
A Coordinated Matrix of RFID Readers
as Interactions Input

Maxime Louvel, François Pacull
CEA-LETI MINATEC Campus, Grenoble, France

Email: maxime.louvel@cea.fr ; francois.pacull@cea.fr

Abstract—The paper presents a framework to develop ap-
plications on a very innovative hardware associating hundreds
of rfid readers and a high resolution display within a table.
The framework is built on top of a rule-based coordination
middleware, which provides mechanisms to handle combinations
of events, generated by the rfid readers. The framework offers
the basic blocks to fully support the hardware. The paper
demonstrates the interest and the possibilities of the framework
through simple examples and a more complex scenario. Both
illustrate how easy it is to build any kind of interactions with the
proposed framework.

Keywords—Coordination Middleware; RFID; Data aggregation.

I. INTRODUCTION

Sensor networks are continuously growing and bringing
new designs and usages. The increasing number of devices
implied at the same time and the increasingly complex in-
teractions required by the usages does not ease the task of
the application programmers. There is a need of a middleware
layer, offering as basic bricks high level mechanisms, in order
to move most of the complexity from the application to the
middleware. This paper illustrates this with an innovative smart
table hosting a high resolution display and a matrix of several
hundreds of rfid readers. The usage of this table is multiple
when it is question of interaction, mediation and collaboration
between several users.

The paper is organised as follows. Section II describes
the hardware used, an innovative table that allows to detect
the identity and the position of rfid tagged objects put on
the table and to display arbitrary picture on the HD screen.
Section III presents the rule based middleware and the frame-
work built on top, which offers to the application designer the
basic interaction involving objects equipped with rfid tags and
the 2D graphical engine playing the role of interactive and
dynamic tablecloth. Section IV illustrates simple usages of the
framework and a more advance scenario. Finally, section V
concludes the paper.

II. HARDWARE

To illustrate the capability of our middleware to manage
complex events detection, we describe our experiment with
an original hardware. This hardware combines a rfid based
location system and a HD screen that can be used as classical
display.

Fig. 1 depicts the table, composed of two layers. The first
layer is a 42” screen able to display with a resolution of HD
1080p. This screen is seen as a classical LCD display and can

R d reader

Tile

HD display

R d reader matrix

Fig. 1. Description of the table

thus be connected to a computer or a raspberry pi board in this
paper. Under this display layer, there is a set of rfid readers
organised as a matrix of 6 x 4 tiles, with each tile containing
itself a matrix 4 x 4 rfid readers. As a result there are 24 x 16
(384) rfid readers distributed in the table.

This table works with classical rfid tags that can be attached
to any physical object. The raw information received is for
each rfid reader the set of detected tags. This information is
collected via Ethernet. Each tile has its own IP address and
gives information for the 16 rfid readers constituting the tile.

There are two interesting functioning modes of this table.
In the first mode (push), the tiles are autonomous and send
automatically information each time a rfid is seen. In the
second mode (pull), each tile can be interrogated in order to
have the information.

With this hardware, the applicative fields are quite infinite
provided that the middleware offers the required abstraction
layer and a powerful mechanism to define the coordination
scheme we want to put in place.

III. SOFTWARE

The presented hardware allows a lot of interaction through
objects. It needs a high level middleware able to quickly react
to the context defined by the set of objects present on the
table at the same time. Applications for this hardware typically
combine rfid tag location, co-location (several tags), proximity,
distance, sequence of tags put on the table. Moreover it
is possible to use other interfaces connected to the system
(e.g., 3d mouse, cameras). This section firstly introduces the
middleware we use. For a more detailed description of this
middleware, the reader may refer to [1]. Then the section
presents the framework we developed on top to ease the
creation of applications using the table.

91Copyright (c) IARIA, 2013. ISBN: 978-1-61208-297-4

SENSORDEVICES 2013 : The Fourth International Conference on Sensor Device Technologies and Applications

A. Coordination Middleware

This middleware is an evolution of earlier middlewares [2],
[3] specifically designed for lightweight systems. It provides a
uniform abstraction layer that eases the integration and coordi-
nation of the different components (software and hardware). It
relies on the Associative memory paradigm implemented in our
case as a distributed set of bags containing resources (tuples).
Following Linda [4] approach the bags are accessed through
the three following operations:

• rd() which takes as parameter a partially instantiated
tuple and returns from the bag a fully instantiated tuple
whose fields match to the input pattern;

• put() which takes as parameter a fully instantiated
tuple and insert it in the bag;

• get() which takes as parameter a fully instantiated
tuple, verifies its presence in the bag and consumes it
in an atomic way.

For a matrix of rfid readers like the one described above,
bags RawInformation and Position may contain raw
data such as (tagid, tileid, readerid) or more
refined data as (tagid, posX, posY). Depending on the
usage (calibration or real application) they both have an inter-
est. Once the location is computed according to the raw data
meta-data may be considered from the association between
(physicalTagId, tagId) or (tagId, objectId).

For actuators, the put() operation is used to in-
sert tuples under the form (actuatorid, function,
parameter1, parameter2). Once inserted in the bag,
it actually triggers the correct action on the physical actuator
with the appropriate parameters. The same put() operation
inserts tuples into bags configuring the readers operating mode
or other configuration parameters. Finally, some bags are used
to control the videos which are displayed on the table screen.

In addition, bags can be grouped inside objects. For in-
stance an object can model the display on the table and another
may handle all the rfid readers.

The operations rd(), get() and put() are used in
the Production rules [5] to express the way these resources are
used in the classical pre-condition and performance phases.

Precondition phase: It relies on a sequence of rd() oper-
ations to find and detect the presence of resources in several
bags. This can be sensed values, result of service calls or states
stored in tuplespaces or databases.

The particularity of the precondition phase is that:

• the result of a rd() operation can be used to define
some fields of the subsequent rd() operation;

• a rd() is blocked until a resource corresponding to
the pattern is available.

Performance phase: It combines the operations rd(),
get() and put() to respectively verify that some resources
found in the precondition phase are still present, consume
some resources and insert new resources. In this phase, the
operations are embedded in distributed transactions[6]. This

particularity ensures several properties that go beyond tradi-
tional production rules. In particular it ensures that:

• the conditions responsible of firing the rule (precon-
dition) are still valid in the performance phase;

• the different involved bags are actually all accessible.

These properties are very important since they allow to
verify that a set of objects are actually present “at the same
time” on the table.

B. Framework

The proposed framework is composed of three objects:
Rfid, Display and 2D_Engine.

1) Object Rfid: This object models the Rfid readers
matrix. It contains the following bags:

• Position(tagId, posX, posY): contains the
position of the tag (0,0 defines the top left position);

• LogicalTag(physicalTagId, tagId):
stores the association of a physical tagId with a
more meaningful logical id e.g. (”030209348393”,
”video1”);

• TagStatus(tagId, status): contains the sta-
tus of a tag: "in" if detected by a rfid reader or
"out" if not seen for a given delay;

• Mapping(tagId, objectId): keeps the associ-
ation physical object and rfid tag that is attached to it
(e.g., an hourglass used to symbolise a timer);

• Type(tagId, type): maintains association of a
tagId with a type of tagged object (e.g., physical
object, video, action card, badge);

• Area(areaId, areaDefinition): contains
areas on the table defined as a set of points defining
a polygon;

• PositionArea(tagId, areaId): contains the
tagId contained in a given area.

The detection of the tags placed on the table is done by
a driver which handles the events sent by the different rfid
readers (used in push mode). This information is decoded and
the different bags are filled with the corresponding resources.
When a tag is detected, the driver computes its position on the
table (X,Y) and adds the resource (tagId, posX, posY)
in the bag Position. If several readers detect the same
tagId, the barycentre is computed. The computation uses
as weight the signal strengths of the readers seeing a tag in
order to improve the precision of the location. As a rfid reader
continuously sends the tag information, a filtering is applied to
avoid inserting new resources when it is not necessary. Then,
a resource is inserted only when a significant change in the
location is effective. In addition, the status of the tag, "in"
if the tag is still on the table or "out" if it has been removed
(i.e., not be seen for a given delay), is inserted as a resource
(tagId, status) in the bag TagStatus each time the
status changes.

The bags Type, Area or LogicalTag are configuration
bags and their usage is described here after.

92Copyright (c) IARIA, 2013. ISBN: 978-1-61208-297-4

SENSORDEVICES 2013 : The Fourth International Conference on Sensor Device Technologies and Applications

a) Introduction to rules: The described middleware
allows to express with its rule based language actions to
be performed (performance phase) when some conditions
(precondition phase) are verified. The actions performed are
embedded in transactions enclosed in {}. As rd() actions
may be included in these transactions, it is possible to ensure
that resources found in the precondition are still valid in the
performance.

1[” R f i d ” , ” TagStatus”] . rd (tag Id , ” i n ”) &
2# o t h e r p r e c o n d i t i o n s
3: :
4{
5[” R f i d ” , ” TagStatus”] . rd (tag Id , ” i n ”) ;
6# o t h e r a c t i o n s
7} .

Fig. 2. Ensure tag is still there at performance phase

Fig. 2 presents an example of rule, where the precondition
and performance part are respectively before and after the
"::". To simplify the example, we only show a single
operation in the precondition and performance phase but both
may contain several additional tokens.

The first token (line 1) reads in the bag TagStatus of
the object Rfid all the tags with status ”in”. This allows
to detect new tags placed on the table and then to manage
the corresponding scenario. Line 5 guaranties that the tagId is
still on the table when the performance phase executes. Since
actions in the performance are embedded in transactions the
other actions can only be done if the tag is still there. Note
that this approach simplifies a lot the management of events:

• events are detected in preconditions;

• when performances are executed, guaranteeing that the
condition related to the event is still valid only requires
to add a rd() in the performance part.

b) Initialisation rules: Fig. 3 presents an initialisation
rule. No precondition is defined, this rule is always executed
and only once at the application launch time.

1: :
2{
3[” R f i d ” , ” Logica lTag”] . put(” 9 e7f9cce9” , ” tag v ideo tab le ”) ;
4[” R f i d ” , ” Area”] . put(” zoneA” , ”0 ,0 ;0 ,54 ,12 ,54 ;12 ,66 ;66 ,0 ”) ;
5[” R f i d ” , ” Type”] . put(” t v i deo p resen ta t i on tab le ” , ” v ideo”) ;
6} .

Fig. 3. Initialisation rule

Here we initialise the bags LogicalTag, Area and Type.

In the first bag, we associate the physical tagid
"94e7f89cce9" to the more user friendly logical tag
"tag_video_table". This allows to manipulate in the
rules an id that is human readable. In addition, several physical
tags can be associated to the same logical tag for backup reason
or to offer to several people the possibility to trigger the same
action with different objects or cards.

In the second bag, we define a "zoneA" as a list of points
defining a polygon. This is taken into account by the driver to
populate the PositionArea bag.

In the third bag, we associate a type to a tag. The type
allows to define a specific context around this tag to verify that
it is correctly used. For instance, a tag associated to a voting

card cannot be placed everywhere on the table but in a given
area. Another usage is to give information to the driver about
the sampling frequency for a given tag or if the change in the
location is large enough to be reported or not.

c) Defining action area: To better organize the table,
area (i.e., zone of the table) can be used. An area is defined by
adding a resource (areaId, areaDefinition) in the
bag Area. The areaDefinition is a set of points defining
a polygon. When the rfid driver detects a new position for a tag,
at the same time it inserts the corresponding resource in the bag
Position, it scans all the defined areas and add the resources
(tagId, areaId) in the bag Area. In the same manner,
when the driver inserts a resource (tagId, "out") in the
bag Status it removes all the resources corresponding to the
tag in the bag Area. This simplifies the application designer’s
task since she can directly write a rule which starts with a token
reading in the bag Area.

2) Object Display: The second object of the framework
manages the displays on the screen. It contains the following
bags (non exhaustive list):

• videoPlayer(playerId, videoname,
posX, posY, width, height,
orientation, soundTrack): this bag accepts
only the put() operations and launches a video
player displaying the video corresponding at filename
with the given geometry, with or without soundTrack;

• video(videoname, status): maintains the
video status: started, finished, paused;

• videoPlayerCmd(videoname, command):
accepts only the put() operations and the following
commands: "stop", "pause", "resume",
"fs_on", "fs_off" (fs is full screen).

A simple usage of this object is described in Fig. 4. This
initialisation rule starts the init video presenting the table on
the top left corner of the screen. When the performance is
executing, a video player is started and configured to display
the video with the resolution (640x480) at position (0,0). The
status of the video is set to "started".

1: :
2{
3[” D i sp lay ” , ” v ideo”] . put(” v i deo tab le ” , ” s t a r t e d ”) ;
4[” D i sp lay ” , ” v ideoP layer ”] . put(” v l c ” , ” v i deo tab le ” ,

” 0 ” , ” 0 ” , ” 6 4 0 ” , ” 4 8 0 ” , ” True”) ;
5} .

Fig. 4. Start presentation video of the table

To easily support any kind of video player, the framework
uses an external Linux process. The role of this process is to
display a video according to a media definition file containing
the basic information needed to define the layout, the position,
the fact that the sound track is on or off. The display driver
saves the PID of the process started in order to interact with
it independently of the video player used.

Fig. 5 shows how to stop a video. The precondition waits
that the stop card is placed on the table. It then reads the
videoId of the started video. The performance actually stops
the video just by sending the signal SIGKILL to the PID
playing the video.

93Copyright (c) IARIA, 2013. ISBN: 978-1-61208-297-4

SENSORDEVICES 2013 : The Fourth International Conference on Sensor Device Technologies and Applications

1[” R f i d ” , ” TagStatus”] . rd (” tag stop v ideo” , ” i n ”) &
2[” D i sp lay ” , ” v ideo”] . rd (v ideo Id , ” s t a r t e d ”)
3: :
4{
5[” D i sp lay ” , ” videoPlayerCmd”] . put(v ideo Id , ” s top ”) ;
6} .

Fig. 5. Stopping a video with a control card

3) Object 2D engine: The third and last object of the
framework is a 2D engine. It is in charge of displaying the
background of the table. It is also in charge of the displayed
animations. The current version relies on a Scalable Vector
Graphics (SVG) engine to define 2D animations that will be
displayed in a simple web browser that is opened in full screen
on the table display.

The non exhaustive list of bags is:

• Background(imagefile): When a resource (i.e.,
an image file) is inserted it replaces the current back-
ground of the table;

• Media(tagId, filename): associates a tagId
to a filename;

• Sprites(spriteId,x,y, svgfile): Allows
to display a sprite (svg image) at the position x,y
on the table screen;

• MoveSpriteGrid(spriteid,x,y,duration,
nbsteps,renderlist): Allows to define an
animation for the sprite defined by spriteid. The
duration of the animation using; nbsteps steps
and using successively the svg patterns defined in
renderlist;

• Visibility(spriteId,percent): defines the
opacity and the visibility of the sprite.

This object contains in real more than 20 bags that allow
not only to define a background but also sprites that can be
animated on top of this background. All the svg attributes may
be dynamically modified.

The animations are done at the level of the object which
returns an html file when invoked through url. This html file
is built from static information (templates) present in the file
system and contextual information present in the bags. SVG
and embedded javascripts take care of the dynamic aspects.

IV. FRAMEWORK IN CONTEXT

After presenting the framework architecture, this section
shows how interactions can be easily encoded with rules,
through several examples. It then discusses the interest of
the framework compare to other solutions aggregating sensors
information. Finally it presents a more complex scenario
implemented with the framework.

A. Architecture

Figs 6 presents the current hardware and software setting.
It contains the table described in Section II. In addition there
are two computing resources: a laptop and a raspberry pi; both
embedded inside the table, hidden from the users. The table’s
screen is connected to the raspberry pi with a HDMI cord,

Ethernet link

HDMI link

R g
Framework

Objet

Ethernet

Switch

R d

HD display

RaspBerry

Pi

2D engine

Display

Web Browser

in full screen

video

player

Fig. 6. Global Picture

offering a 1080p HD resolution. The Ethernet switch defines a
local area network connecting the matrix of Rfid readers, the
raspberry pi and the laptop. From the software point of view,
the described objects of the framework are distributed among
the two computing resources. The Rfid object runs on the
laptop, the 2D engine and the Display objects run on the
Raspberry pi. In addition a web browser runs on the raspberry
pi. It is connected to the 2D engine object that returns a
SVG file according to the current context. The web browser
is displayed in full screen on the table display. Video players
may be launched on demand on the raspberry pi and displayed
on the table screen on top of the web browser.

B. Simple interaction through rules

1) Change the background with a card: In this example
(Fig. 7), the background displayed on the screen is changed
when a card of type background is put anywhere on the table.
The first line of the precondition makes the rule fire only for
tags that are known to define a background. Then whenever
a card of type background is put on the table (line 2), line 3
finds the filename of the background to render corresponding
to the tag id. Then in the the performance phase the action
(line 6) changes the background of the table with the content
of filename. After the change, it is not necessary to let the card
on the table.

1[” R f i d ” , ” Type”] . rd (tag Id , ” background”) &
2[” R f i d ” , ” TagStatus”] . rd (tag Id , ” i n ”) &
3[” 2 D Engine” , ” Media”] . rd (tag Id , f i l ename)
4: :
5{
6[” 2 D Engine” , ” background”] . put(f i l ename) ;
7} .

Fig. 7. Rule to change the background when a card is put on the table

You can define as many background as you want, you just
need to insert a resource defining the type of your rfid tag
as a "background" in the bag "Type" and a resource to
associate the tag id to an image filename in the bag "Media".

2) Display a video at the location of the card: This
example aims at starting a video when a card of type video is
put. The card’s position defines the top-left corner of the video.
Fig. 8 gives the rule implementing this scenario. As previously,
line 1 and 2 make the rules fires when a video card is put on
the table. Line 3 gives the card’s position. Finally, line 4 finds
the video to be displayed from the tag id. The performance
then embeds in one transaction:

• ensuring that the card is still there (line 7);

94Copyright (c) IARIA, 2013. ISBN: 978-1-61208-297-4

SENSORDEVICES 2013 : The Fourth International Conference on Sensor Device Technologies and Applications

• starting of the video player with (posX,posY) (line 8);

• saving state ”started” for the video (line 9).

1[” R f i d ” , ” Type”] . rd (tag Id , ” v ideo”) &
2[” R f i d ” , ” TagStatus”] . rd (tag Id , ” i n ”) &
3[” R f i d ” , ” P o s i t i o n ”] . rd (tag Id , posX, posY) &
4[” R f i d ” , ” Mapping”] . rd (tag Id , v i de o I d) &
5: :
6{
7[” R f i d ” , ” TagStatus”] . rd (tag Id , ” i n ”) ;
8[” D i sp lay ” , ” v ideoP layer ”] . put(” v l c ” , v ideo Id , posX,

posY, ” 6 4 0 ” , ” 4 8 0 ” , ” True”) ;
9[” D i sp lay ” , ” v ideoP layer ”] . put(v ideo Id , ” s t a r t e d ”) ;
10} .

Fig. 8. Display video at card’s position

3) Play a video at the location of the card or in full screen:
This scenario uses two rfid cards, one card to start a video
where the card is put and one to display the video in full
screen. There are three possible conditions:

1) video card only: display the video where the card is
put;

2) both cards: display the video in full screen;
3) full screen card only: do not display anything.

Condition 1 has been detailed in Fig. 8.

Fig. 9 implements condition 2. Lines 1-3 check that both
cards are on the table. Line 4 fires when the video has been
started (by rule in Fig. 8). The performance phase checks that
both cards are still on the table, the video is started an the
video player is switched to full screen by adding a resource
in the bag videoPlayerCmd (line 10).

1[” R f i d ” , ” TagStatus”] . rd (” t a g f u l l S c r e e n ” , ” i n ”) &
2[” R f i d ” , ” Type”] . rd (v ideo Id , ” v ideo”) &
3[” R f i d ” , ” TagStatus”] . rd (v ideo Id , ” i n ”) &
4[” D i sp lay ” , ” v ideoP layer ”] . rd (v ideo Id , ” s t a r t e d ”) &
5: :
6{
7[” R f i d ” , ” TagStatus” . rd (v ideo Id , ” i n ”) ;
8[” R f i d ” , ” TagStatus”] . rd (” t a g f u l l S c r e e n ” , ” i n ”) ;
9[” D i sp lay ” , ” v ideoP layer ”] . rd (v ideo Id , ” s t a r t e d ”) ;
10[” D i sp lay ” , ” videoPlayerCmd”] . put(p layer , ” fs on”) ;
11} .

Fig. 9. Put video in full screen

It is then necessary to write a rule (Fig. 10) to leave the
full screen mode if the full screen card is removed from the
table. This rule is triggered when the full screen control card
is "out" (line 1). As previously, the performance checks the
player and the cards’ status and adds a resource in the bag
videoPlayerCmd (line 10).

1[” R f i d ” , ” TagStatus”] . rd (” t a g f u l l S c r e e n ” , ” ou t ”) &
2[” R f i d ” , ” Type”] . rd (v ideo Id , ” v ideo”) &
3[” R f i d ” , ” TagStatus”] . rd (v ideo Id , ” i n ”) &
4[” D i sp lay ” , ” V ideoPlayer”] . rd (v ideo Id , ” s t a r t e d ”) &
5: :
6{
7[” R f i d ” , ” TagStatus” . rd (v ideo Id , ” i n ”) ;
8[” R f i d ” , ” TagStatus”] . rd (” t a g f u l l S c r e e n ” , ” ou t ”) ;
9[” D i sp lay ” , ” V ideoPlayer”] . rd (v ideo Id , ” s t a r t e d ”) ;
10[” D i sp lay ” , ” VideoPlayerCmd”] . put(p layer , ” f s o f f ”) ;
11} .

Fig. 10. Leave full screen

C. Discussion

This section has illustrated the simplicity of writing inter-
actions with the proposed framework. The detailed examples
show how information coming from a set of sensors may be
aggregated as a complex distributed event.

This is usually implemented with a publish-subscribe
approach[7], where subscribers register to specific events gen-
erated by publishers (rfid readers in this paper). This has been
applied in the context of sensor networks [8]. With such a
system it is possible to write code that would be similar to
the precondition part of the rules presented in this section. For
instance to react to a tag detected in a specific area or to an
external event. However, in a publish-subscribe approach when
the system has to react upon a set of events or to be sure that
the events are still valid when the actions have to be executed,
the amount of additional code is not negligible.

With the framework developed on top of our middleware
expressing an event as ”one card is put in a specific area”
and ”another card of a specific type is put at the same time
anywhere else” is simply a sequence of rd() tokens.

In addition, defining what to do if a card is put on the table
an immediately removed is possible thanks to the distributed
transaction offered in the performance phase.

D. Scenario

We described here a simple application based on this
framework which uses quite complex interactions between
several users around this table. The application allows to
collect the opinion of a panel of people to elect the better
equipment, concept or decision according to a set of criteria.
In the present example the panellists are asked to give their
opinions about a set of smartphones according to the following
criteria: aesthetic, user interface, size and autonomy. These
criteria are noted respectively A, B, C and D and can take the
value positive or negative depending on the majority of vote
from the panellists. The resulting information is displayed as
a Veitch diagram as shown in Fig. 11.

A+

A-

B-

B-

B+

C+ C-

D+D- D-

Fig. 11. Veitch Diagram

The white cell contains the best choices that receive 4
positive opinions. The adjacent cell contain choices that receive
3 positive opinions. The darker a cell is, the more negative it
is. The black bottom right cell contains the worst choice with
4 negative opinions. This section now details what is an inter-
action session and gives a few hints on the implementation.

95Copyright (c) IARIA, 2013. ISBN: 978-1-61208-297-4

SENSORDEVICES 2013 : The Fourth International Conference on Sensor Device Technologies and Applications

1) Interaction session: At the beginning, each panellist
has a badge representing her identity. The master of session
presents a smartphone and may display a video on the table
by putting the corresponding card on it. Some modifier cards
added to the table may modify the display either by switching
to fullscreen or by launching a second video player with a 180
rotation to adapt to situation where people are all around the
table. In this case, the second video uses the same video flow
(without sound track) and is synchronised with the first one.
Once the presentation is done, the vote may start. The master
of session places the card corresponding to the criterion (e.g.,
aesthetic) and then the table display shows two areas, one green
to collect the badges of panellists liking the smartphone design
and one red for those that are not enthusiastic. An additional
video or photo specific to this criterion may also be displayed.
Then, the master of session triggers the vote by placing an
hourglass (tagged with an rfid) on the table. A timer indicates
at each corner of the table the remaining time for the vote.
Each panellist put her badge on the table according to her
opinion. A circle is displayed around the badge to return a
feedback to the user. Different modalities may be configured
at the beginning of the session to control the vote:

• the duration of a vote phase;

• missing vote is considered as negative or positive;

• a vote is definitive or not.

Once the timer reaches zero the votes are stored for further
processing and the master of session can go to the next
criterion. When all the criteria have been considered, the
master of session can go to the next smartphone. At any
moment, the master of session may place a card on the table
to display or print current status of the Veitch diagram.

2) Implementation: The full application described here
may be implemented by using small variation of the basic
interactions involving Display, 2D_Engine and Rfid
objects presented in the framework section. plus a specific
Veitch object that contains bag used to store panellists
identities, votes and current step in the session (smartphone
number and criteria number). The basic settings, configuring
a working session, are done through initialisation rules that
define modalities such as default value of missing vote or
the identity of the panellists. Note that using the proposed
framework is very appropriate since adding new features
simply requires to add new rules. Existing rules can continue
to work without concern. We can for instance, use an initial
round getting the identities of the panellists rather than using
a configuration rule. This can be done without any other
impact that replacing the initialisation rule with the three rules
required to obtain the identity of the panellists: i) open identity
round with detection of the specific control card, ii) copy each
badge id detected to the bag panellist and iii) close identity
round by detecting that the specific control card is no longer on
the table. This obviously works, with any number of panellists.

V. CONCLUSION

This paper has presented an innovative hardware and a
framework easing the development of applications on top of
it. The hardware combines a full HD display and a set of 384

rfid readers allowing to return the location of several tens of
object tagged with Rfids.

The framework is built on top of a rule-based middleware
relying on production rules and distributed transactions to ease
events’ combination handling. It uses a driver which maps rfid
events into resources stored in bags allowing the resources
to be accessible with simple rules, thanks to the middleware.
This allows to react to event composing several rfid tags and
to embedded event verification in distributed transactions.

To ease the developer task, bags are grouped into three
objects to manage the Rfid reader matrix, to start and stop
videos and to interact with the 2D engine offering the dynamic
background of the table. This paper has shown through simple
examples and a more complex scenario how the framework
helps designing applications for the proposed hardware.

Future works will take two directions. One is to develop
other applications around the decision making field to show
that the table plus the framework is a full kit to quickly develop
and customize such type of applications. The second is to
integrate more external sensors and actuators to the framework.
Cameras which can deduce the number of people around the
table (e.g., counting the detected faces), sensors computing the
distance of the users from the table, voice interface, etc. are
informations that once combined with information returned by
the table may offer a richer user experience.

ACKNOWLEDGEMENT

The authors would like to thank Nicolas Géraud from
Dasein Interactions for the numerous advices about the user’s
interactions of the Veitch application. This work has been
partially funded by the FP7 SCUBA project under grant nb
288079 and FUI Rapsodie project under grant nb F1209039V.

REFERENCES

[1] L.-F. Ducreux, C. Guyon-Gardeux, S. Lesecq, F. Pacull, and S. R. Thior,
“Resource-based middleware in the context of heterogeneous building
automation systems,” in IECON 2012-38th Annual Conference on IEEE
Industrial Electronics Society. IEEE, 2012, pp. 4847–4852.

[2] J.-M. Andreoli, F. Pacull, D. Pagani, and R. Pareschi, “Multiparty
negotiation of dynamic distributed object services,” Journal of Science
of Computer Programming, vol. 31, pp. 179–203, 1998.

[3] D. Arregui, C. Fernström, F. Pacull, G. Rondeau, and J. Willamowski,
“Stitch: Middleware for ubiquitous applications,” in In Proc of the Smart
Object Conf, 2003.

[4] N. Carriero and D. Gelernter, “Linda in context,” Commun. ACM, vol. 32,
pp. 444–458, April 1989.

[5] T. A. Cooper and N. Wogrin, Rule Based Programming with OPS5.
Morgan Kaufmann, July 1988.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. Boston, MA, USA: Addison-Wesley
Longman Publishing, 1987.

[7] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[8] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz,
and J. Kelner, “Mires: a publish/subscribe middleware for sensor net-
works,” Personal and Ubiquitous Computing, vol. 10, no. 1, pp. 37–44,
2006.

96Copyright (c) IARIA, 2013. ISBN: 978-1-61208-297-4

SENSORDEVICES 2013 : The Fourth International Conference on Sensor Device Technologies and Applications

