 05/09/09) 

[12] “UML Profile for Modeling Quality of Service and Fault Tolerance 
Characteristics & Mechanisms”, OMG, 2004. 

[13] G. Dobson and P. Sawyer: "Revisiting Ontology-Based Requirements 
Engineering in the Age of the Semantic Web", at Dependable RE of 
Computerised Systems, NPPs, 2006. 

[14] K. Zachos and N.A.M. Maiden, „Inventing Requirements from 
Software: An Empirical Investigation with Web Services‟, in Proc. 
16th International Conference on RE, 2008. 

[15] K. Zachos, G. Dobson, and P. Sawyer, 'Ontology-aided Translation in 
the Comparison of Candidate Service Quality', in Proceedings of 
SOCCER workshop at RE08, 2008. 

[16] K. Zachos, N.A.M. Maiden, and R. Howells-Morris, „Discovering 
Web Services to Improve Requirements Specifications: Does It 
Help?‟, in REFSQ, June 2008. 

[17] K. Zachos, N.A.M Maiden, S.Jones, and X.Zhu, “Discovering Web 
Services To Specify More Complete System Requirements'” Proc. 
19th Conference on CAiSE, 2007.  

[18] K. Zachos, X. Zhu, N.A.M. Maiden, and S. Jones, “Seamlessly 
integrating service discovery into UML requirements processes” 
Proc. SOSE '06, 2006, 60-66. 

TABLE III.  EXPECTED AND ACTUAL OUTCOMES OF THE DISCOVERY ACTIVITY

ServiceName  Specified Metrics  Specified Values  %age uptime 
99.9% uptime? 

Expected  Expected  
ForecastService (baseline)  %age uptime  99.98 %  99.98 % Yes  Yes  

Dummy02  MTTR, MTBF  1 Hour, 42 weeks  99.98 %  Yes Yes 

Dummy03  MTTR, MTBF  60 Minutes, 294 Days  99.98%  Yes Yes 

Dummy04  %age uptime 98 %  98 % No  No  

Dummy05  MTTR, MTBF  3600 Seconds, 42 Weeks  99.98 %  Yes Yes 

Dummy06  MTTR, MTBF  58 Minutes, 42 Days  99.90%  Yes Yes 

Dummy07  MTTR, MTBF  100000 Seconds, 1 Month  99.62 %  No No 

Dummy08  MTBF  30 Days  - No - 

Dummy09  MTTR, MTBF  4 Hours, 28 Days  99.40 %  No No 

Dummy10  None specified  - - No - 

Dummy11  MTTR, MTBF 1 Week, 2 Months  89.68 %  No No 

Dummy12  MTTR, MTBF  10 Days, 1 Year  97.33%  No No 

Dummy13  %age uptime 99 %  99 % No No 

Dummy14  %age uptime 99.999 %  99.999 % Yes Yes 

Dummy15  %age uptime 99.9 %  99.9 % Yes Yes 

81

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-105-2

http://www.secse-project.eu/?page_id=102&page=3
http://www.secse-project.eu/?page_id=102&page=3

