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Abstract—The influence of post-processing conditions on the 

magnetic properties of amorphous and nanocrystalline 

microwires has been analyzed, paying attention on the effect of 

magnetoelastic and magnetocrystalline anisotropies on the 

hysteresis loops of Fe-, Ni- and Co-rich microwires. We 

demonstrated that the selection of appropriate chemical 

composition and geometry of as-prepared microwires and 

appropriate post-processing consisting of annealing or glass-

coated removal allow tuning of magnetic properties of glass-

coated microwires. Magnetic hardening of the microwires can 

be achieved by the devitrification of Fe-Pt-Si microwires.  

Keywords- magnetic microwires; magnetic softness; hysteresis 

loops; internal stresses; magnetic anisotropy. 

I.  INTRODUCTION  

A family of amorphous and nanocrystalline materials 

prepared using rapid melt quenching is one of the most 

promising families of soft magnetic materials with a number 

of advantages, such as excellent magnetic softness, fast and 

inexpensive manufacturing process, dimensionality suitable 

for various sensor applications, and good mechanical 

properties [1]-[6]. Such excellent physical properties have 

been reported in amorphous materials with either planar 

(ribbons) [1]-[3] or cylindrical (wires) geometry [4]-[6].  

Amorphous and nanocrystalline wires can present quite 

peculiar magnetic properties, such as spontaneous magnetic 

bistability associated with single and large Barkhausen jump 

[7]-[9] or Giant Magneto-Impedance, GMI, effect [10]-[13]. 

In spite that both large Barkhausen and GMI effect have 

been also observed in crystalline wires [14][15], as well as 

in properly heat treated amorphous ribbons [3][12]. 

However, fast single domain wall, DW, propagation and 

high GMI effect have been observed in amorphous magnetic 

wires even without any post-processing [7]-[13].  

These features of amorphous and nanocrystalline 

microwires can be attributed to the combination of 

cylindrical geometry together with the specific 

magnetoelastic anisotropy. The latter is linked with the 

internal stresses distribution characteristic of rapid melt 

quenching, allowing to obtain a core-shell domain structure 

either with a high circumferential magnetic permeability (in 

negative magnetostrictive Co-rich compositions), or with 

the presence of an axially magnetized single inner domain 

responsible for the observation of a single and the large 

Barkhausen jump and the associated single DW propagation 

[16][17]. 

The main interest in GMI effect is justified by extremely 

high impedance sensitivity to an external magnetic field (up 

to 10 %/A/m) reported for magnetic microwires [18]-[20]. 

Several sensor applications, such as magnetic compass and 

acceleration sensors integrated in Complementary Metal-

Oxide-Semiconductor (CMOS) circuits, reduced-sized 

magnetometer suitable for magnetic field mapping, 

detection of a biomagnetic field with the pico-Tesla 

sensitivity, magnetoelastic and temperature sensors have 

been developed [10][12][20]-[22]. 

On the other hand, magnetically bistable microwires are 

suitable various applications. Single and controllable DW 

propagation is suitable for magnetic logic, magnetic 

memory and electronic surveillance [23]-[26]. The former 

application is based on use of magnetic tags containing 

several microwires with well-defined coercivities 

(characteristic for magnetically bistable microwire) [26]. 

This application requires a variety of coercivity, Hc, values 

that can be achieved by the Hc tunability (either by 

compositional Hc dependence or influence of heat 

treatments on Hc -values). Accordingly, microwires with 

rectangular hysteresis loops and plurality of coercivities are 

requested in electronic surveillance applications. 

The additional advantages of glass-coated microwires 

are excellent corrosion and mechanical properties, 

biocompatibility, fast and simple fabrication method and 
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reduced dimensionality [4][5][27]-[30]. Such features allow 

to extend the applications possibilities. 

As reported elsewhere, magnetic properties of 

amorphous microwires are affected by the fabrication 

conditions (like quenching rate or glass-coating thickness), 

chemical composition of the metallic alloy and post-

processing conditions [9][12][15]. Accordingly, we will 

analyze the influence of various factors on the magnetic 

properties of glass-coated microwires and provide the 

guideline for selection of appropriate post-processing for 

optimization of properties of magnetic microwires. 
In section 2, we present the description of the 

experimental techniques, while in section 3 we describe the 
results on effect of fabrication and post-processing 
conditions on hysteresis loops of the microwires.  

II. EXPERIMENTAL DETAILS 

We prepared and analyzed amorphous glass-coated 

microwires based on Fe-, Co- and Ni- alloys with minor 

metalloid additions (Si, B, C) necessary for preparation of 

amorphous alloys [9][15]. The employed Taylor-Ulitovsky 

technique is described earlier elsewhere [15]. 

We studied as-prepared and annealed samples. The 

annealing temperature, Tann, was between 200 °C to 700 °C 

for annealing time, tann, up to 256 min. Typically, the 

crystallization of amorphous microwires was reported for 

Tann ≥ 490 °C [31].  

Hysteresis loops of single microwires have been 

measured using the fluxmetric method previously described 

in details elsewhere [32]. In order to compare the samples 

with different compositions and subjected to different post-

processing, we represent the hysteresis loops as the 

normalized magnetization, M/M0, versus magnetic field, H, 

where M is the magnetic moment at a given magnetic field 

and M0 is the magnetic moment of the sample at the 

maximum magnetic field amplitude, Hm.  

In the case of magnetically hard microwires, the 

hysteresis loops have been measured using vibrating sample 

magnetometer by Physical Properties Measurements System 

by Quantum design.  

The magnetostriction coefficient, λs, of the studied 

microwire, was evaluated by the Small Angle Magnetization 

Rotation (SAMR) method recently adapted for microwire 

[33].  

III. EXPERIMENTAL RESULTS AND DISCUSSION 

The magnetostriction coefficient, λs, sign and value 

affects the hysteresis loops of amorphous microwires (see 

Figure 1). The character of hysteresis loops of amorphous 

microwires with positive and negative λs-values is quite 

different: microwires with positive λs-values present 

rectangular hysteresis loops, while hysteresis loops of 

microwires with negative λs-values are almost non-

hysteretic with low coercitivity, Hc, values. Such influence 

must be attributed to the fact that the magnetoelastic 

anisotropy is the main source of magnetic anisotropy in 

amorphous materials [33]. 

The rectangular hysteresis loop observed in Fe-rich 

microwires with positive λs-values was interpreted in terms 

of axial magnetic anisotropy intrinsically related to a 

peculiar domain structure consisting of inner axially 

magnetized single domain and the outer domain shell with 

radial magnetization orientation [17].  

The remagnetization of such microwires is running by 

the single and large Barkhausen jump within the inner 

domain [8][17]. Perfectly rectangular hysteresis loop 

character is related to an extremely fast magnetization 

switching by single domain wall propagation. Such 

microwires with rectangular hysteresis loops are suitable for 

the electronic surveillance applications. However, plurality 

of Hc-values is required for such applications. One of the 

possibilities to tune the Hc-values is the control of the 

internal stresses. 

There are several factors responsible for the internal 

stresses value and distribution: (i) the difference in the 

thermal expansion coefficients of metallic alloy nucleus 

solidifying simultaneously with the glass coating 

surrounding it; (ii) the quenching stresses itself related to the 

rapid solidification of the metallic alloy nucleus from the 

surface inside the wire axis; and (iii) the drawing stresses 

[34]-[37].  

Most theoretical evaluations of the internal stresses 

value and distribution show that the largest internal stresses 

are associated with the difference in the thermal expansion 

coefficients of the metallic alloy and the glass coating [34]-

[37]. Accordingly, we must assume that the internal stresses 

value inside the metallic nucleus can be tuned by the ρ -ratio 
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Figure 1. Hysteresis loops of magnetic microwires 

Fe75B9Si12C4 with positive (a) Co67.1Fe3.8Ni1.4Si14.5B11.5Mo1.7 

with vanishing (b) and Co77.5Si15B7.5 with negative (c) λs 

values. 
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between the metallic nucleus diameter, d, and the total 

microwire diameter, D (ρ = d/D) [34]-[37].  

Provided below hysteresis loops of Fe70B15Si10C5 

microwires with different ρ–ratio experimentally confirm 

such assumption (see Figure 2). The difference of the 

hysteresis loops of microwires with the same chemical 

composition must be related to different internal stresses, σi, 

values. Indeed, the magnetoelastic anisotropy, Kme, is given 

by [8][9][34][38]: 

 

Kme=3/2 λsσi                  (1) 

Naturally, controllable glass-coating removal is the other 

route to tune hysteresis loops of glass-coated microwires. 

The chemical etching of the glass-coating of 

Co
68.5

Si
14.5

B
14.5

Y
2.5 microwire with higher negative λs-values 

allows transformation of linear hysteresis loop into 

rectangular (see Figure 3). As previously reported, after 

etching in 10% HF for 50 min, the glass-coating thickness 

decreases from 8.5 to 4 μm [39]. Accordingly, chemical 

etching of the glass-coating makes Co-rich microwires 

suitable for the electronic surveillance applications. Such 

remarkable influence of chemical etching must be 

associated with the relaxation of the internal stresses related 

to different thermal expansion coefficients of glass coating 

and metallic alloy. Accordingly, one can assume that the 

annealing allowing internal stresses relaxation must be the 

other route for adapting of glass-coated microwires for the 

electronic surveillance applications. Furthermore, such 

processing allows to keep the flexible and insulating glass 

coating. 

In the case of Fe70B15Si10C5 amorphous microwires, 

annealing allows a slight coercivity decrease, however the 

shape of the hysteresis loops remains the same (see Figure 

4). 

More remarkable and complex annealing influence is 

observed in Fe-Ni based microwires. As-prepared 

Fe62Ni15.5Si7.5B15 microwires present rectangular hysteresis 

loops (see Figure 5a) as expected for microwires with 
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Figure 2. Hysteresis loops of Fe70B15Si10C5 amorphous microwires 
with different metallic nucleus diameter d and total diameters D: with  

ρ = 0.63; d = 15 μm (а); ρ = 0.48; d = 10.8 μm (b); ρ = 0.26; d = 6 μm 

(c); ρ = 0.16; d = 3 μm (d) and Hc(ρ) dependence of the same 

microwires(e).  
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Figure 3. Hysteresis loops of as-prepared (a), and subjected to 
chemical etching for 50 min (b) Co

68.5
Si

14.5
B

14.5
Y

2.5
 

microwires, adapted from [38]. 
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positive λs-values (about 27 × 10
−6

). After annealing of 

Fe62Ni15.5Si7.5B15 microwires, a remarkable increase in 

coercivity, Hc, is generally observed (see Figures 5b–f). The 

hysteresis loop character remains unchanged: all hysteresis 

loops present rectangular shape. 

One of the origins of a rather different effect of 

annealing on coercivity of Fe and Fe-Ni based microwires 

can be a domain wall stabilization due to directional 

ordering of atomic pairs being considered [41]–[44]. 

However, local nano-sized precipitations and clustering 

observed in annealed Fe-Ni based microwires by the atom 

probe tomography can be the other origin of remarkable 

magnetic hardening and complex Hc(tann) dependence [42]. 

Furthermore, atom pair ordering and hence DW stabilization 

is reported for Fe-Ni and Fe-Co amorphous alloys [41]–

[44]. Such DW stabilization is considered as the main origin 

of the Hc rising upon annealing observed in amorphous 

materials containing two or more ferromagnetic elements 

[43][44]. Accordingly, annealing of Fe-Ni based microwires 

allows considerable variation of coercivity in Fe-Ni based 

microwire with rectangular hysteresis loops. 

Even more remarkable hardening upon conventional 

annealing has been reported in a variety of Co-rich 

microwires with vanishing λs-values [31][32]. Thus, 

transformation of linear hysteresis loop with low coercivity 

(Hc ≈ 4 A/m) into rectangular with Hc ≈ 90 A/m and 

considerable magnetic hardening are observed in 

Fe3.6Co69.2Ni1B12.5Si11Mo1.5C1.2 microwire upon annealing 

without stress (see Figure 6).  

Observed annealing influence must be attributed to the 

internal stresses relaxation and rising of the inner axially 

magnetized inner core diameter. Similar evolution of 

hysteresis loops upon annealing is confirmed in various Co-

based microwires with low and negative λs-values [9][45]. 

Consequently, similarly to glass-coating removal, annealing 

of Co-rich microwires allows for obtaining magnetically 

bistable Co-rich microwires. 

On the other hand, magnetically hard and semi-hard 

wires are desirable for various applications like the 

electronic article surveillance, compass needles, motors, 

tachometers, magnetic tips for magnetic force microscopy, 
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Figure 4. Hysteresis loops of as-prepared (a), and 
annealed at Tann = 400 °C for 180 min (b) Fe75B9Si12C4 

microwires and dependence of coercivity on annealing 

time (c). 
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Figure 5. Hysteresis loops of as-prepared (a) and annealed at Tann = 
410 °C for 16 min (b) 32 min (c), 128 min (d), and 256 min (e) 

Fe62Ni15.5Si7.5B15 microwires and Hc(tann) dependence of the same 

microwire.  
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or dentistry [46]. For this purpose, Fe50Pt40Si10 microwires 

have been prepared. As-prepared Fe50Pt40Si10 microwires 

present amorphous structure. Magnetic hardening in 

Fe50Pt40Si10 microwires has been observed after annealing 

(see Figure 7). In this case, after devitrification of 

amorphous Fe50Pt40Si10 microwire, Hc ≈ 40 kA/m is 

observed. Such magnetic hardening has been attributed to 

the formation of L10-type superstructure after 

crystallization of as-prepared amorphous precursor. As can 

be appreciated, magnetic hardening is observed in a wide 

temperatures range. 

 

 

IV. CONCLUSIONS 

We showed that the magnetic properties of amorphous 

magnetic microwires can be tuned either in as-prepared state 

or by controlling the magnetoelastic anisotropy through the 

magnetostriction coefficient value and by the internal 

stresses values related to the fabrication conditions and 

geometry of microwires. Furthermore, appropriate post-

processing (including either conventional heat treatment, 

heat treatment in the presence of applied stress or magnetic 

field, or glass-coating removal) allows further tuning of 

magnetic properties of magnetic microwires. We showed 

that the microwires with coercivities from 1 A/m to 40 

kA/m can be prepared. Future work will focus on the 

influence of external stimuli (temperature, stresses) on the 

magnetic properties of magnetic microwires. 
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