
A Framework for Connectivity Monitoring in Wireless Sensor Networks

Daniel Pfleger, Ulrich Schmid
Institute of Computer Engineering
Vienna University of Technology

Vienna, Austria
Email: {dpfleger, s}@ecs.tuwien.ac.at

Abstract—We present an overview of the features and the archi-
tecture of a framework for long-term monitoring of the communi-
cation topology of a synchronous wireless sensor network (WSN).
Our framework, a prototype of which has been implemented
for Atmel RZ200 motes running TinyOS, locally records the
complete connectivity information for every node in every round,
and disseminates this information to one or more root nodes
that act as data sinks for monitoring information. Postprocessing
tools allow to query the recorded communication graphs, in order
to, e.g., verify structural properties like the presence of multiple
strongly connected components. We demonstrate the utility of
our framework by means of an experimental evaluation of the
coverage of a recently introduced adversarial network model
for directed dynamic networks. Our measurement results reveal
that it has a very good coverage in several small-scale WSN
deployments.

Keywords–Wireless Sensor Networks; Monitoring; Network
Topology.

I. INTRODUCTION

The design and analysis of algorithms and protocols for
dynamic networks [1] has always been a very active area
in networking and distributed computing research. In this
research, many “abstract” network models, both adversarial
and probabilistic, have been defined and used for validating
the correctness and performance of network protocols.

One example of an adversarial model is T -interval connec-
tivity [2], where one assumes that the communication topology
may vary arbitrarily over time, except that a subgraph that
spans all n nodes in the system must be stable in every
sliding window of duration T . The advantage of an adversarial
model is that it allows the design of protocols that guarantee
certain properties (provided the assumptions of the model
hold). Probabilistic models, on the other hand, are typically
based on random graphs, which ensure certain basic network
properties such as connectivity or k-connectivity with some
(high) probability. Clearly, protocols designed atop of such
models can only provide probabilistic guarantees.

Given the wealth of protocol- and algorithm-related re-
search that is based on such models, surprisingly little can
be said about their validity in real-world networks (see Sec-
tion II). In particular, an adversarial model, e.g., based on T -
interval connectivity [2] or the eventual occurrence of certain
strongly connected components [3][4] in the communication
graphs immediately raises the question of whether these are
reasonable assumptions in a real dynamic network or not.

There are two fundamentally different approaches for ad-
dressing this question: (i) Analytic or simulation-based cover-
age analysis and (ii) monitoring of real networks. Coverage

analysis relies on a detailed low-level model of the underlying
communication network, and verifies either analytically or
via simulations whether the communication graphs generated
by the underlying model exhibit the required properties with
sufficiently high probability. The main disadvantages of this
approach are the critical dependency on the appropriateness of
the underlying network model (= inherent coverage) and its
inability to incorporate engineering details like protocol stack
implementations, etc.

Obviously, monitoring experiments do not suffer from these
deficiencies. However, unless one is content with very limited
information, a dedicated (and typically fairly complex) mea-
surement infrastructure is required. Surprisingly, despite the
substantial body of existing experimental research on various
types of wireless networks, we were unable to find an existing
infrastructure that facilitates long-term monitoring of topology-
related properties in evolving communication graphs. In this
paper, we present a suitable framework for comprehensive
topology monitoring in wireless sensor networks that does not
need a special infrastructure, and demonstrate its utility by
validating a recently introduced adversarial network model [5].

Detailed Contributions: Please also refer to our technical
report [6], since lacking space did not allow us to include
all the findings in this paper.

(1) We present an overview of the features and the architec-
ture of a framework for the long-term communication topology
monitoring in synchronous dynamic networks, which has
been implemented for Atmel RZ200 wireless sensor network
motes running TinyOS. In a synchronous computation, one
(conceptually) assumes that all nodes execute in a sequence of
perfectly synchronized rounds r = 1, 2, . . . , each consisting
of (i) the broadcast of a message, (ii) the reception of all
messages from the neighbors, and (iii) some local computation
that also involves received messages. Our framework locally
records the complete connectivity information for every node
(i.e., the set of nodes from which an application message has
been successfully received) in every round and disseminates
this information multi-hop to one or more root nodes that act as
data sinks for monitoring information. The root nodes forward
this monitoring data, via a dedicated LAN, to a PC that fuses
this data to construct the complete directed communication
graph for every round. Postprocessing tools allow to query the
recorded communication graphs in order to verify any desired
graph property.

(2) We demonstrate the utility of our prototype implemen-
tation by means of the experimental evaluation of the coverage
of an adversarial network model introduced in [5] in small-
scale WSNs. Essentially, the model aims at dynamic networks

40Copyright (c) IARIA, 2016. ISBN: 978-1-61208-490-9

SENSORCOMM 2016 : The Tenth International Conference on Sensor Technologies and Applications

that may behave arbitrarily (even partition) during some fi-
nite initial period, after which the system remains reason-
ably well-connected sufficiently long. The network assumption
♦STABLE(D) (see Definition 3) has a tunable parameter D,
which is related to network stability. We evaluate the coverage
of ♦STABLE(D), i.e., the likelihood that it actually holds in
every execution, in several WSN deployments that differ in
node density, fatness of the deployment area, and interference
level. Our results reveal a very good coverage in the considered
settings, provided D is chosen appropriately.

Paper organization. We start with the description of the
general features, architecture and operating principle of our
framework in Section III. Section IV describes details of our
implementation, Section V outlines the user interface, includ-
ing some features of the currently available postprocessing
tool. Section VI presents the purpose and results of our sample
experiments. Some conclusions and directions of further work
in Section VII complete our paper.

II. OVERVIEW OF RELATED WORK

Theoretical analyses based on random graphs, simulations,
and measurements of real systems are all abundant in the
existing literature, see, e.g., [7] for an overview.

Due to lacking space, we will restrict our attention to
(a subset of) existing measurement approaches here; fur-
ther references can be found in [6]. There are many open
testbeds [8] , which provide a powerful infrastructure for
dedicated experiments. Unfortunately, however, the (statistical)
data provided in existing experimental evaluations typically
address the properties of individual links [9] or system-wide
properties like throughput [7][10] and other end-to-end
performance characteristics [11]. By contrast, we are interested
in detailed structural properties of not necessarily bidirectional
communication graphs.

Existing approaches for experimentally exploring network
topologies use active probing or passive monitoring, and
may or may not require support from intermediate nodes.
However, the inferable topology information is usually quite
restricted, typically to network cardinality [12] or capacity
[13]. Moreover, the topology of the underlying network is often
limited. For example, the approach described in [14] uses the
data correlation caused by intermediate network coding for
inferring tree or DAG topologies. By contrast, [15] uses active
probing with traceroute data, and primarily addresses problems
caused by anonymous/non-cooperative intermediate nodes and
the resulting uncertainties in topology inference. Pure network
tomography approaches infer the network topology solely
from data available at end nodes, typically using statistical
approaches [16][17].

There is also a substantial body of work on connectivity
monitoring in wireless sensor networks. Both active probing
[18][19], where (a subset of) the network nodes query their
neighborhood and forward connectivity data to some sink
node, and passive techniques using data available at end-nodes
only [20], as in network tomography approaches [21], can
be employed here. Typical approaches using the latter assume
that the WSN topology is a convergecast tree, where all nodes
periodically send their data to a sink, using data aggregation.

The topology is then reconstructed from the data received at
the sink.

All these solutions provide, with varying accuracy, (part
of) the entire topology. Moreover, they typically assume the
existence of a bidirectional spanning tree for routing purposes.
We are not aware of approaches that can infer sub-graph
properties such as, for example, the presence of a rooted
spanning tree or a strongly connected component, in sparsely
connected communication graphs.

III. FRAMEWORK DESCRIPTION

As already stated in Section I, the goal of our framework is
to continuously monitor the evolution of the possibly sparsely
connected, directed communication graph of a synchronous
wireless sensor network over time. Per-node-recorded con-
nectivity data is disseminated to certain special nodes (“root
motes”) that act as data sinks. The latter forward the data to
a PC, where it can be analyzed and visualized.

In this section, we describe the general features,
architecture and operating principle of our framework.
Implementation-related details are provided in the subsequent
section.

A. Required features

The design of our framework started out from several goals:
(1) Synchronous applications: We target synchronous WSNs,
where the WSN nodes (called motes in the sequel) execute
a round-based algorithm (which requires an underlying time
synchronization mechanism).

(2) Long-term monitoring: We need to monitor the evolution
of the entire communication graph of a synchronous WSN
over days and more (which rules out to store the complete
monitoring data locally at the motes).

(3) Standard motes: We do not impose any dedicated mon-
itoring hardware infrastructure at our motes (which requires
monitoring data dissemination to use the wireless interface
only).

(4) Partitionable directed communication graphs: We must
allow the WSN to possibly partition, for an arbitrary time
(which precludes the existence of an underlying spanning tree
for routing the monitoring data to a single sink).

(5) Message loss: We cannot a priori guarantee reliable
delivery of all messages containing monitoring data (which
requires selective retransmission).

(6) User-supplied application: It must be possible to plug-
in a user-supplied round-based application algorithm (which
requires a message-passing interface that also allows to specify
transmission scheduling policies and transmission powers).

(7) Fault-injection: It must be possible to exercise some con-
trol over the network topology, e.g., for testing purposes (which
requires to actively inhibit the application-level communication
between given pairs of sender and receiver motes).

41Copyright (c) IARIA, 2016. ISBN: 978-1-61208-490-9

SENSORCOMM 2016 : The Tenth International Conference on Sensor Technologies and Applications

B. System architecture

In order to meet the above requirements, our framework
consists of four different components depicted in Figure 1. The
central part is the monitoring network itself, which consists of
the WSN motes that both execute the synchronous application
and the (low-level) monitoring infrastructure. The collected
connectivity data is disseminated to a monitoring PC, which
collects and integrates the information from all the motes in
order to reconstruct the communication graph for every round.

This data dissemination is actually a two-step process:
First, the per-mote recorded data is disseminated via multi-hop
communication to some special root mote, which acts both as
the primary data sink and as a root for time synchronization via
the Flooding Time Synchronization Protocol (FTSP) [22] of the
motes. For WSNs that may partition, our framework supports
multiple root motes. Every root mote is serially connected to
a dedicated forwarding PC component, which finally forwards
all the data received from the serial interface to the monitoring
PC component via LAN and vice versa. In other words, root
motes and forwarding PC component act as ”WSN-UART”
and ”UART-LAN” gateways, respectively.

PC
monitoring

PC
forwarding

PC
forwarding

LAN
unicast

LAN
unicast

LAN
multicast

R R

11

12

13

serial serial

Figure 1: Overview of the framework’s general structure. The frame-
work consists of monitoring Motes (numbered), Root Motes (labeled
with ”R”), forwarding PC components and a monitoring PC instance.

In more detail, the components perform the following tasks:

Motes: The motes execute an user-supplied synchronous
distributed algorithm that makes up the WSN application
software. It has to use a single-hop broadcast to send an
application message to all other motes in the WSN in every
round. The monitoring infrastructure on every mote records
from whom it successfully received a message in a round, and
disseminates this data by broadcasting report messages via a
suitable data collection protocol (described in Section IV-A)
subsequently.

Root motes and forwarding PC: Each root mote is connected
to an instance of the forwarding PC component and works as
a WSN-UART-Gateway: Every report messages received from
a mote via the wireless interface is forwarded via the serial
interface. Vice versa, all control messages received from the
forwarding PC component are sent to the motes using the radio
interface.

In addition, the root motes are also root nodes for time

synchronization via FTSP [22]. A detailed description of the
time synchronization mechanism is given in Section IV-B.

Monitoring PC: Each instance of the forwarding PC com-
ponent is connected to a single dedicated monitoring PC via
a (wireless) Ethernet connection. Besides exercising all the
framework setup and monitoring control tasks, it primarily
gathers and integrates the per-node connectivity data contained
in forwarded report messages and stores it in the file system
for post-processing. Since report messages may be lost before
they reach any root mote, the monitoring PC also checks the
received connectivity information for missing data and actively
requests retransmission of single report messages if needed. A
detailed description of this messaging protocol can be found
in Section IV-A.

C. General operating principle

Thanks to the time synchronization mechanism described
in Section IV-B, our monitoring framework operates in a
repeated sequence of three consecutive lockstep-synchronous
phases sketched in Figure 2:

Phase 1 — record per-mote connectivity information: At
the beginning of this phase, which actually represents a single
round of the application algorithm, every mote broadcasts an
application message generated by the user-supplied algorithm.
It is sent via the single-hop broadcast service provided by our
framework. To restrict the heavy mutual interference caused by
simultaneous broadcasting of all motes, a suitable transmission
schedule (+ power control) can be applied here.

During Phase 1, each node records the sender of every
successfully received message (for the current round). The
duration of Phase 1 must be chosen appropriately to ensure
that every receiver can indeed receive and process the message
from every sender. Thus, the set of motes a message has been
received from by the end of Phase 1 reflects the in-edges of
the communication graph ending at the receiver mote. Figure 2
(left) shows an example.

Phase 2 — disseminate collected data: When Phase 1 ends,
every mote sends a report message containing its connectivity
data, i.e., the set of motes it received a message from, to one
or more root motes. Figure 2 (middle) shows an example.

Actually, since the diameter of the WSN may be large,
a custom multi-hop data collection protocol is used for this
purpose. As described in detail in Section IV-A, it uses a
combination of flooding and local caching, in conjunction with
a suitably long duration of Phase 2. Moreover, in order to
circumvent the collisions resulting from simultaneous broad-
casting of report messages, a suitable transmission schedule is
used at the beginning of Phase 2.

Phase 3 — request and retransmission of missing report
messages: When Phase 2 has terminated, the monitoring PC
checks the received report messages for completeness and,
if needed, sends messages requesting the retransmission of
lost messages. Note that request messages are sent by the
monitoring PC sequentially, so no transmission scheduling
is necessary here. These request messages are in fact dis-
seminated via a custom multi-hop messaging protocol (also
described in Section IV-A), which uses the local caching of
report messages to possibly speed-up the response time: Any

42Copyright (c) IARIA, 2016. ISBN: 978-1-61208-490-9

SENSORCOMM 2016 : The Tenth International Conference on Sensor Technologies and Applications

PC
monitoring

PC
forwarding

PC
forwarding

LAN
unicast

LAN
unicast

LAN
multicast

R R

11

12

13

serial serial

PC
monitoring

PC
forwarding

PC
forwarding

LAN
unicast

LAN
unicast

LAN
multicast

R R

11

12

13

serial serial

PC
monitoring

PC
forwarding

PC
forwarding

R R

11

12

13

LAN
multicast

serial serial

LAN
unicast

1) broadcasting 2) report messages 3) request and retransmission

Figure 2: Our framework works in three consecutive lockstep-synchronous phases. Phase 1 (left): Recording of connectivity data. Phase 2
(middle): Disseminate connectivity data to monitoring PC. Phase 3 (right): request retransmission of missing data.

mote that has the required report message in its cache can
answer the request. An example is shown in Figure 2 (right).

IV. FRAMEWORK IMPLEMENTATION

In this section, we provide an overview of the prototype
implementation of our framework, which has been developed
for Atmel RZ200 motes running TinyOS. In particular, we
elaborate on our custom multihop protocols, on time synchro-
nization, and on the fault-injection capabilities provided by our
implementation.

A. Multihop protocols

As already mentioned in Section III-C, our framework
must implement two multi-hop data dissemination protocols
for monitoring data:

(i) Multi-hop data collection: In Phase 2, each node sends
a report message containing its connectivity data to the
monitoring PC.

(ii) Multi-hop messaging: Since report messages may be lost
in (i), the monitoring PC checks the received data for
completeness and, if needed, requests the retransmission
of missing report messages.

Existing routing and data collection protocols, such as the
Dynamic Manet On-demand Protocol [23] (creating a unicast
route) and the Collection Tree Protocol [24] (collecting data
at a dedicated root node) require communication graphs that
contain a reasonably stable spanning tree with bidirectional
links between neighbors. Moreover, they need some sort of
routing table and are hence expensive regarding RAM-usage.
Since we could not afford this assumption due to our possibly
sparsely connected, directed communication graphs, we had
to develop a custom flooding protocol, augmented with local
caching, as the basis of our multi-hop protocols. Our flooding
protocol relies on several low-level facilities, which we will
describe next.

Data encoding. Since our framework shall support large
networks, despite small message sizes, a compact encoding of
our monitoring data is needed. We implemented this by using
a single bit to identify each node: Each node’s ID corresponds

to a single bit within an array holding the connectivity data
recorded by a node, the so-called monitor array. If some bit
is zero at the end of Phase 1, no application message has been
received from the corresponding node in this round.

Message headers. Since flooding protocols are prone to
sending messages to an excessively large number of nodes,
possibly even resulting in cycles, we use a message header
containing the following data: Besides source and destination
address, it contains a unique message ID (sequence number)
for each source address. Note that the pair of source address
and message ID unambiguously identifies every message. To
limit the spreading of a message, a hop count field, working
as a time-to-live counter, is used.

Local caches. Every mote is equipped with two (small) caches,
a report-cache (holding report messages) and a header-cache
(holding headers of messages that are sent via the flooding
protocol). Each is organized as a FIFO-buffer augmented with
reordering abilities to minimize RAM-usage: A message/-
header to be added is always appended to the tail of the
FIFO-buffer. If a copy of the newly added message/header is
already present in the buffer, the copy is deleted first. If the
buffer is (still) full, the message/header at its head is deleted
first. Obviously, these rules guarantee that (i) messages/headers
cached earlier are dropped before later ones, and (ii) that the
same message/header is never cached more than once.

Our custom flooding protocol, a variant of which is used
both in the multi-hop data collection and in the multi-hop
messaging protocol, combines the above low-level facilities
to avoid cyclic sending of messages. The primary mechanism
employed for this purpose is the usage of the unique message
header combined with the local header-caches: First, the orig-
inator of a report or request message to be flooded broadcasts
the message, with an appropriately initialized message header.
Each time a node sends or forwards a message, it caches the
message’s header in the header-cache. Before a message is
forwarded, the node checks whether the (unique!) message’s
header is already stored in cache. If so, the message is dropped,
otherwise it is indeed forwarded by broadcasting it. Figure 3
depicts an exemplary scenario.

We can now describe the operation of our two multi-hop
protocols:

43Copyright (c) IARIA, 2016. ISBN: 978-1-61208-490-9

SENSORCOMM 2016 : The Tenth International Conference on Sensor Technologies and Applications

11

12 13

14

Header Cache
Source ID Message ID

.
11 1

Header Cache
Source ID Message ID

.

.

Header Cache
Source ID Message ID

.

.

Header Cache
Source ID Message ID

.

.

11

12 13

14

Header Cache
Source ID Message ID

.
11 1

Header Cache
Source ID Message ID

.
11 1

Header Cache
Source ID Message ID

.
11 1

Header Cache
Source ID Message ID

.

.

Figure 3: Our custom flooding protocol uses a header-cache at each node to avoid cyclic sending. As nodes 11 and 12 already sent the message
at the left, their header-caches contain the message (11, 1). Thus they discard the message (red, dashed arrows); only node 14 accepts it (green,
solid arrow).

(i) Multi-hop data collection: Recall that, in Phase 2, each
node sends a report message containing its monitor array to
the monitoring PC by means of this protocol. To accomplish
this, the node uses a variant of our flooding protocol to reach at
least one root mote: It addition to the above basic mechanism
for avoiding cyclic message sending, it caches every sent or
forwarded report message in a dedicated report-cache in order
to support retransmissions (see next item).

(ii) Multi-hop messaging: Recall that, at the beginning of
Phase 3, the monitoring PC checks the received monitoring
data for possibly missing report messages. To initiate the
retransmission of such missing report messages, the monitoring
PC uses this protocol. It requests every root mote to dissem-
inate the same request message using another variant of our
flooding protocol: When receiving a request message, a node
also searches its report-cache for the requested report message.
If the message is found, the report message is re-sent via the
multi-hop data collection protocol. If the report message is not
found in the report-cache, the request message is forwarded
following the standard rules to avoid cyclic sending.

Extensive tests, also using the fault-injection capabilities
presented in Section IV-C, revealed that these protocols im-
plement a very robust, fast and reasonably communication-
efficient approach for convergecasting information from all
nodes in the WSN to the monitoring PC, provided the relevant
parameters, namely, phase durations, transmission staggering
time and initial hop count, are adequately chosen.

B. Time synchronization

As mentioned in Section III-C, our round-based syn-
chronous setting makes it mandatory to implement a common
global time at all motes. In our framework, global time
is defined by a 32 bit timestamp with a granularity of 1
millisecond. Every round has fixed duration R, called round
time, measured in milliseconds; round k > 0 is hence started
at global time tkstart = kR at every mote.

Due to the heterogeneous system architecture of our frame-
work (recall Figure 1), the time synchronization mechanism
consists of multiple parts:

(1) Synchronizing the PCs: As the forwarding and monitoring
PCs are interconnected via Ethernet, we use the standard
Network Time Protocol (NTP) to synchronize those.

(2) Synchronizing the motes: Since the motes do not under-
stand NTP, they are using the Flooding Time Synchronization
Protocol [22] (FTSP). Like NTP, it achieves a typical synchro-
nization precision in the one millisecond range. FTSP uses a
single master mote (called the FTSP-root) as the primary time-
source for all other (reachable) motes.

(3) Synchronizing the root motes to the forwarding PCs As
we are using two different protocols for time synchronization,
we had to find a solution where both protocols are synchroniz-
ing to the same global time. As root motes do not execute the
WSN application but just act as data sinks, our implementation
(i) synchronizes every root mote to NTP time and (ii) forces
every FTSP-root to be one of the root motes.

Since the junction between NTP and FTSP is the USB
link between the pairs of forwarding PC and associated root
mote, (i) is easily achieved by letting each forwarding PC
periodically send its 32 bit NTP-timestamp to its connected
root mote. If such a root mote is also working as an FTSP-
root, it calculates the difference between NTP-time and FTSP
global time and, if non-zero, adjusts the latter accordingly. All
the other motes will hence effectively receive NTP-time from
the FTSP-root and synchronize themselves to this time via
FTSP.

In order to also achieve (ii), all root motes are configured
with unique node identifiers (UIDs) less than the UIDs or
ordinary motes. Since the FTSP-root is elected by all reachable
motes dynamically as the mote with the minimum ID, this
ensures that FTSP-roots will always be root motes (unless none
of those was reachable, of course).

C. Fault-injection capabilities

To both facilitate testing of our implementation and ad-
vanced fault-injection experiments, we implemented a simple
feature for dynamically enabling/disabling individual directed
links between pairs of motes.

Each mote maintains a per-mote blacklist array for this pur-
pose. Similar to the monitor array presented in Section IV-A,
each bit in this array corresponds to a single sender mote:
At the reception of a message, the mote checks whether the
bit corresponding to the sender is set; if this is the case,
the message is discarded and neither reported as having been
received nor delivered to the application.

44Copyright (c) IARIA, 2016. ISBN: 978-1-61208-490-9

SENSORCOMM 2016 : The Tenth International Conference on Sensor Technologies and Applications

The monitoring PC maintains a blacklist array for each
mote. If it is instructed by the user, via the experimental control
user interface described in Section V-B, to enable resp. disable
the link from x to y, it sets resp. clears the bit corresponding
to x in the blacklist array dedicated for node y. It then sends a
fault injection message holding the (updated) monitoring PC’s
copy of node y’s blacklist array to node y, which is then
updating its own copy. Note that the fault injection messages
are also sent by means of our flooding protocol, following the
rules to avoid cyclic sending.

V. APPLICATION INTERFACE AND POSTPROCESSING

In this section, we provide a glimpse of how to use
our framework: We survey some features that need to be
configured prior to compilation, describe how to interact with
the running system via the user interface provided by the
monitoring PC, and list some features of our postprocessing
tool.

A. System configuration

The first step setting up an experiment, is to choose certain
system-wide parameters (via configuration C-Macros) before
compiling and flashing the software to the motes (and for-
warding PCs). Among these are upper bounds on the number
of (root) motes and cache sizes, which are of course limited
by the typically low RAM size.

The parameters for our flooding protocols are particularly
important w.r.t. data completeness. Some of these are the
initial hop count, durations of the Phases and the transmission
staggering time for Phase 2. The latter also determine the
substantial monitoring time overhead (i.e., the slow-down of
the application’s execution). Our postprocessing tool provides
some meta-data that can be used to validate the chosen
parameters, see Section V-C.

As mentioned before, it is possible to apply a user-supplied
round-based algorithm on top of the Phase 1. Our framework
hence provides an interface, which comprises functions for
broadcasting/receiving messages and a start-round event, sig-
nalling the start of the current round and delivering the set
of messages that have been received in the current round.
Our interface also supplies the application with signal-to-
interference-plus-noise (SINR) information here, However, in
our prototype implementation, this data is void since the
RZ200 motes do not support this feature. In response to
the start-round event, the applied algorithm may compose the
content of the next round’s application message, as well as
(optionally) select the transmission power and a staggering
time for transmission scheduling. The actual broadcast is then
handled, at the appropriate time, by our framwork.

B. Interactive setup and control

The user can control the experiments by means of a simple
user interface provided by the monitoring PC, which reads and
processes a number of commands from stdin:

• start: Once the start command has been read from stdin,
a start message is flooded that causes the motes to
(synchronously) start their monitoring activity.

1 s t a r t
2 b l o c k 11 ,13
3 w a i t 60000
4 f r e e 11 ,13

Figure 4: Exemplary test script, which (i) starts monitoring, (ii) blocks
the connections from 11 to 13, and (iii) frees this blocking after 10
minutes.

• block x, y resp. free x, y: These commands address the
motes’ fault-injection capabilities and block resp. free the
application messages from node x to node y.

• wait x: Wait x milliseconds until the next line is read from
stdin. This command allows the creation of test scripts:
Using a textfile, one can easily block and free connec-
tions automatically at predefined times (which must of
course be reflected in the monitoring data recorded). An
exemplary script can be found in Figure 4.

C. Postprocessing tools

Once the connectivity data is stored (in a textfile) in the
file system of the monitoring PC, one can apply arbitrary
tools for postprocessing the collected data. The main feature
of our custom postprocessing tool, which has been developed
(in HTML/PHP) with answering the validation question of
Section VI in mind, is to compute the sets of motes in strongly
connected components (SCCs), using Tarjan’s algorithm [25].
Recall that a strongly connected component is a component
where every node is reachable from every other node.

Once the data has been processed one may use various
features of our tool.

• A CSV-file holding the adjancency matrices for each
round can be created.

• For any round, one can visualize the connectivity graph,
as well as its contraction to SCCs.

• For any round and every mote, the FTSP-root’s ID used
for time synchronization and the root mote that delivered
the report message to the monitoring PC, along with the
message’s hop count, can be printed. This data allows
to detect inadequate hop count settings and/or needs for
a revised placement of root motes, thus can be used to
validate the configuration.

• As will be detailed in Section VI-A, our main interest
lies in the stability of SCCs consisting of the same set
of motes, i.e., the number of rounds that they persist. For
this purpose, all the SCCs existing in a recorded data file
can be listed over time, along with the first and the last
round and its duration.

VI. A CASE STUDY: VALIDATING AN ADVERSARIAL
NETWORK MODEL

In this section, we will provide the results of an experi-
mental validation of the adversarial model introduced in [5]
using our framework.

A. Validation question

The adversarial model of [5] assumes that every sequence
of directed communication graphs G1,G2, . . . present in round

45Copyright (c) IARIA, 2016. ISBN: 978-1-61208-490-9

SENSORCOMM 2016 : The Tenth International Conference on Sensor Technologies and Applications

1, 2, . . . satisfies the graph properties summarized in Defini-
tion 3. We will now introduce the core concepts needed for
defining those. Due to space constraints, we will replace some
formal definitions by informal ones where possible.

Given the communication graph G of a round, a root
component R is the set of nodes of a strongly connected
component R in G without in-edges from nodes outside R.
Note that every graph has at least one root component. A root
component R that exists in every graph of a (not necessarily
consecutive) graph sequence (Gr)a+d−1r=a = Ga, . . . ,Ga+d−1
is called a common root. Note carefully that the interconnect
topology of the nodes in a common root R may be different
in every Gi. The term vertex-stable root component has hence
been coined for common roots in [3][4].

One can show that a root component that is common in
a sufficiently long graph sequence Ga, . . . ,Ga+d−1 guarantees
multi-hop communication between all nodes in R. Moreover, if
R happens to be the only root, termed single root, information
from every node in R reaches all nodes in the entire network.
This is captured by the following definition:

Definition 1 (Dynamic diameter D): A network has dy-
namic (network) diameter D, if for every graph sequence that
contains a subsequence Gr1 , . . . ,GrD of D not necessarily
consecutive R-single-rooted communication graphs, it holds
that information from every node in R from (the end of) round
r1 − 1 reaches all nodes in the network by (the end of) round
rD.

The following definition captures “the” central graph prop-
erty used in [5]. It requires that a root that is common in a
sequence of at least D + 1 rounds is single in a consecutive
subsequence of at least D + 1 rounds:

Definition 2: We say that a graph sequence (Gr)α+dr=α has
an ECS(D + 1)-common root (“embedded D + 1-consecutive
single common root”) R, if (i) (Gr)α+dr=α has a common root R
and (ii) (Gr)α

′+D
r=α′ ⊆ (Gr)α+dr=α has a single root R.

The graph property ♦STABLE(D) to be validated by our
experiments is the following, see also [5, Def. 12]:

Definition 3 (Message adversary ♦STABLE(D)): In every
graph sequence G1,G2, . . . present in round 1, 2, . . . , the
conjunction of the following three properties must hold:

(i) The first root component R that is common for at least
D+1 consecutive rounds is a ECS(D+1)-common root.

(ii) At least one ECS(D+1)-common root R′ (possibly R′ 6=
R) occurs eventually, which re-appears as a single root in
at least D not necessarily consecutive later rounds.

(iii) The dynamic diameter is D.

Our validation experiments evaluate, for every deployment
and every D = 1, 2, 3, . . . , the coverage of ♦STABLE(D) and
the statistics of two important stabilization time parameters.
The (experimental) coverage Cov(D) (abbreviated Cov if
D is clear from the context) of ♦STABLE(D) is defined as
the number of testruns where ♦STABLE(D) holds over the
number of all testruns. Note that this coverage definition
is conservative, as it also counts testruns as failed where
♦STABLE(D) could have been satisfied eventually if the testrun

had been continued (we very rarely encountered this situation
for D < 10 in our experiments, though).

Given a testrun, let the stabilization time rsr(D) be the
round where the first ECS(D + 1)-common root R starts
to become single (Def. 3.(i)); rsr delimits the end of the
initial (“chaotic”) period of system operation. Similarly, let
rfi(D) be the round where the D-th single occurrence of R′

(Def. 3.(ii)) happens; rfi gives the (earliest) termination time of
any consensus algorithm [5] in this testrun. In addition to Cov,
we will also provide the averages of rsr and rfi, Avg rsr resp.
Avg rfi, in all testruns where ♦STABLE(D), for some given D,
holds.

B. Experimental Setup

To validate the coverage of the graph property given in
Definition 3 experimentally, we set up four different scenarios
and monitored the connectivity over time in multiple testruns.
Our different scenarios were obtained by varying two main
parameters, namely, deployment area and the transmission
scheduling, in a WSN consisting of 20 motes.

Deployment Area. For Deployment 1, we used the rooms
of our institute, where there are many obstacles and walls
between the single motes and substantial interference due to
WiFi accesspoints, etc. The node density is relatively high and
the expected area of good radio coverage is reasonably fat.
By contrast, for Deployment 2, we spread the same number
of motes (more or less) in line of sight of each other on
the rooftop of our building, where the interference level is
considerably lower. The resulting area of good radio coverage
is less fat and less dense (only 1/3 of Deployment 1). In both
of our deployments, the resulting network diameter turned out
to be in the range of [2, 7].

Transmission Scheduling. If all the motes send their appli-
cation message simultaneously at the beginning of the round,
the SINR at every receiver is quite low, whereas a proper
transmission scheduling where every mote has its unique time
slot for transmission results in a much better SINR. Trans-
mission scheduling is hence crucial for the network’s connec-
tivity. Therefore, we decided to use transmission scheduling
as our experiments’ second parameter: n (“no”) means no
transmission scheduling, t means transmission staggering with
a dedicated 20 millisecond slot for every mote.

When we subsequently write Scenario 1n, for example, we
mean Deployment 1 without transmission scheduling.

System Settings and Configuration. In all our experiments,
we used a single root mote placed in the network’s center.
The header-cache was chosen to store up to 64 message
headers, while the report-cache was able to hold up to 128
report messages, sent via our multi-hop protocol that used
an initial hop count of 5. The monitoring PC requested the
retransmission of missing report messages during 10 phases
following the original round before it gave up.

C. Validation Experiments

Scenario 1t: Institute using transmission staggering. As
transmission staggering leads to (more or less) stable reception
conditions for each mote’s application message in each round,
the topology did not change much during the testruns. As a

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-490-9

SENSORCOMM 2016 : The Tenth International Conference on Sensor Technologies and Applications

result, we observed relatively long sequences where a single
common root exists in each of our twelve testruns, which took
from 89 to 224 application rounds.

Results. As shown in Table I (left column), for D ∈ [4, 17],
Cov(D) = 100% since ♦STABLE(D) held in each of our
testruns. Depending on D, Avg rsr ranges from 4 and 48 and
Avg rfi ranges from 12 to 215.

Scenario 2t: Rooftop using transmission staggering. As in
Scenario 1t, the use of transmission staggering led to relatively
long sequences of single common roots. We conducted twelve
testruns that took from 24 up to 231 application rounds.

Results. As shown in Table I (right column), Cov(D) = 100%
for any D ∈ [4, 8]. In those testruns, Avg rsr, resp. Avg rfi,
ranges from 9 to 69, resp. from 15 to 181, depending on D.

TABLE I: EVALUATION RESULTS FOR SCENARIOS 1t AND 2t.

Scenario 1t
D Cov Avg rsr Avg rfi
3 0.667 4 12
4 1.000 4 13

. . .
17 1.000 23 59
18 0.917 25 62
19 0.833 29 68
. . .

Scenario 2t
D Cov Avg rsr Avg rfi
3 0.500 9 15
4 1.000 14 23

. . .
8 1.000 24 42
9 0.917 34 54

10 0.750 34 55
. . .

Scenario 1n: Institute without transmission staggering. As
expected, letting all motes send their application messages
(almost) simultaneously causes a much higher variability of
the communication topology over time. As a consequence,
we observed much shorter periods of rounds were a common
root exists in our twelve testruns, which took from 89 to 303
application rounds.

Results. As shown in Table II (left column), Cov(D) =
66.67% for D = 4. Avg rsr is tendentially increasing from
12 up to 135, Avg rfi is within a range of [19, 191]. We en-
countered 4 testruns, where ♦STABLE(D) was neither satisfied
nor violated for any value of D > 4. As already hinted in the
definition of Cov(D), ♦STABLE(D) might have been satisfied
eventually, for these values of D, if these testruns had been
continued. Not counting these testruns, the resulting coverage
Cov(D) = 100% for D = 4.

Scenario 2n: Rooftop without transmission staggering.
As in Scenario 1n only short periods with a common root
component existed. For this scenario, we conducted twelve
testruns comprising between 75 and 266 application rounds.

Results. As shown in Table II (right column), Cov(4) =
83.33% with Avg rsr = 48 and Avg rfi = 60. As in Sce-
nario 1n, we encountered three testruns where ♦STABLE(D)
was neither satisfied nor violated for any value of D > 4. Not
counting these testruns, Cov(4) is again 100%.

D. Discussion

Comparing the results of the four scenarios presented in
Section VI-C leads to a number of interesting insights.

Most importantly, we observed for no testrun a violation
of properties (i) and (iii) of ♦STABLE(D) for any choice of
D > 4. For every individual scenario where staggering was

TABLE II: EVALUATION RESULTS FOR SCENARIOS 1n
AND 2n.

Scenario 1n
D Cov Avg rsr Avg rfi
3 0.250 12 19
4 0.667 13 22
5 0.583 13 23

. . .
9 0.583 61 81

Scenario 2n
D Cov Avg rsr Avg rfi
3 0.083 13 22
4 0.833 47 60
5 0.500 65 81
6 0.417 65 85
7 0.167 75 97

turned on, there is also a range for D that results in 100%
experimental coverage of all properties of ♦STABLE(D) (see
below) for any fixed value of D taken from this range. In
the scenarios where no transmission staggering was used, we
encountered some testruns where ♦STABLE(D) might still have
been satisfied eventually for D > 4. In those testruns where
we could validate ♦STABLE(D), D = 4 resulted in 100%
coverage.

For each testrun ♦STABLE(2) was violated On the other
hand, there was no testrun that violated condition (i) or (iii)
of ♦STABLE(D) for any D > 4.

Figure 5 shows how D influences the coverage of
♦STABLE(D) for Deployment 1 and 2, irrespectively of the
transmission scheduling. Recall that the area covered by the
former is only about one third of the latter, fatter, and ex-
periences more background interference. Interestingly, while
the coverage of ♦STABLE(D) in Deployment 1 is better for
(nearly) all values of D, for D = 4 the coverage is higher at
Deployment 2.

Figure 5: Coverage depending on deployment area

Figure 6 confirms the (expected) strong influence of trans-
mission staggering on Cov(D), irrespectively of the deploy-
ment. It is apparent that the coverage of ♦STABLE(D) is uni-
formly much higher with transmission staggering than without.
Cov(D) = 100% for D ∈ [3, 8] for the former, while it does
not achieve 100% for any value of D in the latter case.

Overall, we can conclude that the adversarial model pro-
posed in [5] has a very good coverage in all our deployments,
provided D is appropriately chosen. In more detail:

• ♦STABLE(D) very likely holds for some D in the range
of the actual average per-round network diameter. For
smaller values of D, the coverage of ♦STABLE(D) drops.

• Since in none of our testruns properties (i) and (iii) of
♦STABLE(D) were violated for D > 4 , it stands to reason
that the fulfillment of ♦STABLE(D) for even larger D may
be only a matter of time.

47Copyright (c) IARIA, 2016. ISBN: 978-1-61208-490-9

SENSORCOMM 2016 : The Tenth International Conference on Sensor Technologies and Applications

Figure 6: Coverage depending on transmission staggering

• A stable ECS(D + 1) root does not need to exist from
the very beginning of the network’s life. In fact, our
observations confirm the hypothesis of [5] that one has to
account for an initial “chaos-period” and that the network
only eventually becomes reasonably stable.

VII. CONCLUSION

We provided an overview of the system architecture and the
internal workings of a framework for long-term monitoring of
the communication topology of synchronous wireless sensor
networks consisting of memory-constrained wireless motes.
We discussed and solved various issues, such as finding
a suitable flooding protocol, adequate synchronization, data
collection, and post-processing. Finally, we employed our
framework in order to validate a network property introduced
in [5] and found that it has a reasonable assumption coverage.

Part of our future work in this area will be devoted
to decreasing the time overhead caused by our monitoring
framework, to replace statically configured system parameters
by on-line ones, and to adapt/scale-up the framework to other
testbeds. In addition, we are working on improving the multi-
hop protocols used in our framework and establish network
conditions, which are sufficient for guaranteeing monitoring
data completeness.

ACKNOWLEDGEMENT

This work has been supported the Austrian Science Fund
(FWF) projects P28182 (ADynNet) and S11405 (RiSE).

REFERENCES

[1] F. Kuhn and R. Oshman, “Dynamic networks: Models and algorithms,”
SIGACT News, vol. 42(1), pp. 82–96, 2011.

[2] F. Kuhn, N. A. Lynch, and R. Oshman, “Distributed computation in
dynamic networks,” in STOC, pp. 513–522, 2010.

[3] M. Biely, P. Robinson, and U. Schmid, “Agreement in directed dynamic
networks,” in Proceedings 19th International Colloquium on Structural
Information and Communication Complexity (SIROCCO’12), LNCS
7355, pp. 73–84, Springer-Verlag, 2012.

[4] M. Biely, P. Robinson, U. Schmid, M. Schwar z, and K. Winkler,
“Gracefully degrading consensus and k-set agreement in directed
dynamic networks,” in Revised selected papers Third International
Conference on Networked Systems (NETYS’15), Springer LNCS 9466,
(Agadir, Morocco), pp. 109–124, Springer International Publishing,
2015.

[5] M. Schwarz, K. Winkler, and U. Schmid, “Fast consensus under
eventually stabilizing message adversaries,” in Proceedings of the 17th
International Conference on Distributed Computing and Networking,
ICDCN ’16, (New York, NY, USA), pp. 7:1–7:10, ACM, 2016.

[6] D. Pfleger and U. Schmid, “A framework for connectivity
monitoring in wireless sensor networks,” Research Report TUW-
241107, Technische Universität Wien, Institut für Technische
Informatik, Treitlstr. 1-3/182-2, 1040 Vienna, Austria, 2015.
http://publik.tuwien.ac.at/files/PubDat 241107.pdf [retrieved: June,
2016].

[7] C. Newport, D. Kotz, Y. Yuan, R. S. Gray, J. Liu, and C. Elliott,
“Experimental Evaluation of Wireless Simulation Assumptions,” SIM-
ULATION: Transactions of The Society for Modeling and Simulation
International, vol. 83, pp. 643–661, Sept. 2007.

[8] A.-S. Tonneau, N. Mitton, and J. Vandaele, “A survey on (mobile)
wireless sensor network experimentation testbeds,” in Proceedings of
the 2014 IEEE International Conference on Distributed Computing in
Sensor Systems, DCOSS ’14, (Washington, DC, USA), pp. 263–268,
IEEE Computer Society, 2014.

[9] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “An empirical study
of low-power wireless,” ACM Trans. Sen. Netw., vol. 6, pp. 16:1–16:49,
Mar. 2010.

[10] A. Cerpa, J. L. Wong, M. Potkonjak, and D. Estrin, “Temporal proper-
ties of low power wireless links: Modeling and implications on multi-
hop routing,” in Proceedings of the 6th ACM International Symposium
on Mobile Ad Hoc Networking and Computing, MobiHoc ’05, (New
York, NY, USA), pp. 414–425, ACM, 2005.

[11] L. Mottola, G. P. Picco, M. Ceriotti, c. Gunǎ, and A. L. Murphy, “Not
all wireless sensor networks are created equal: A comparative study on
tunnels,” ACM Trans. Sen. Netw., vol. 7, pp. 15:1–15:33, Sept. 2010.

[12] H. B. Acharya and M. G. Gouda, “On the hardness of topology
inference,” in ICDCN, pp. 251–262, 2011.

[13] A. Bestavros, J. W. Byers, and K. A. Harfoush, “Inference and labeling
of metric-induced network topologies,” IEEE Transactions on Parallel
and Distributed Systems, vol. 16, no. 11, pp. 1053–1065, 2005.

[14] P. Sattari, C. Fragouli, and A. Markopoulou, “Active topology inference
using network coding,” Physical Communication, vol. 6, pp. 142–163,
2013.

[15] Y. A. Pignolet, S. Schmid, and G. Trédan, “Misleading stars: what
cannot be measured in the internet?,” Distributed Computing, vol. 26,
no. 4, pp. 209–222, 2013.

[16] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network tomog-
raphy: Recent developments,” Statistical Science, vol. 19, pp. 499–517,
08 2004.

[17] M. Coates, A. O. Hero III, R. Nowak, and B. Yu, “Internet tomography,”
Signal Processing Magazine, IEEE, vol. 19, no. 3, pp. 47–65, 2002.

[18] B. Deb, S. Bhatnagar, and B. Nath, “Stream: Sensor topology retrieval
at multiple resolutions,” Telecommunication Systems, vol. 26, no. 2-4,
pp. 285–320, 2004.

[19] M. Zhang, M. C. Chan, and A. L. Ananda, “Connectivity monitoring
in wireless sensor networks,” Pervasive and Mobile Computing, vol. 6,
no. 1, pp. 112–127, 2010.

[20] Y. Liu, K. Liu, and M. Li, “Passive diagnosis for wireless sensor
networks,” IEEE/ACM Trans. Netw., vol. 18, pp. 1132–1144, Aug. 2010.

[21] M. Keller, J. Beutel, and L. Thiele, “How was your journey?: Uncov-
ering routing dynamics in deployed sensor networks with multi-hop
network tomography,” in Proceedings of the 10th ACM Conference on
Embedded Network Sensor Systems, SenSys ’12, (New York, NY, USA),
pp. 15–28, ACM, 2012.

[22] M. Maròti, B. Kusy, G. Simon, and A. Lèdeczi, The Flooding Time
Synchronization Protocol. Verderbilt University, Institute for Software
Integrated Systems, Nov. 2004.

[23] R. Thouvenin, “Implementing and evaluating the dynamic manet on-
demand protocol in wireless sensor networks,” master’s thesis, Univer-
sity of Aarhus, Department of Computer Science, 2007.

[24] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collec-
tion tree protocol,” SenSys, pp. 1–14, 2009.

[25] R. Tarjan, “Depth-first search and linear graph algorithms,” in SIAM J.
Computation, vol. 1, pp. 114–121, Jan. 1972.

48Copyright (c) IARIA, 2016. ISBN: 978-1-61208-490-9

SENSORCOMM 2016 : The Tenth International Conference on Sensor Technologies and Applications

