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Abstract— The aim of this paper is to address the need for
reliability assessments of new and updated consumer-grade
activity and heart rate monitoring devices. This issue is central
to the use of these sensor devices and it is particularly
important in their medical and assisted living application.
Using an example lightweight empirical approach,
experimental results for heart rate acquisitions from Garmin
VivoSmart 3 (v4.10) smartwatch monitors are presented and
analyzed. The reliability issues of optically-acquired heart
rates, especially during periods of activity, are demonstrated
and discussed. In conclusion, the paper recommends the
empirical assessment of new and updated activity monitors, the
sharing of this data and the use of version information across
the literature.

Keywords- wearable sensing; activity monitoring; ambulatory
heart rate, inter-instrument reliability.

I. INTRODUCTION

Consumer-grade wearable monitoring devices are used
across a spectrum of health, well-being and behavioral
studies, as well as clinical trials. For example, the U.S.
Library of Medicine ClinicalTrials.gov database reports
nearly 200 “Completed” to “Not yet recruiting” trials
involving Fitbit devices (search accessed 01/05/2018).
However, the manufacturers of these devices are generally
very clear regarding the intended applications and suitability
of their devices, and do not make misleading clinical claims.
For example, Garmin Vivosmart “Important Safety and
Product Information” [1] advises that the device is for
“recreational purposes and not for medical purposes” and

that “inherent limitations” may “cause some heart rate
readings to be inaccurate”, similarly, Fitbit device
“Important Safety and Product Information” declares that the
device is “not a medical device” and “accuracy of Fitbit
devices is not intended to match medical devices or scientific
measurement devices” [2]. Given that these devices are
being used in clinical applications, and with future clinical
applications anticipated [3], it is important that device
reliability is assessed.

In terms of meeting user expectations, it is noteworthy
that, at the time of writing, Fitbit’s motion to dismiss a class
action has been denied. The complaint alleged “gross
inaccuracies and recording failures” [4] because “products
frequently fail to record any heart rate at all or provide
highly inaccurate readings, with discrepancies of up to 75
bpm” [5]. Indeed, ambulatory heart rate acquisition from
optical sensors is known to be very challenging [6]. One of
the main challenges is the range of severe interference
effects caused by movement [7][8]. Optical heart rate signals
can also be affected by skin color [9] and aging [10]. Yet,
optical heart rate acquisition remains a desirable alternative
to chest strap electrocardiogram (ECG) monitoring in
consumer-level activity monitors, where comfortability,
ease-of-use and low cost are prioritized.

After selection of an activity monitor model based on
recorded parameters, study requirements and deployment
needs [11], the calibration and validation of wearable
monitors [12][13] can be onerous. Best practice requires a
substantial time and resource investment for researchers to
calibrate and validate sufficiently large numbers of their
devices with a large and diverse cohort of representative
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users performing a range of anticipated activities. At the
same time, commercial monitors can frequently and
automatically update both software and firmware that can
alter device function, data collection and data reporting,
potentially compromising previous validation. But, of
course, manufacturers are under no obligation to report the
detail of their proprietary algorithms or the specifics of
version changes.

Devices that have the same model name, but operate with
different software and firmware versions, are distinct
devices; they should not be treated as identical devices.
Ideally, devices would be clearly differentiated in the
literature with data for manufacturer, model and version
data. While there may be limited (if any) opportunity for
researchers to reversion commercial device software to
repeat published experiments, the provision of version
information would, at least, limit the potential for incorrect
aggregations of data for devices that operate with different
software and firmware versions.

A number of studies have reported on the validity of
different monitoring device models. For example, Fokkema
et al. [14] reported on the step count validity and reliability
of ten different activity trackers. Thirty-one healthy
participants performed 30-minute treadmill walking
activities while wearing ten activity trackers. The research
concluded that, in general, consumer activity trackers
perform better at an average (4.8 km/h) and vigorous
(6.4 km/h) walking speed than at slower walking speeds.

In another study, Wahl et al. [15] evaluated the validity
of eleven wearable monitoring devices for step count,
distance and Energy Expenditure (EE) with participants
walking and running at different speeds. The study reported
results with the commonly used metrics: Mean Absolute
Percentage Error (MAPE) and IntraClass Correlation (ICC)
showing that most devices, except Bodymedia Sensewear,
Polar Loop, and Beurer AS80 models, had good validity
(low MAPE, high ICC) for step count. However, for
distance, all devices had low ICC (<0.1) and high MAPE (up
to 50%), indicating poor validity. The measurement of EE
was acceptable for Garmin, Fitbit and Withings devices
(comprising Garmin Vivofit; Garmin Vivosmart; Garmin
Vivoactive; Garmin Forerunner 920XT; Fitbit Charge; Fitbit
Charge HR; Withings Pulse Ox Hip; Withings Pulse Ox
Wrist) which had low-to-moderate MAPEs. The Bodymedia
Sensewear, Polar Loop, and Beurer AS80 devices had high
MAPEs (up to 56%) for all test conditions.

There is a growing number of similar studies that
compare different recordings from different models of
consumer activity monitors. However, across this literature,
and in reviews of this literature [16], it is common practice to
provide version data for the software used for statistical
analyses of device performance, but it is not common
practice to report version information for the devices
themselves. As an example of device ambiguity, a reference
to “Garmin Vivosmart” could refer to either Garmin
Vivosmart 3 or Garmin Vivosmart HR. The date of a given
publication might help disambiguate the model variant but
will not help identify the version. The Vivosmart HR had 14
versions from 2.10 to 4.30 over approximately 30 months

(each update comprising between 1 and 11 items, such as,
“improved calculation of Intensity Minutes” and “Various
other improvements”) [17]. At the time of writing, the
Garmin Vivosmart 3 (v4.10) is the latest of 9 versions.

In Section II of this paper, a lightweight approach for
device assessment is presented using the Garmin
Vivosmart 3 smartwatch as an example device; the results of
an experimental assessment are presented in Section III.
Recommendations for device assessment are discussed in
Section IV and, conclusions and recommendations for
further work are summarized in Section V.

II. METHOD AND MATERIALS

Four Garmin Vivosmart 3 smartwatches (all versioned
SW v4.10 throughout the data acquisitions during May 2018)
were worn, as shown in Figure 1, by four healthy researcher
participants, P1-P4 outlined in Table I, during the treadmill
walking activities summarized in Table II. The walking
speeds: slow, moderate, fast and vigorous, were selected
based on reports in the literature [18][19] and were
performed on an h/p/cosmos Pulsar treadmill. To support
reproducibility [20], we report further details about materials
in the appendix.

Figure 1. Activity monitor positions (color-coded for reference).

TABLE I. PARTICIPANT SUMMARY

Participant Age (yrs) Gender
Height

(m)
Weight (kg) BMI

P1 25 Female 1.69 58 20.03

P2 54 Female 1.62 65 24.7

P3 47 Male 1.75 70 22.8

P4 28 Male 1.70 76 26.2

TABLE II. THE WALKING ACTIVITY SCHEDULE

Time
(minutes)

20 20 20 20

Activity
Slow

walking
(2.4 km/h)

Moderate
walking

(3.2 km/h)

Fast
Walking

(4.8 km/h)

Vigorous
walking

(6.4 km/h)

All participants reported regularly partaking brisk-
intensive exercise outside largely sedentary
academic/working roles. Participant 1 was ambidextrous. All
other participants were right-handed. (Ethical approval for
“Health Technology Assessment and Data Analytics”,
ERP2329” was obtained from Keele University.)
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The slow walking activity was prefaced by two minutes
of standing with arms down. Pulse readings were taken from
a Polar H10 chest strap ECG monitor at 1-minute intervals
throughout the activity.

Data (from the logged Garmin .FIT files) was
downloaded from the watches after each activity and
converted into .CSV formats and imported into Excel. Dates
and times were converted from the Garmin 16- and 32-bit
timestamps used in the .FIT file [21] into standard Excel
date-time serial numbers.

Mean Absolute Percentage Error (MAPE) and the
IntraClass Correlation (ICC) [22] were used to compare the
heart rate recordings from the watches with the baseline
ECG device. Step counts were also acquired and analyzed
but, due to limitations of space, are not reported here.

III. RESULTS

Figure 2 shows the heart rate recordings for P1-P4 from
the treadmill walking activities. Variability in recorded
values can be seen at both slower and faster walking speeds
and, notably, differs between participants. For analysis of the
acquired data we calculated the MAPE (compared with the
ECG chest strap reference) and ICC values listed in Table
III. As shown, treadmill acquisitions for participants P2 and
P3 produced higher MAPEs (including MAPEs over 10%:
the level often taken as the upper bound of “acceptable”
errors) and lower ICCs. This could, in part, be attributed to
the increased age of participants P2 and P3 compared to P1
and P4. As shown in Figure 2, for P2 there were some
abnormally low but sparse heart rate recordings from the
“blue” device and, to a lesser extent, the “red” device. For
P3, the “blue” device recorded decreasing heart rates when
the actual heart rate increased during the vigorous walking
activity. This produced a near zero ICC.

Figure 2. Heart rate recordings acquired during treadmill walking activities.
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TABLE III. VALUES OF MAPE AND ICC FROM TREADMILL WALKING ACTIVITIES

Participant Black Blue Green Red

ID MAPE ICC MAPE ICC MAPE ICC MAPE ICC

P1 7.08% 0.68 7.13% 0.71 4.34% 0.81 5.62% 0.90

P2 9.60% 0.69 15.55% 0.67 11.94% 0.58 13.42% 0.71

P3 13.00% 0.47 14.00% 0.02 16.00% 0.19 9.00% 0.84

P4 8.69% 0.84 6.14% 0.91 8.04% 0.86 7.57% 0.89

Figure 3. Heart rate recordings acquired during 12-hr everyday living.

The devices were also worn by participants for 12-hour
periods during uncontrolled everyday activities. The
recorded heart rates are shown in Figure 3. Intraclass
correlations and confidence intervals for treadmill walking
and 12-hr use are plotted, respectively, in Figures 4 and 5. As
anticipated, these indicated poor performance during the
treadmill activity. However, as shown in Figure 5, the
devices performed more consistently during the prolonged
acquisitions of activities of everyday living, when activity
levels were generally lower on average.

IV. DISCUSSION

The lightweight assessment approach exemplified here is
not, and could not be, prescriptive. A useful approach must

incorporate participants and activities that have relevance to
the intended study; otherwise, it would have little value. It is
also important to ensure that the duration of activities is
sufficient for devices to record enough data. We established
20-minute durations empirically for each treadmill walking
speed by monitoring the frequency of logged readings and
expanding the window to ensure several readings would be
logged for each speed. For other devices where, for example,
per-minute records are available, the activity duration could
be reduced.
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Figure 4. ICC for each device compared with ECG chest strap baseline recordings with 90% confidence intervals for treadmill activities.

Figure 5. Inter-instrument ICC values for 12-hrs everyday living.

Of course, a comprehensive reliability assessment
would be preferable to the approach outlined here.
Similarly, this lightweight empirical approach is preferable
to no assessment at all or reliance on outdated, irrelevant
or unreproducible reports in the literature. Of the several
limitations of the presented approach, there was,
intentionally, a small number of participants, a limited
sample of unrepeated activities and there were no
reference recordings for the 12-hr everyday activity.
(Reference readings from finger-worn pulse oximeters
were attempted, but the devices repeatedly failed to
maintain accurate readings). However, with just four
participants and two activity acquisitions, we were able to
quickly and simply obtain an insight into the reliability of
the devices at their current version, have an appreciation
of their limitations and, also, a degree of confidence
regarding their potential for study acquisitions.

V. CONCLUSION AND FUTURE WORK

There is much scope for further work to improve
reproducibility across the activity monitoring domain and
to assist researchers evaluate and re-evaluate new and
updated devices. We have demonstrated an empirical
approach to device assessment that provides an example

lightweight assessment that is not onerous and could easily
be repeated as and when devices are updated.

Despite issues associated with reliable optical heart
rate acquired from the wrist during activity, we might hope
that future and updated consumer devices would i) be
better at identifying erroneous values and avoid reporting
them and ii) be better at correctly estimating values. It
would be unwise to assume all device upgrades will
necessarily result in improved device performance in all
aspects, however, future research into sensor positioning,
sensor array configurations, multi-sensor fusions and
advanced signal processing techniques could significantly
contribute to improved sensing reliability.

The U.S. Food and Drug Administration has
established a new “Digital Health Software
Precertification (Pre-Cert) Program” [23] that aspires
toward a more agile approach to digital health technology
regulation. It recognizes the “iterative characteristics” of
new consumer devices [24]. In addition, the Consumer
Technology Association recently defined CTA-2065; a
new protocol to test and validate the accuracy of heart rate
monitoring devices under the conditions of everyday living
– from dynamic indoor cycling to sedentary lifestyles. We
recommend that there is also some means to enable and
encourage the sharing of version-by-version device
reliability assessment data between manufacturer/s, users
and researchers.

In a systematic review of consumer-wearable activity
trackers, Everson et al. [16], recommend that “future
studies on the measurement properties of the trackers
should be sure to initialize the tracker properly and
indicate in the publication how this was done so others
can replicate the process. Providing the specific tracker
type, date purchased, and date tested would also be
important.” We additionally recommend that full device
details, including software and firmware versions, are
reported in the literature.
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APPENDIX

The further material details were as follows:
Garmin Vivosmart 3 software/firmware versions:

SW: v4.10; TSC: v1.10; SNS: v5.90. Devices were
initialized according to the arm worn and all data was
taken directly from logged .FIT files. Devices were
purchased on 9th March 2018 and acquisitions made
during May 2018. Their serial numbers were as follows:
Black – 560185378, Red – 560185383, Blue – 560640435,
Green – 560639717.

The treadmill was an h/p/cosmos Pulsar treadmill,
h/p/cosmos Sports & Medical Gmbh, Nussdorf-
Traunstein, Germany. (cos100420b; ID:
X239W80479043; OP19: 0319 1139)

Polar H10 chest heart rate monitor (FCC ID: INW1W;
Model: 1W; IC: 6248A-1W; SN: C7301W0726005;
ID: 14C00425; Firmware: 2.1.9 and data acquired via
Polar Beat 2.5.3.
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