
Business Protocol Monitoring

Samir Sebahi, Mohand-Said Hacid

Université de Lyon
Université Claude Bernard Lyon 1

LIRIS CNRS UMR 5205
France

{samir.sebahi | mohand-said.hacid}@liris.cnrs.fr

Abstract—Because it is never sure that a business process
successfully tested or statistically checked will have the
expected behaviour during its execution, it is necessary to
bring verification to the execution phase, by continuously
observing and checking the correct behaviour of business
processes during run-time. In this paper, we propose a new
monitoring framework to monitor business protocols. We
provide a monitoring language called BPath, which is an
XPath-based language for both expressing and checking
temporal and hybrid logical properties at run-time, making
visibility on business process external behaviour by expressing
and evaluating statistical queries over execution traces.

Keywords-monitoring; business process; business protocol;
XPath; hybrid logic

I. INTRODUCTION

The advent of web services and Service Oriented
Architecture (SOA) has made a considerable progress in the
way applications are developed and used, leading to the
opening of new borders for information systems, with more
automation of tasks, complex and multiple interconnection
scenarios between applications within the same system and
across different systems. In this context, the task of checking
correctness of business processes at run-time becomes
particularly challenging.

Currently, the common practice for developing service-
based systems is to employ the SOA paradigm [1], which
enables composition of services into business processes in a
particular order and according to a set of rules to provide
support for business processes.

Two features characterizing SOA have retained our
attention and guided our investigation towards building an
approach for monitoring business processes: SOA uses a
message-based communication model, and most of
specifications and languages used in SOA are XML based.

Based on these considerations, we designed and
developed a new monitoring framework based on message
abstraction. This abstraction is called business protocol [2].
We provide an extension of XPath [3] to accommodate
verification issues. The resulting language (called BPath) is
also a query language that can be used to track and make
visibility on business process execution.

The paper is organized as follows: In Section II, we
present some related works. Section III presents the concept
of business protocol, and presents a monitoring scenario.
Section IV describes architectural and design principles of
our approach for monitoring. In Section V, we present our
monitoring language. Then, we show its applicability to

monitoring in Section VI. Finally, we conclude in Section
VII by summarizing our work and identifying some
extensions.

II. RELATED WORK

A lot of research works have been proposed in the last
years to monitor business processes. Some of them are
directly related to our work. Baresi and Guinea [7] proposed
a language (WSCoL) for specifying constraints on execution
by defining a set of monitoring rules for both functional and
non-functional constraints with the capability of setting the
degree of monitoring at run-time such as: validity time
frame, priority and a set of certified providers, for which
monitoring may be omitted. Also, it enables specifying
expressions over process variables and supports a set of
built-in functions, logical and mathematical operators, and
quantification. This work was extended in [8] by providing
a support for specification and checking of temporal
properties at run-time like with our monitoring framework.
In [9], both business process behaviors and monitoring
properties were stated as event calculus predicates, which is
a logic-based formalism representing actions and their
effects. Then, monitoring properties are checked in a post-
mortem way against the stated behaviors and the recorded
behavior in execution log at runtime, making the monitoring
framework non intrusive regarding the execution of the
business process, which is also the same case in our
monitoring framework. The authors in [10][11] proposed
monitoring languages that are built on top of XPath. [10]
Proposed an approach to the monitoring of business
processes specified in BPEL. A visual language, called
Business Process Query Language (BPQL), with query
capabilities, over BPEL processes, was introduced. XQuery
expressions are generated, in the same way that graphical
notations help business process designers generate
specification code, using dedicated icons for each activity.
Hallé and Villemaire [11] proposed an approach for
monitoring web services choreography by means of XQuery
[12] engine. Linear temporal logic properties are translated
into an equivalent XQuery expression. Then, it is evaluated
over XML message traces representing the choreography.
Our monitoring framework is distinguished by using a
simple messages based abstraction, and an expressive
hybrid logic based language.

62

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

III. BUSINESS PROTOCOL

The purpose of a business protocol is essentially to
specify the set of conversations (sequence of messages) that
are supported by a business process [2]. Formally, we define
a business protocol as a tuple P = (S, s0, F, M, T) where:

 S is a finite set of states the process goes through
during its execution.

 s0 is the initial state.

 F represents the finite set of final states.

 M is a set of messages.

 T ⊆ S×S×M is the set of transitions, where every
transition is labelled with a message name and its
polarity, when a message is consumed by the
protocol, the transition is assigned the polarity
sign(+), and when it is produced by the protocol, the
transition is assigned the sign (-).

In order to give an intuitive idea about our monitoring
approach, let us consider the following scenario, inspired
from [9], of an online Car Rental System (CRS) shown
Figure 1.

CRS offers a car location service: whenever a rent car
request is received (RentCar), the availability of the
requested car will be checked. If it is not available, then a list
of cars will be sent to the client, otherwise, the requested car
is reserved, and a confirmation message is sent to the client
(CarReservation). Then, the client will send her/his bank
information (BankInfo), which will be validated, before
sending the keys. After returning the keys, the client receives
a payment confirmation (BankConfirmation). But, in case the
bank information is not valid, CardRejected message will be
sent to the client and the process instance is completed.

Figure 1. CRS business protocol

To show how our monitoring framework is able to
monitor different kinds of properties and queries, we propose
to consider the following list which should be continuously
evaluated at run-time:

 P1: if a client‟s bank information is rejected, he
should not get a car reservation before one hour.

 P2: a client should not get a car reservation when
the keys are taken by another client.

 Q1: calculates the average time to perform a car
reservation.

 Q2: counts the number of rejected bank
information.

IV. THE OVERALL ARCHITECTURE

Figure 2 depicts the main components of the monitoring
framework. First, a BPEL business process external
behaviour is represented by means of a business protocol.
Then, monitoring properties and queries are formulated
using BPath monitoring language (presented in Section V).

At run-time, all incoming or outgoing messages will be
captured by the business protocol monitor component before
reaching their original destination. The process engine as
well as the monitoring framework will publish the execution
and monitoring events respectively, which will be stored in
the execution log.

Figure 2. Monitoring framework

The execution log is of two types: state log, generated by
the business protocol monitor, and event log generated by the
process engine. On the basis of these generated execution
logs, a checker component will check the correctness of the
current execution and a Business activity monitor component
will evaluate the specified statistical query to return
statistical indicators on the execution of the process, and then
both of these monitoring results will be published on a
dashboard.

Additionally, the monitoring framework provides a set of
business protocol execution events (see TABLE I.), to
capture and control the exchanged messages, but also to
specify when verification tasks should be performed.

For instance, to perform verification every time a
message is received, we write:

OnMessageReceived (EventArgs e){

Check a property(Pi)
}

Or after a message is sent, as follows:

 OnMessageSent(EventArgs e){

Check a property(Pj)
}

63

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

In the first case, a business process will be blocked until
the verification is done. But, in the second case, verification
task will not block the execution of the business process.

TABLE I. BUSINESS PROTOCOL EVENTS

Protocol Events Description

OnEvent
Fires every time an event listed in
this table occur.

OnNewInstance
Occurs when a new instance is
started

OnNewState Occurs when a state is entered

OnMessage
Occurs when a message sent or
received

OnMessageReceived
Occurs when a message is
received

OnAnknwonMessage
Occurs when a received message
is not defined in the protocol

OnUnexpectedMessage
Occurs when a received message
is defined in the protocol, but not
expected from the current state

OnMessageSent Occurs when a message is sent

OnTransition
Occurs when a transition from a
state to another state happen

OnEndInstance Occurs when an instance is ended

V. MONITORING LANGUAGE

In what follows, we consider that an execution of a
business process as a sequence of states, independently of
the fact that a business process can have different process
instances, or parallel activities inside the same process
instance.

The main idea behind our monitoring language (BPath)
is first to consider a sequence of states representing the
execution of a system as a special kind of tree. Each node
represents a possible state, and its child node represents the
direct next state. Then try to reuse the widely used language
in the area of service based systems, which is XPath, as both
a verification language and a query language.

So, BPath is built on top of XPath, and evaluated over a
special tree of nodes (each node has only one child node,
and no sibling nodes) forming a linear structure. BPath
accommodates the notion of static and dynamic attributes
and allows variable assignment inside path expressions.
BPath offers a mean to express properties in first order
hybrid logic. First order Hybrid logic [6] is an extension of
first-order modal logic that makes it possible to name states
and to assert that a formula is true at a named state.

A. BPath Syntax

A BPath formula is built according to the following
abstract syntax:

φ ::= T | T = T | P (T, . . . , T) | not φ | φ and φ | φ or

φ | (φ)| @sφ | ↓s,φ |↓s,φ |↓Tx,φ | ∃x φ | ∀x φ

T::= | x | c | f (t1,...,tn) | /@q | s | s/@q

 ::= Axis::N | () | [φ] | / |
N ::= n | *
Axis ::= child | descendant | self | descendant-or-self|
parent | ancestor| ancestor-or-self

Where: x FVAR (a set of first-order variables),

nLAB (a set of first-order constants), We define a function
lablel: WLAB, such that for each element of W associates

an element of LAB, s SVAR (a set of state variables), q

ATTS (a set of unary function symbols, called static

attributes) ATTD (a set of unary function symbols, called

dynamic attributes) FUN (a set of one or more arity
functions).

To simplify some expressions, we consider that

“/child::N” can be written as “/N”, that “self::*/@q”
can be simply written as “@q”, and that “not (φ) ˅ α” can
be abbreviated as “φ α”.

B. BPath semantic

BPath formulas are interpreted in first-order modal
models M (W, R, D, Iw)w∈W with constant domains such
that: W is a set of nodes (or states){w1, w2...}, R is a linear
modal relation on W. D is the interpretation domain. (W, R)
is the modal frame.

For every w W, (D, Iw) is an ordinary first-order
model such that:

 Iw(c) = Iw‟ (c), for all w, w‟ W, c CON.

 Iw(q) D, for q ∈ ATTS ATTD FUN.

 Iw(P) Dk, for P a k-ary predicate symbol.

 Iw ()W for a path expression.
To interpret formulas with free variables, we define an

assignment function g such that:
g: SVAR × FVAR W × D

 g(x)D if xFVAR or g(x)W if x SVAR.
Given a model and an assignment g, the interpretation of

the term t, denoted by is defined as:

 = g(x) for x FVAR

 = g(s) for s SVAR

 = Iw(c) for c CON, for some w W

 = Ig(s)(q) for s a state variable, and q ATTS

 ATTD FUN.

 = {Iw1(q) , Iw1(q) ,… Iwn(q) }such that

w1,w2…wn Iw(), for some w W.
We also define an assignment

 such that:

 (y) = g(y) for y≠xi, and

 (xi) = di.

This means that d1 is assigned to x1, d2 to x2…and for

each y not in{x1…xn},
 is the same as g.

The satisfaction relation of a BPath expression is defined
as follows:

M, g, w |= t I M,w,g (t)≠Ø.

M, g, w |= P(t1, . . . , tn) (, . . . ,) Iw(P)

M, g, w |= t = u , where: t and u are terms.

M, g, w |=not φ M, g, w |≠ φ.

M, g, w |=φ and ψ M, g, w |= φ ˄ M, g, w |= ψ.

M, g, w |= φ or ψ M, g, w |= φ ˅ M, g, w |= ψ.

M, g, w|=@sφ M, g, g(s) |= φ for s SVAR.

64

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

M, g, w |=↓s,φ M,
 , w |=φ.

M, g, w |=↓s,φ M,

 , w |=φ. Where w1...wn

IM,g,w().

M, g, w |=↓Tx,φ M,
 , w |=φ.

M, g, w |=∃x φ M,
 , w |=φ. for some d ∈ D.

M, g, w |=∀x φ M,
 , w |=φ. for all d ∈ D.

The interpretation of a path on the model M, starting

from the state-node w, and given an assignment g is defined
as follows:

I M,w,g (1| 2)= I M,w,g (1) I M,w,g (2).
I M,w,g (1∩ 2)={w‟| w‟ I M,w,g (1) ˄ w‟ I M,w,g (2) }.

I M,w,g (1/2)={w‟‟|w‟ I M,w,g (1)w ˄ w‟‟ I M,w‟,g (2)}.

I M,w,g ([φ])={w‟|w‟ I M,w,g () ˄ M,g,w‟|= φ }.
I M,w,g (self::N) ={w| label(w)=N ˅ N=* }.

I M,w,g (child::N)={ (w‟| (wRw‟˄ w‟‟ wRw‟‟ w‟Rw)) ˄
(label(w’)=N ˅ N=*) }.
I M,w,g(descendant::N) ={w‟|wRw‟ ˄ (label(w’)=N ˅ N=*) }.

I M,w,g(descendant-or-self::N)= I M,w,g(descendant::N) I M,w,g

(self::N).
I M,w,g (parent::N)={ w‟| (w‟Rw˄ w‟‟ w‟‟Rw w‟‟Rw‟))
˄ (label(w’)=N ˅ N=*) }.
I M,w,g (ancestor::N)={w‟|w‟Rw ˄ (label(w’)=N ˅ N=*) }.

I M,w,g (ancestor-or-self::N)= I M,w,g [ancestor::N]
I M,w,g [self::N].

C. From BPath to XPath

To be evaluated, a BPath expression will be translated
into a standard XPath expression, extended with two
functions: Set, and Get, which allow to assign variables and
to retrieve their values respectively.

The following table shows, the concrete BPath syntax,
and how it is translated to XPath.

TABLE II. BPATH TO XPATH

BPath Abstract
Syntax

BPath Concrete
Syntax

Translation to XPath
1.0

x (a free variable) $x Get($x, self::*)

@s $s [] Get(, $s)

↓T x, $x:=T, Set($x,t,self::*) and

↓s, φ $s*, φ
Set($s, self::*,self::*) and

↓s, φ $s:= , φ Set($s, ,self::*) and

s/@q $s/@q Get(q, $s)

/@q

(q FUN ATTD)
/@q Get(q, , self::*)

Quantified expression cannot be expressed in XPath 1.0
[3]. It is possible by using XPath 2.0 [4], as follows:

∃x φ: some $x in D satisfies φ
∀x φ: every $x in D satisfies φ

Listing 1 presents the Get and Set functions. We suppose
that „Eval()’ is a function provided by the framework to
evaluate an XPath expression. ɵ(q,w) is a function returning
the value of a dynamic attribute, g is an array storing
variables and theirs values.

Set($x, t, w){g[x]=Eval(t,w), return true ;}

Get(, $s) :{ return Eval(, g[s])}
Get($x, w){return g[x];}
Get(q, $s) { return Get(q, g[s]) }

Get(q, , w) { return sequence:{Get(q,w‟) / w‟ Eval(,w)}

Get(q, w) { if q ATTS FUN return Eval (q,w) else if

(qATTD) return ɵ(q,w) }

Listing 1 Get and Set functions

D. Linear Temporal Logic with BPath

Linear temporal Logic is a special type of modal logic: it
provides a formal system for qualitatively describing and
reasoning about how the truth values of assertions change
over time [5]. LTL provides four future operators with the
following meanings: X(φ): φ should be true on the next
state, F(φ): means that φ should be true at least once in the
future, G(φ): φ should be true every time in the future, φ U
ψ: φ has to be true at least until ψ, which is true now or in
the future. These operators can be represented in BPath as
follows:

 X(φ): child::*[φ].

 F(φ): descendant-or-self::*[φ].

 G(φ): not(descendant-or-self::*[not(φ)]).

 φ U ψ: $x*, F($y*, $x[F($y=self ::* ˄ ψ) ˄ G (F
($y=self ::*) φ)]).

VI. APPLICATION SCENARIO

In this section, we will show, through a concrete
execution scenario, how BPath can be used to monitor a
business process execution.

Let us assume that the car rental system manages three
cars (RedCar, GreenCar, BlueCar), and receives requests
from three clients (John, Mark and Bob), that we consider
as web services interacting with the CRS business process:
First, John sends a request for red car. His credit card will
be rejected, but he tries again and gets the car reservation.
Mark requests a green car, gets a reservation and keys, and
then receives a payment confirmation after returning the
keys. Bob requests the same car as Mark and obtains a
reservation.

At run time, messages exchanged between different
instances of the process and external partners will be
captured and stored in the event log.

Definition 1: An event log is a collection of entries el =
(name, (key=value), (key=value)...., InsId, T), where: name
is the name of the event, (key=value) ...are list of items and
their values contained within the event, InsId is an Instance
identifier of the process instance concerned with the event,
and T is a timestamp recording the time the event occured.
Listing 2 shows an example of an event log, generated from
the supposed execution scenario of the CRS business
process.

65

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

L1 : RentInfo: ClientInfo=John; CarInfo=RedCar, InstId=1, T=1
L2: CarReservation: carReserved=yes, InstId=1, T=3
L3: CardRejected: cardInfo=798799979879, InstId=1, T=5
L4: RentInfo: ClientInfo=Mark; CarInfo=GreenCar, InstId=2, T=8
L5: CarReservation: carReserved=yes, InstId=2, T=10
L6: BankInfo: cardInfo=798799979879, InstId=2, T=12
L7 : RentInfo: ClientInfo=John; CarInfo=BlueCar, InstId=3, T=15
L8: CarReservation: carReserved=yes, InstId=3, T=17
L9: Keys: keysOut=KY123, InstId=2, T=19
L10: RentInfo: ClientInfo=Bob; CarInfo= GreenCar, InstId=4, T=22
L11: CarReservation: carReserved=yes, InstId=4, T=24
L12: Keys: keysIn=KY123, InstId=2, InstId=2, T=26
L13: BankConfirm: payeConfirmed =yes, BankTransation=Trans0001,
InstId=2, T=28

Listing 2 Event log

Additionally, the business protocol will generate events
related to transition from a state to another state, when a
message is received or sent to or by an instance of the
process. These events are stored in the state log.

Definition 2: A state log (SL) is an XML tree of nodes
(states-nodes): w1, w2, w3...where w2 is the unique child node
of w1, w3 the unique child node of w2, etc. Each state-node

has a name sjLAB/ sj=label(wi),, and two attributes, InsId

(instance identifier)ATTS, and T (timestamp) ATTS.
Listing 3 shows the states log generated from the

supposed execution scenario of the CRS business process.
A BPath expression will be evaluated over the state log.

But as we can see, state log does not contain a lot of
information about the execution, because the real events are
stored in the event log. Execution information can be
retrieved and linked to a state-node through dynamic
attributes.

<S1 InstId="1" T="0">
 <S2 InstId="1" T="2">
 <S3 InstId="1" T="4">
 <S4 InstId="1" T="6">
 <S1 InstId="2" T="7">
 <S2 InstId="2" T="9">
 <S3 InstId="2" T="11">
 <S4 InstId="2" T="13">
 <S1 InstId="3" T="14">
 <S2 InstId="3" T="16">
 <S3 InstId="3" T="18">
 <S5 InstId="2" T="20">
 <S1 InstId="4" T="21">
 <S2 InstId="4" T="23">
 <S3 InstId="4" T="25">
 <S6 InstId="2" T="27">
 <S7 InstId="2" T="29"/>
 </S6>
 </S3>

{…}
</S1>

Listing 3 State log

In BPath, the value of a dynamic attribute at state-node
w is defined by a function θ (q, w), which extracts the last
value of q from the event log, before that state node w
occurs, as follows:

θ(q,w):
Begin

Let q el1 / el1 Event log ˄ el1.InstId=Eval(@InstId, w) ˄

el1 .T<Eval(@T, w) ˄ el2 Event log: q el2 ˄ el2.InstId=
el1.InstId ˄ el2.T<Eval(@T, w)) el2.T< el1.T;
return q.value;

End

For instance, the following BPath expressions, when
evaluated at T>4, will return:

 S1/S2/@ClientInfo={John}.

 S1/S2/S3/@ClientInf={john}.

 S1/S2/S3/@ carReserved={yes}.
Now, the monitoring properties and queries presented in

Section III can be expressed using BPath as follows:

a) Check that in case where credit card of a client is
rejected, the client should wait one hour to be able to get a
car reservation. We formulate this property in BPath as
follows (P1):

G(self::S7[$S7*, @CardRejected
not(F(self::S3[@CleientInfo=$S7/@ClientInfo and (@T-

$S7/@T)<60]))]).

In this property, we check that every time in the future a
credit card of a client is rejected (can be checked at state
S7), the concerned client should not get a car reservation
(we check a state S3 following the previous S7), knowing
that the elapsed time (between S3 and S7) is less than one
hour.

b) A client should not get a car reservation when the
keys are taken by another client. This property can be
expressed using BPath as follows (P2):

 G (self::S5[$S5*, F(self::S3[$S3*, @CarInfo =
$S5/@CarInfo] $S5[F(slef::S7[@CarInfo =

$S5/@CarInfo and = @T< $S3/@T])]).

In this property we express that whenever keys of a car
is sent (at state S5). Then, every time in the future where a
reservation for the same car is done (at state S3), it should
be the case that the keys of this car were returned before (if
there exist a state S7 after S5 but before S3, where the keys
of the car are returned)

As we can see from the previous execution log, the
properties (P1, P2) are violated respectively at:

 L8 (see event log): when John obtains a car
reservation, knowing that his credit card was
rejected less than one hour ago (see L3).

 At line L11: the green car was reserved for Bob (at
L11), but this car is still assigned to Mark (L9), and
the keys of the car are returned by Mark only after
(L11), exactly at (L12).

BPath is also a query language that can be used to return
statistical indicators on the execution of a business process:

c) Calculating average time to make a car reservation
(Q1):

66

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

sum(descendant-or-self::S1[$S1*, descendant::S3[$S3*,
(@InstId=$S1/@InstId)]]/@($S3/@T-@T)) div

count(descendant::S3).

In this query we start by calculating the sum for all
process instances of the time to reach the state S3 (the
reservation state) from the state S1 (the start state), then
dividing the obtained sum on the number of reservations.
We use two functions (sum and count) to respectively
calculate the sum and the number of elements of a sequence.

d) Count the number of rejected credit cards we write
in BPath (Q2):

Count(descendant-or-self::S7[@CardRejected]).

The previous list of monitoring properties and queries
provides an overview on how to use BPath to monitor
business processes. Additional functionalities can be
expected when using BPath within XQuery, and by adding
new built-in functions.

VII. CONCLUSION AND FUTURE WORK

In this work, we provided a framework for business
protocol monitoring. First, we have presented the business
protocol abstraction. Then, we have presented BPath, the
underlying monitoring language. Finally, through a case
study, we have shown how the monitoring framework can
be used to monitor business protocol. To summarize, we
have developed a monitoring framework that mainly
displays the followings features:

 The use of a simple messages based abstraction.

 A single expressive language for expressing both
monitoring properties, and queries. However BPath
is familiar to those who already use XPath
language.

 Monitoring properties and queries can be
dynamically specified during the execution of the
process,

 Non-intrusive monitoring framework, because it is
executed in completely separated way from the
business process.

Our future work will be devoted to the design of
methods to analyze and explain the reason of the deviations,
and move towards resolving them as soon as they occur.

REFERENCES

[1] A. Metzger and K. Pohl, “Towards the Next Generation of Service-

Based Systems: The S-Cube Research Framework,” Advanced
Information Systems Engineering, 2009, pp. 11-16.

[2] B. Benatallah, F. Casati, and F. Toumani, “Analysis and Management

of Web Service Protocols,” Conceptual Modeling – ER 2004, 2004,
pp. 524-541.

[3] J. Clark and S. DeRose, XML Path Language (XPath) Version 1.0,
W3C, 1999.

[4] M. Kay, D. Chamberlin, J. Robie, M.F. Fernández, J. Siméon, S.

Boag, and A. Berglund, XML Path Language (XPath) 2.0, W3C,
2007.

[5] E.A. Emerson, “Temporal and modal logic,” Handbook of

Theoretical Computer Science, 1995, pp. 995--1072.

[6] P. Blackburn and M. Marx, “Tableaux for Quantified Hybrid Logic,”

Automated Reasoning with Analytic Tableaux and Related Methods,
2002, pp. 259-286.

[7] L. Baresi and S. Guinea, “Towards Dynamic Monitoring of WS-
BPEL Processes,” Service-Oriented Computing - ICSOC 2005, 2005,

pp. 269-282.

[8] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini, “A
Timed Extension of WSCoL,” Web Services, IEEE International

Conference on, Los Alamitos, CA, USA: IEEE Computer Society,
2007, pp. 663-670.

[9] K. Mahbub and G. Spanoudakis, “Run-time Monitoring of

Requirements for Systems Composed of Web-Services: Initial
Implementation and Evaluation Experience,” IN ICWS ‟05, 2005, pp.

257--265.

[10] C. Beeri and A. Eyal, “Monitoring business processes with queries,”
IN VLDB, 2007.

[11] S. Hallé and R. Villemaire, “Runtime monitoring of web service

choreographies using streaming XML,” Proceedings of the 2009
ACM symposium on Applied Computing, Honolulu, Hawaii: ACM,

2009, pp. 2118-2125.

[12] D. Chamberlin, J. Snelson, J. Robie, and M. Dyck, XQuery 1.1: An
XML Query Language, W3C, 2009.

67

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

