
Protocol Awareness:
A Step Towards Smarter Sensors

Hoel Iris, François Pacull
CEA-LETI MINATEC Campus

17 rue des Martyrs, 38000 Grenoble, France
Email: hoel.iris@cea.fr ; francois.pacull@cea.fr

Abstract—Low power consumption and reliability are two
important properties in the wireless sensor network area. The
approach presented here to improve these aspects is to use a
rule-based middleware enforcing a coordination protocol on top
of the communication protocols imposed by the different wireless
sensor networks. In addition, we move the callee side of this
protocol from the gateway to the sensors/actuators in order to
make them able to directly respond to this protocol.
The high-level coordination protocol brings on the one hand the
control from the application side the activities (sleep/awake) of
the sensors and on the other hand the transactional processing
of operations involving a group of sensors / actuators. This has
a positive impact on the consumption and on the reliability.

Keywords-Coordination Middleware; Smart Sensor; Transac-
tion; Power Consumption.

I. INTRODUCTION

A Wireless sensor network (WSN) is a set of sensors or
actuators connected together through a wireless connection.
WSNs are nowadays commonly used in various domains be-
cause the absence of wire helps the deployment and decreases
the installation cost.

The main components of a sensor/actuator are some sensing
or acting units, a micro-controller, a transceiver and a power
unit.

Basic objectives of sensor networks were accuracy, flex-
ibility, cost effectiveness and ease of deployment. As these
properties are now taken for granter, low power consumption
and reliability are the next steps to consider.

The paper presents our approach to improve these aspects
through a rule-based middleware [1] enforcing a coordination
protocol on top of the communication protocols imposed by
the different WSN. The high-level coordination protocol brings
on the one hand the control from the application side the
activities (sleep/awake) of the sensors and on the other hand
the transactional processing of operations involving a group
of sensors / actuators.

The paper is organised as follows. Section II introduces the
problem to solve. We describe in Section III our approach
based on the high level coordination protocol enforced by
our middleware and the design of smart sensors able to react
smartly to this protocol. Section IV presents the hardware we
considered. In Section V we exemplify our approach both for
power consumption and reliability. We conclude in Section VI.

II. PROBLEM TO SOLVE

The usual way actuator/sensor wireless networks are de-
signed does not help to solve the two problems of reliability
and power consumption as described here after.

A. Reliability

Most of the time the wireless communication policy in
WSNs is only best effort. In addition, sensors are battery pow-
ered for autonomy reasons and they may stop their activities or
decrease the wireless signal strength just because the battery
is partially or totally discharged. Thus, there is no guaranty
that a sent message is eventually received.

A traditional way to enforce reliability in an asynchronous
system in presence of failures is to embed the operations
involving the sensors/actuators within transactions [2]. For
instance, we consider to open a windows (actuator) and to
store this information in a database responsible for keeping the
state of the system. If this is not embedded in a transaction, it
may happen that the change in the database is done while the
actuator is not reachable or on the contrary that the window is
opened but the database is locked for some external reasons.
As a transaction unrolls a two-phase commit (2PC) protocol if
an actuator is not reachable in the first phase (i.e. reservation)
then the transaction is aborted preventing the database update.

Obviously, this makes sense only if the transaction protocol
really involves the actuator and not only the gateway otherwise
a failure may happen in between the gateway and the actuator
after the commit of the transaction.

We propose to implement smart sensors/actuators that di-
rectly provide the required transactional capabilities.

B. Power consumption

Power consumption is the sum of the powers consumed for
sensing and computing activities plus the power used for the
delivery of information through the radio. In general, both of
these parts can be slept when they are not used. However,
the main issue is precisely to define when they are not used.
Indeed, we can distinguish two categories of sensors. The
first one, based on an alarm (e.g. presence detector) can be
easily slept until something external happens. On the contrary,
the second type (e.g. temperature sensor) regularly emits the
information without any idea if it is useful or not for the
application. Among the improvements proposed, we may find
systems that offer configuration facilities allowing the user to

148Copyright (c) IARIA, 2012. ISBN: 978-1-61208-208-0

SENSORDEVICES 2012 : The Third International Conference on Sensor Device Technologies and Applications

define the delay between two emissions. It is also possible to
avoid to emit the information if it did not change or if the
change is inside a given interval that can be configured [3].
However, even if these efforts are noticeable it is far to be
optimal because in general the user has little information to
efficiently configure the sensors in advance since most of the
knowledge appears during the execution of the application

Part of the solution is to let the initiative of the application
to interrogate the sensors (pull mode) rather than trying to
optimise its emission rate (push mode).

C. Our approach

Our approach is based on the combination of a rule-
based middleware which coordinates the actions of a group
of software components through a high level protocol. This
protocol, thanks to a limited yet effective set of primitives
allows on the one hand to control the interrogation of the
sensors from the application side and on the other hand to
embed a set of operations on sensors, actuators and software
components within transactions.

In addition, we have designed sensors/actuators aware of
this protocol and then able to behave like first class com-
ponents of our middleware. In other words, we replaced
the classical approach where the sensors are accessed via a
gateway with no control on what is actually done beyond the
gateway to an architecture unrolling our protocol until the
physical devices. The transport layer of the sensor network
is in this case a vehicle for our coordination protocol.

The usage of this protocol together with sensors aware of
this protocol propose a response to the both mentioned issues:
power consumption and reliability.

We describe in the next sections the middleware and its
protocol and the global design of our sensors/actuators both
at the software and hardware levels.

III. ARCHITECTURE APPROACH: SOFTWARE

A. Coordination Middleware

The middleware provides a uniform abstraction layer that
eases the integration and coordination of the different compo-
nents (software and hardware) involved in WSNs. It relies on
the Associated memory paradigm implemented in our case as a
distributed set of bags containing resources (tuples). Following
Linda [4] approach the bags are accessed through the three
following operations:

• rd() which takes as parameter a partially instantiated
tuple and returns a fully instantiated tuple from the bag
whose fields match to the input pattern;

• put() which takes as parameter a fully instantiated tuple
and insert it in the bag;

• get() which takes as parameter a fully instantiated
tuple, verifies its presence in the bag and consumes it
in an atomic way.

The bag abstraction can encapsulate real tuple spaces but
also databases, services, event systems, sensors and actuators.
From the sensor point-of-view, a couple of bags map a set
of sensors and contains the resources corresponding to basic

information: e.g. tuples (sensorid, value, timestamp) or (sen-
sorid, type) allows to model all the data and metadata required
to manipulate sensors through the rd() or the get() opera-
tions. For the actuators, the put() operation is used to intro-
duce tuples under the form (actuatorid, function,
parameter1, parameter2). Once inserted, the bag can
actually trigger the correct action on the physical actuator with
the appropriate parameters.

The tree operations rd(), get() and put() are used
by the Production rules [5] to express the way these resources
are manipulated in the classical pre-condition and performance
phases. The rules are enacted by dedicated components called
coordinators.

Precondition phase: It relies on a sequence of rd() opera-
tions to find and detect the presence of resources in several
bags. This can be be sensed values, result of service calls or
states stored in tuplespaces or databases.

The particularity of the precondition phase is that:
• the result of a rd() operation can be used to define some

fields of the subsequent rd() operation
• a rd() is blocked until a resource corresponding to the

pattern is available
• a rd() operation at the right hand side of a blocked
rd() is not active and will invoke its bags only when
the previous rd() receives a response.

This mechanism will be used to access the sensors only when
it is required by the application.

1) Performance phase: It combines the three opera-
tions rd(), get() and put() to respectively verify that
some resources found in the precondition phase are still
present, consume some resources and insert new resources.
In this phase, the operations are embedded in distributed
transactions. This particularity ensures several properties that
go beyond traditional production rules. In particular it ensures
that

• we can verify that the important conditions responsible
for firing the rule (precondition) are still valid in the
performance phase.

• the different involved bags are effectively all accessible.
These properties can improve reliability provided that the
sensors are aware of the coordination protocol.

B. Protocol aware sensor

In order to make the sensors/actuators capable to under-
stand the coordination protocol we need to implement at the
sensor level the different operations that will be invoked during
the enactment of the rules. In addition, we need to implement
stubs that encapsulate the communication layer in order to
provide to the coordinator the way to invoke transparently the
remote bags.

Stub: We briefly describe how the stub mechanism is used
in our middleware in figure 1. When the coordinator needs to
access a given bag, it asks the nameserver in order to obtain
the stub that will be used to invoke the rd(), get() and
put() operations.

149Copyright (c) IARIA, 2012. ISBN: 978-1-61208-208-0

SENSORDEVICES 2012 : The Third International Conference on Sensor Device Technologies and Applications

Fig. 1. stub

The name server stores the information related to the stubs
as resources of one of its bag called Stubs. A stub is
inserted by each bag in the name server at starting time. Once
obtained by the coordinator the latter just calls the appropriate
primitives via the stub and has no idea about the way they are
implemented. This means that the transport layer is completely
hidden at this level. A corresponding skeleton able to receive
and decode the requests coming through the stub is present at
each bag.

A stub allows to invoke two distinct rd() operations:
one for the precondition phase that may block when no
corresponding resource is currently available and one for the
performance phase which is decomposed into a pre_rd()
and commit_rd() or abort_rd() according to the 2PC
used to enforce the transaction. The get() and put()
operations are also decomposed for the same reasons.

Another point concerns the management of the wake up of
the sensor since we consider that the sensor is in sleep mode
by default, and wakes up before calling a primitives of the
protocol. Then a signal, whose role is to wake up the sensor,
is sent to it before any request. Moreover, we consider that
the sensor returns in sleep more right after the termination of
the rd() and the commit_*() or abort_*(). Different
type of signals are discussed further.

Skeleton: at the sensor side: We consider now, the treatment
to be done at the micro-controller side for operation of the
precondition and performance phases.

The only operation required in the precondition phase is the
rd() operation. It has the following behaviours.

If a resource is available (i.e. a value may be read and
returned immediately) then the read is non-blocking. This
corresponds to sensors like temperature or humidity measuring
most of the time a physical value. The resource based on the

sensed value is directly returned to the stub call and nothing
else has to be done.

If a resource is not available then the read needs to be
blocked until a resource becomes available. This corresponds
to sensors like presence sensor or threshold detector that are
bind to an alarm. As it would not be efficient on a power
consumption point of view to let the sensor alive just to block
the rd() operation, we implement it in a different way. The
value returned to the rd() warns the calling stub that nothing
is currently available and that the sensor will take the initiative
to send the resource when it becomes available. At the stub
level, we just block. When the sensor receives the alarm (e.g.
detection of a presence), which wakes it up, the resource is
returned to the stub along with an identifier which allows the
stub to retrieve to which rd() it corresponds. The resource
remains stored locally in RAM at the sensor level for the
performance phase. The sensor can return in sleep mode and
the stub can end the process corresponding to this rd().

For the performance phase, during the pre_*() opera-
tions, the sensor has to store intermediate informations that
will be used during the commit_*() or abort_*() oper-
ations: i.e. the considered resource passed as parameter.

For the pre_rd() and pre_get() the concerned re-
source, if available, is locked to prevent any other pre_*()
operation coming from other transactions to be accepted. If the
resource may be locked, ok is returned and the lock status is
locally stored. Otherwise notok is returned.

For the pre_put() we need to verify that the operation
is possible. We can verify for instance that the actuator can
be manipulated. Accordingly, ok or notok is returned.

If a commit_*() is invoked then the considered opera-
tion is effectively done: nothing for a commit_rd(), the
destruction of the resource for a commit_get() and the
action associated to the actuator parametrised according to
the resource for a commit_put() If an abort_*() is
received then nothing is done. In all cases, the intermediate
informations (locks, ...) are cleaned.

C. Model of a sensor/actuator network object

To define a prototype object that encapsulates a sen-
sor/actuator network we can consider the following set of bags
required for its management.

For the sensors part we have the following bags.
• Sensors: stores the sensor id and the value read
• TimeStamp: stores the id and last reading time
• Log: stores the id and reading time
• Type: stores the id and its type (i.e.: temperature, ...)
For the actuators part we have specific bags for the different

types of actuators. These bags implement for the put()
method the actual action to be realized to act on the physical
actuator.

With a classical approach, this object is located at the
gateway level as shown on Figure 2 with the first object.

With a smart sensor approach, we have decomposed the set
of bags in order to let some of the bags at the gateway level
and to move the others at the micro-controller side.

150Copyright (c) IARIA, 2012. ISBN: 978-1-61208-208-0

SENSORDEVICES 2012 : The Third International Conference on Sensor Device Technologies and Applications

Fig. 2. Sensor network object: the smart sensor approach

Sensors and TimeStamp bags which contain respec-
tively the value associated to a sensor and the timestamp
corresponding to the last sensed value are implemented on
the micro-controller side. All the other bags are implemented
at the gateway side. The main reason is these bags contain
information that either records the sensed value or store some
status updated very sparsely. Thus, in order to save memory
space and power-on time on smart sensor we keep these bags
on the gateway level and we implement the bags which makes
sense at the micro-controller side. For instance, if we need to
access the log of the successive values read by a temperature
sensor, it is not required to ask the micro-controller itself, this
can be done at the gateway level. On the contrary, the current
temperature needs to be asked to the micro-controller.

For an actuator, we implement the bag which is responsible
for the real action on the environment on the micro-controller
side since we want to ensure the transactional property. Some
verifications are done during the pre_put() operation. For
instance we can verify that the rotation we would like to do
on a motor is possible without damage. We could also verify
that the command is sensible: to ask to close a window that
is already close is typically something that is not normal. We
can also verify that the actuator is physically able to do the
requested command or that the remaining energy is enough to
perform the action. In case of trouble, a notok is returned.

IV. ARCHITECTURE APPROACH: HARDWARE

We present in this section the hardware details correspond-
ing to the different smart sensors we implemented.

A. The platforms

We have considered three embedded platforms to exper-
iment different levels of performance at the microcontroler
level and different communication standards: OpenPicus Fly-
port (Wifi-802.11) [6], Atmel SAM3N-EK (802.15.4) [7] and
Arduino Pro 3.3V (802.15.4) [8]. These three architectures are
widely used for their low power and low cost characteristics.
They all three offer easy-to-use development environments
avoiding most of cross-compilation problems and micro-
controller driver development part.

OpenPicus Flyport (Wi-Fi): This platform is based on a
Microchip MRF24WB0MA/RM Wi-Fi chip and a Microchip
PIC 24F 16bits processor.

The board embeds a small web-server, running on top
of FreeRTOS operating system. This web server allows to
encapsulate remote function call through simple URLs over
HTTP protocol with a mechanism closed to cgi-scripts.

This is very similar to what is done in our middleware for
the default transport layer within the stub. This allowed us a
straight forward implementation of the smart sensor. This is
the main reason for the choice of this board.

For the integration of physical sensors/actuators, the board
offers eighteen digital I/Os and four analog inputs. Digital pins
can be mapped between one I2C, one SPI, four UARTs and
nine PWMs. Three different external interrupts can wake up
the Flyport from standby mode.

The associated communication link is a classical Wi-Fi
which allow a very easy integration in existing installation
with a range that may cover the entire floor of a building.

Atmel SAM3 (802.15.4): We have used a SAM3N-EK
board that was available in our laboratory with a Cortex-M3
32bits based micro-controller. This board offered a convenient
experimentation framework and as the Atmel environment
allows, with a same API, to target every ARM and AVR micro-
controller belonging the Atmel family the solution is quite
generic. This is the reason why we used this platform. The
ARM Cortex-M3 core is used by many constructors, including
ST Microelectronic, Atmel and Texas Instrument, to build low
power but still powerful chips.

The board offers 64 I/Os including PWMs, I2Cs, SPIs,
UARTs and ADCs. Some I/Os are connected at on-board
LCD, buzzer, SD card host, user switch, RS232 connector or
touch sensors. Sixteen different external interrupts can wake
up SAM3N-EK from standby mode.

We use for the communication Digi-XBee series one mod-
ules [9], which provides IEEE 802.15.4 wireless networking
protocol. A module is connected to the board via one UART
and an other is plugged on the gateway via an FTDI breakout
board. We use them in peer-to-peer mode. The data rate is
250Kbit/s on the 2.4GHz RF band. The maximum frame
length is one hundred bytes. This is less than the Wi-Fi
solution but with an adhoc encoding it is efficient enough to
allow serialized procedure calls to hold into a single frame.

Arduino (802.15.4): The Arduino board we used is based on
Atmel AVR 8bits architectures. It is open source and supported

151Copyright (c) IARIA, 2012. ISBN: 978-1-61208-208-0

SENSORDEVICES 2012 : The Third International Conference on Sensor Device Technologies and Applications

by a large community. This is the reason that conducted us to
use this board.

We chose the Pro 3.3V version due to the reduced on-board
electronics and a working voltage that corresponds directly
to XBee modules we use for the communication. The XBee
module is connected to the micro-controller via the UART
interface like for the Atmel board.

The board offers fourteen digital I/Os and six analog inputs.
Digital pins support one UART, six PWMs and one SPI.
Analogue pin could also be used for adding one I2C interface.
Two different external interrupts can wake up Arduino from
standby mode.

B. Power consideration

Boards: Power consumption of considered micro-
controllers are under 10µA at 3.3V in standby-mode, while
it is at least 5mA in run mode. However, in the case of the
SAM3-EK Atmel board, the complete board is a development
board for which at least one electronic device was not
designed for low power usage. Thus, we did not considered
this board for the power consumption experiment. On the
contrary, openPicus Flyport and Arduino Pro 3.3V boards
are designed for low power, in particular in standby-mode.
The respective consumption measured with a full charge
lithium-ion battery (4.1V) with wireless unit in the same
state than the micro-controller are summarized in Table 1.

Micro-controller+wireless standby run mode
Arduino + Xbee 206µA 57.1mA

OpenPicus Flyport + Wifi 97µA 127.5mA

Table 1: consumption of the full board.

Wireless communication unit: XBee (802.15.4) and Wifi
(802.11) have been considered: They both offer power down
mode to control their power state from the micro-controller.
Respective consumptions are in Table 2

Wireless module standby communication
Xbee 10µA 50mA
Wifi 0.1µA 120mA

Table 2: consumption of the wireless communication unit

The first is more expensive in standby mode but can be
integrated to a larger number of micro-controllers. The second
is more expensive in communication mode but it handles a
bigger amount of data with a higher communication range.

Radio control: Primitives radio wake up and radio
go sleep are called during the board power down and
power up procedures. In this way, when micro-controllers
are in run mode, the wireless communication link is available.
We could have used smarter radio power control but since we
are considering that the board should be sleeping most of the
time we did not go further in this direction.

Sleep mode and wake up events: As in sleeping mode, the
consumption is divided by at least one hundred, our approach
is to force the sensor to be in sleeping mode almost all the
time. It is wake up on demand either because the coordinator

send a signal before invoking the appropriate primitive or
because an alarm is triggered by a physical sensor linked to
the board. Both events raise a different interrupt received by
the micro-controller and thus they are treated accordingly in
order to execute the appropriate code (See Section III-B).

Wake up signal: For the wake up signal sent by the
coordinator (gateway side) we envisaged different solutions
that could be used. The first is based on a simple modulated
IR signal that can be used if the gateway is in the same location
than the sensor. The second is based on a less expensive
wireless signal [10] (e.g. 433Mhz) that can be used to this
purpose. Finally, the third may consider the new passive RFID
technology working in a range of 15 meters. This problem is
open and still under investigation and in our first experiment
we only used the IR solution.

V. EXAMPLES

First example: consumption aspect

We consider a simple application where we collect external
temperature in order to control the heating system according to
the variation of the temperature and the speed of this variation.
Then, we have an algorithm that defines according to a window
of sensed temperatures the most appropriate time to make the
next set of measures. Basically, if the temperature does not
change a lot we increase the delay between two measures and
we decrease it if the variation increase. It is impossible to
compute in advance the time when the measurement need to
be done.

The classical way is to ask the sensors to send the in-
formation each δ(t) and to sleep the rest of the time. With
δ(t) = 5mn, we have 24∗12 measures sent by each sensor to
the gateway per day. Most of them will not be used at all and
for some of them we have inaccuracy due to the acquisition
rate that does not match exactly the algorithm.

If we use a rule triggering the interrogation of the sensors
upon the insertion of a resource by the algorithm, we first
remove the inaccuracy and second we can decrease the activity
of the sensors to the exact required number of measures. We
consider that the number of really useful measures is only 50
per day. The ratio is 0.17 (5 times less).

The average power consumption PC is given by

PC = R ∗ CRunMode + (1−R) ∗ CStandbyMode (1)

with R the run time ratio R = RunTime
TotalT ime

We have measured that a run period (wake-up, send, sleep)
takes 0.04 seconds for the Arduino and 1 second for the
Flyport. It gives the following ratio for classical (C) and smart
sensor (S) implementations.

RC =
24 ∗ 12 ∗ 1
24 ∗ 60 ∗ 60

= 0, 333%

RS =
50 ∗ 1

24 ∗ 60 ∗ 60
= 0, 058%

Reported to equation (1) we obtain with the figures of Table 1
for the Flyport board the both implementations.

152Copyright (c) IARIA, 2012. ISBN: 978-1-61208-208-0

SENSORDEVICES 2012 : The Third International Conference on Sensor Device Technologies and Applications

CC = 33310−5 ∗ 127.5+ (1− 333.10−5) ∗ 0.091 = 0.516mA
CS = 57.810−5 ∗ 127 + (1− 57.8.10−5) ∗ 0.091 = 0.165mA

and for the Arduino

RC =
24 ∗ 12 ∗ 0.04
24 ∗ 60 ∗ 60

= 0, 0133%

RS =
50 ∗ 0.04

24 ∗ 60 ∗ 60
= 0, 00231%

CC = 13310−6 ∗ 57.1 + (1− 13310−6) ∗ 0.206 = 0.2135mA
CS = 23.110−6 ∗ 57.1+ (1− 23.110−6) ∗ 0.206 = 0.2073mA

If we consider a battery capacity Cap, the following formulae
gives the saved time in hour.

H =
Cap

CS
− Cap

CC
(2)

With a capacity Cap = 1300mAh for the battery we save
H = 7892−2521 = 5371 hours i.e. 244 days for the Flyport
and H = 6270 − 6087 = 183 hours i.e. 8 days for the
Arduino. The battery allowing respectively 328 days for the
Flyport and 261 days for the Arduino.

Micro-controller+wireless Classical Smart Gain
Arduino + Xbee 253 days 261 days 3%

OpenPicus Flyport + Wifi 105 days 328 days 68%

Table 3: Battery autonomy for both approach.

The interesting result is that solving the power consumption
issue only acting on the consumption of the wireless commu-
nication unit is probably not the unique research direction.
Indeed, with the classical approach the Arduino is far better
thanks to its very low consumption when running while with
the smart sensor approach the Flyport is far better the Arduino
thanks to its very low consumption in standby. This means that
using a simpler to deploy communication protocol (i.e. Wifi)
is affordable if used in a smarter way.

Second example: transactional aspect

We consider a mobile robot equipped with a pan-tilt camera
that follows a moving object. We have an external software
component that computes from captured images the next
positions of the robot and the camera in order to have the
object centred. New positions are inserted in the respective
bags as parameters of the motors controlling the pan, the tilt
and the robot.

We have different competing rules moving the robot and the
camera. They use a common ticket resource which ensures
that only one of them will be performed. This means that
we can have the object centred by moving the robot or by
moving the camera. If the rule moving the camera is aborted
because for instance the requested move for the pan cannot
be physically done. Then, the rule moving the robot can be
triggered to compensate the default of the camera. On the
contrary, if the robot is blocked and thus cannot move, the
rule controlling the camera may be considered. The possibility
to propose alternative treatments to solve a problem that can
take into account physical limitation of an actuator is provided
almost for free at the middleware level.

VI. CONCLUSION

We have presented an approach to improve power con-
sumption and reliability in the wireless sensor network area.
This approach is based on a high level rule-based middleware
that coordinates the operations involving the sensors and
actuators. This offers the possibility to activate the sensors
with a signal (external to the communication) when they
are really needed and thus let them most of the time in
standby mode to reduce power consumption. In addition the
coordination protocol allows to embed actions on sensors
and actuators within transactions to improve reliability. We
have implemented three different smart sensor boards able
to understand the coordination protocol of our rule based
middleware.

Finally our contribution has been illustrated from a power
consumption and reliability improvement point of view with
two basic examples that show the possibilities offered by our
approach.

ACKNOWLEDGMENT

This work has been partially funded by the FP7 SCUBA
project under grant nb 288079.

REFERENCES

[1] L.-F. Ducreux, C. Guyon-Gardeux, S. Lesecq, F. Pacull, and S. R. Thior,
“Resource-based middleware in the context of heterogeneous building
automation systems,” in 38th Annual Conference of the IEEE Industrial
Electronics Society (IECON 2012), 2012.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. Boston, MA, USA: Addison-Wesley
Longman Publishing, 1987.

[3] S. Feizi, G. Angelopoulos, V. Goyal, and M. Medard, “Energy-efficient
time-stampless adaptive nonuniform sampling,” in Sensors, 2011 IEEE,
oct. 2011, pp. 912 –915.

[4] N. Carriero and D. Gelernter, “Linda in context,” Commun. ACM,
vol. 32, pp. 444–458, April 1989.

[5] T. A. Cooper and N. Wogrin, Rule Based Programming with OPS5.
Morgan Kaufmann, July 1988.

[6] “ OpenPicus Flyport Documentation Repository ,”
http://http://www.openpicus.com/site/downloads/downloads, 2012.

[7] “ SAM3N-EK Documentation Repository ,”
http://www.atmel.com/tools/SAM3N-EK.aspx?tab=overview, 2012.

[8] “ Arduino board Documentation Repository,”
http://arduino.cc/en/Main/ArduinoBoardPro, 2012.

[9] “ XBee-PRO 802.15.4 OEM RF Modules,”
http://http://www.digi.com/xbee, 2012.

[10] S. J. Marinkovic and E. M. Popovici, “Nano-power wireless wake-up
receiver with serial peripheral interface.” IEEE Journal on Selected
Areas in Communications, vol. 29, no. 8, pp. 1641–1647, 2011.

153Copyright (c) IARIA, 2012. ISBN: 978-1-61208-208-0

SENSORDEVICES 2012 : The Third International Conference on Sensor Device Technologies and Applications

