
Techniques for Increasing Network Functionality
while Remaining within Legal Maximum TX Duty

Cycle Requirements

Eoin O’Connell, Victor Cionca, Brendan O’Flynn
Tyndall National Institute
University College Cork
eoin.oconnell@tyndall.ie

Ireland

Abstract—In this paper, a technique is presented which allows
users of the license free ISM bands to increase functionality of
the wireless network while remaining within the maximum legally
allowed transmit duty cycle requirements. We show through
analytical modeling and empirical evaluation, that traditional
MAC and routing techniques result in a significant increase in
the overall TX duty cycle when sensor sample frequencies are
increased. Specifically, we focus on the 868MHz ISM band where
the maximum allowed legal TX duty cycle must be < 1%. Two
simple techniques are presented that significantly reduce the TX
duty cycle. The result of this technique is a reduction in power
consumption and more importantly, a method to increase network
functionality while remaining within the legal requirements. We
show that these techniques allow for sensor readings to be
collected far more frequently in multi-hop, receiver duty cycled,
wireless sensor networks.

Keywords—868MHz limitations, Duty Cycle, Low Power, WSN,
Multi-Hop

I. INTRODUCTION

Considering that the license free bands can be occupied
by multiple co-existing wireless networks, transmit power
levels and maximum transmit duty cycle restrictions are placed
on the users. These sanctions are placed by the ISM band
regulatory authorities [1]. Examples of such systems which
can be found in residential homes, would be wireless smoke
alarm systems and wireless burglar alarm systems. These
restrictions are put in place to maximize fairness and reduce
the probability of interference/ collisions. Operation in the
license free 868−868.6 MHz ISM band requires maximum
TX duty cycles of <1% (Class 2) and maximum TX power
levels of approximately +14dBm. Other nearby bands require
<0.1% (Class 1). This specific duty cycle requirement of <1%
translates to a maximum of 36 seconds of TX activity within
one hour and a maximum length of 3.6 seconds for any single
transmission. (See Table I).

These restrictions place limitations on the functionality of
the network, specifically, they limit the rate at which sensor
readings can be reported to the network sink. Increasing the
sensor reporting rate increases the TX duty cycle. The rate
at which sensor readings must be reported from each node
in the network, is a largely application based requirement.
Depending on the application, these regulatory restrictions may
impose a limit on the desired sensor report rate and the network

TABLE I: Frequency Bands For Non-Specific Short Range
Devices in Europe

Frequency Band Max ERP TX Duty Cycle Bandwidth
868−868.6MHz 14dBm < 1% No Limits

868.7−869.2MHz 14dBm < 0.1% No Limits

engineer will need to be satisfied with a lower sampling rate.
To overcome the issues described above, two techniques are
implemented to reduce the overall TX duty cycle of the multi-
hop network as a whole. The first technique and the one that
has the largest impact on reducing the TX duty cycle is a
neighbor schedule learning system. Using this layer 2 MAC
protocol optimization, nodes learn when neighboring nodes
are expected to wake up and choose the most energy efficient
time to begin contacting them. The result of this is a drastic
reduction in TX duty cycle.

The second technique is a layer 3 routing optimization,
whereby nodes piggyback their sensor readings into packets
from upstream nodes within the multi-hop network. When
a packet is received which requires forwarding towards the
network sink, this triggers the recipient of the packet to
carry out a sensor reading. This optimization results in fewer
transmissions and more optimal utilization of the maximum
payload length of the physical layer itself.

A. TX on time during transmissions

The length of time for which the radio is in TX mode
during each transmission to a duty cycled neighbor, varies
greatly from MAC protocol to protocol. To guarantee reliable
communication, non-acknowledge based MAC protocols such
as B-MAC and BoX-MAC1 are required to leave the radio
transceiver in TX mode for the full duration of the receive
check interval (TW) [8], [6]. The receive check interval is
the time interval between receive check operations in duty
cycled WSN nodes. Conversely, acknowledge based protocols
such as X-MAC and BoX-MAC2 stop transmitting as soon
as an ACK is received [2], [6]. On average, this ACK packet
will be received half way through the receive check interval.
Interestingly, the total length of time for which both of these
protocols spend in TX mode during transmissions to duty
cycled neighbors, is approximately equal to TW

4 . On average,
the overall time the radio is active for during transmissions is

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-296-7

SENSORCOMM 2013 : The Seventh International Conference on Sensor Technologies and Applications

indeed TW
2 . During this time period of TW

2 , the radio spends
a share of its time in TX mode sending packets and the rest
in RX mode listening for ACK (acknowledge) packets. In the
case of BoX-MAC2, the proportions of time spent in RX and
TX will vary as the payload length changes. X-MAC on the
other hand spends fixed lengths of time in both TX and RX
during the contacting phase due to its RTS (Request To Send)/
CTS (Clear To Send) system.

The goal of this work is to provide a simple technique
to lower TX duty cycle, allowing users of the license free
bands to increase network functionality.In Section II, a detailed
description is given into the functionality of both of these tech-
niques. In Section III, modeled results are presented showing
the potential savings in TX duty cycle that can be achieved.
In Section IV, the experimental setup is explained, empirical
test data is presented and compared against our simulated
results. In Section IV-D, we discuss these important results and
their implications. Finally a brief summary of related work is
presented in Section V and in Section VI we conclude and
suggest a few topics for further expanding this work.

II. DESIGN

The MAC protocol used for testing is structurally very
similar to X-MAC. It consists of an RTS/ CTS preamble
wakeup stream which contains source and destination address
information. A node which receives an RTS packet addressed
to itself, responds with a CTS (containing source and destina-
tion address) packet to the sender. Upon reception of the CTS
packet at the sender, it proceeds by sending the payload data
and waits for a payload acknowledge message. The duration
of one send RTS packet and listen for CTS cycle is 2.4ms,
one cycle consists of 1.2ms of TX time and 1.2ms of RX time
listening for a CTS packet.

A. Reducing TX On Time through Neighbor Schedule Learning

To reduce the energy required to send data packets, a mech-
anism to learn the wakeup schedules of neighboring nodes
is implemented. Learning schedules involves no additional
synchronization packets. Each node in the network maintains
its own wakeup schedule, and simply guarantees that each
periodic receive check will occur at an integer multiple of the
network wide receive check interval.

The times at which nodes wake up are random in terms
of when the application firmware begins running, but fixed in
terms of when they are allowed to perform receive checks.
The firmware on each node may begin operating at different
times, but the interval between receive checks will remain to
be an integer multiple of global receive check period for the
duration of the nodes lifetime (excluding drift). Nodes must
obey this wakeup schedule independent of their own tasks.

With wakeup scheduling now handled by the aforemen-
tioned mechanisms, each node in the network can learn the
time offset between its wakeup schedule and those of its
neighbors. During the very first interaction between two nodes,
the sender stores the number of RTS/CTS cycles it required
before the destination responded. This number of attempts is
stored in a neighbor specific data structure and is proportional
to the time offset between their respective wakeup schedules.

Time (s)

Radio Activity

A

B

1 2+τ1 3+ τ1 4+ τ1

RTS/ CTS

Use Offset

δ

1+δ 2+δ+τ 3+δ+τ 4+δ+τ

Send ACK Send ACK

Fig. 1: Vertical arrows indicate when each node wakes at
integer multiples of the receive check interval (1 second
here). Node B learns the time offset to Node A and applies
this learned offset (δ) during next transmission. Graph also
illustrates how receive checks will drift (τ ,τ1)

One additional byte is required to store the time offset between
wakeup schedules, hence the system is scalable.

During the next transmission to this particular neighboring
node, the sender now knows reasonably accurately, when the
destination will wakeup. The sender recalls the time offset
value from the neighbor specific data structure, and delays ac-
cordingly so as to begin performing RTS/CTS cycles a few ms
before the destination is expected to wakeup. This time offset
is updated during every encounter to account for oscillator
drift. The offset learning process is illustrated in Figure 1.In
Figure 1, node B first learns the time offset between its wakeup
schedule and that of node A, during the next transmission it
uses the learned time offset and delays accordingly before
contact the destination. In our implementation, the sender
begins attempting to contact the destination 9.6ms (TSYNC = 4
RTS/ CTS cycles) before it is expected to wakeup.

B. Piggybacking Data Messages

The primary task of each node in the WSN is to report
periodic sensor readings to the network’s sink. To reach the
network sink, nodes at the outer edges of the deployment may
have to route through several nodes, depending on the density
and RF environment of the deployment.

The underlying idea of our piggybacking optimization is as
follows: nodes that happen to lie in a path that has neighboring
nodes generating or forwarding data packets will piggyback
their sensor readings into messages which are being forwarded.
This process is described graphically in Figure 2. Traditionally,
this is done differently and each individual node generates its
own periodic data messages.

To accommodate piggybacking, the payload is partitioned
into different blocks. Each node which forwards the packet,
adds its sensor readings to the payload in a specific position.
The position is dependent on the hop number. The leaf node
that generated the packet, adds its sensed data to position
0. The next node to interact with and forward the packet
adds its sensed data to position 1. In our implementation and
application, each node adds a total of 5 bytes to the payload
and the length of the variable data packet. Additionally, packets

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-296-7

SENSORCOMM 2013 : The Seventh International Conference on Sensor Technologies and Applications

1st Hop 2nd Hop Sink

Sample Senor and
Generate Transmission

0th Hop

Receive Data Packet
from Source, sample
sensor/ include in
payload, forward to
parent

Receive Data Packet
from 1st hop, sample
sensor/ include in
payload, forward to sink

Receive Data Packet
from 2nd hop, Check
Hop count, retrieve
sensor readings from
packet

Fig. 2: Data piggybacking. Each node along the path intelli-
gently adds their sensor readings to the payload of incoming
messages. Reduces extra wasteful transmissions

contain a routing header. Forwarding nodes increment a Hop
Count value, and add the ID and RSSI of the last hop to the
routing header. Packets that originate from nodes which have
a direct RF path to the network sink are short. Payload lengths
grow linearly as the hop count increases. At the bit rate of the
physical layer in use, each byte adds a total of 80µS to the
length of the payload.

When the network sink receives a unique sensed data
packet, it first examines the hop count of the packet in the
routing header. Depending on this value, it knows how many
nodes have interacted with the packet and included sensor
readings. It is also aware of the position in the payload where
to find sensor readings from the Nth hop.

III. SIMULATION

To estimate the TX duty cycle across different data send
intervals with and without optimizations, the system was
modeled in Matlab. The model calculates the overall TX duty
cycle resulting in sending data packets at different rates,when
one child node is attached and assumes sending to a duty
cycled neighbor. The algorithm used is shown in Algorithm 1.
Each transmission incurs a total TX time of TSYNCms worth of
RTS/ CTS attempts, i.e., 4.8ms of TX time, plus the length of
the payload. A payload length of 24 bytes is 2.4ms at the bit
rate of the physical layer. The simulated experimental length
was 2 days. The TX duty cycle is hence the total time spent

Algorithm 1 Model of TX on time during transmissions,
neighbor learning enabled

Initialize Variables
repeat

Time In TX = 0.0048s + Payload Length
Accumulated Time += Send Interval

until Accumulated Time > 2Days
Duty Cycle = Time In TX / 2 Days

in TX mode divided by the length of the test. The results
are shown in Figure 3. This graph includes 4 curves, two
for neighbor learning enabled and two for neighbor learning
disabled. The two curves where neighbor learning is enabled,

TABLE II: Simulated duty cycle values when changing the
data send intervals, NL=Neighbor Learn, PB=Piggybacking,
None=No optimizations

Interval NL+PB NL PB None
1s 0.72% 1.44% 25.4% 50.8%
6s 0.12% 0.24% 4.233% 8.47%

20s 0.036% 0.072% 1.27% 2.54%
40s 0.018% 0.036% 0.635% 1.27%

include piggybacking enabled and disabled. The same applies
for the other 2 curves, where neighbor learning is disabled.

0 10 20 30 40 50 60

0.1

1

10

50

X: 52
Y: 0.9772

Packet Arrival (s)

T
X

D
u
t
y

C
y
c
l
e

(
%
)

TX Duty Cycle With and Without Learn/ Piggybacking

X: 16
Y: 0.09

X: 8
Y: 0.09

X: 26
Y: 0.9772

No Learn With Piggybacking

No Learn No Piggybacking

Learn With Piggybacking

Learn No Piggybacking

Fig. 3: Results of simulation showing the reduction in TX duty
cycle due to Neighbor Learning and Piggybacking

In the case of neighbor learning and piggybacking being
enabled, the simulation predicts a 70 times reduction in TX
duty cycle compared to both being disabled. With both op-
timizations, nodes are capable of achieving 0.72% TX duty
cycle forwarding data packets every 1 second. With both
optimizations disabled this time increases to 52 seconds.The
results are summarized in Table II. For each transmission, the
node without neighbor learning spends on average half of the
receive check interval performing RTS/ CTS, in this scenario
that is 0.5s. Of that 0.5s half is spent in TX mode, or 0.25s
(as previously discussed in Section II).

In the case of only the piggybacking optimization being
enabled, there are two unique scenarios. Firstly, the node under
test has piggybacking disabled and it forwards data packets
for its child node and also generates its own additional data
packets.The simulation shows it is only able to provide < 1%
TX duty cycle when packets are being generated every 52
seconds. When piggybacking alone is enabled, the nodes can
report back sensor readings every 26 seconds while remaining
< 1% TX duty cycle.

IV. EMPIRICAL EVALUATION

A. Testbed

The testbed used for this experiment consists of custom de-
vices, comprised of a PIC24F microcontroller and an SX1211
868MHz radio transceiver. The radio is operated at 100kbps
data rate and a sleep current of 1µA is achieved for the
platform. The hardware platform is pictured in Figure 4.

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-296-7

SENSORCOMM 2013 : The Seventh International Conference on Sensor Technologies and Applications

Fig. 4: Testbed WSN node, SX1211 868MHz radio and
PIC24F microcontroller

B. Measuring TX on time

To be able to accurately estimate the overall TX duty cycle
of deployed nodes, a counter is implemented in software which
keeps track of the total amount of time spent in TX mode.
This counter is included in each transmission and allows the
network sink to keep track of how much time each node spends
in TX mode.

The basic unit of time for this counter is 1ms, each
increment of the 32-bit counter is equal to 1ms and it overflows
after 60 days of constant TX on time. 1ms is the length of
an RTS packet and is hence a convenient unit of time. Each
transmission which takes place, results in the counter being
incremented by the number of RTS/ CTS attempts required
to contact the destination, plus the length of the payload
transmission. This technique enables very accurate monitoring
of the time spent in TX mode at each node. An example of
this counter working is a transmission which requires 100 RTS/
CTS attempts to contact the destination and a payload length
of 2ms. This transmission would results in the counter being
incremented by 102, 100 for the RTS transmissions and 2 for
the length of the payload.

The network sink which always listens, sends all received
data packets to a PC over USB, where the results are logged.
Using the technique described above, the TX duty cycle can
be easily calculated for each node using Equation 1.

Duty Cycle(%) = 100× Packets× 0.0011

Length of Test
(1)

A screen-shot of the printout from the network sink is
shown in Table III. Here nodes 34 and 35 are forwarding
packets through node 12 every 5 seconds.The TX duty cycle
counter counts the total time spent in TX during transmissions,
as can be seen in Table III, the difference between the two
consecutive transmissions is 5 counter units or (5*1ms) 5ms.
Also included is the RSSI of each hop, -54dBm from nodes
34 and 35 to node 12, and -44dBm from node 12 to the
network sink. Most importantly from Table III the packet
counter feature can be seen, node 35 requires 5 packets to
send its status message (1395-1390).

TABLE III: Log at Network Sink

Hop ID Pkts RSSI ID Pkts RSSI Time
R1 35 1390 -64 12 7183 -44 7:1:23:45
R1 34 1316 -54 12 7186 -44 7:1:23:48
R1 35 1395 -64 12 7189 -44 7:1:23:50
R1 34 1321 -54 12 7192 -44 7:1:23:53

C. Experimental Setup

To validate our modeled results presented in Section III
a small network was deployed using the node pictured in
Figure 4. The node’s firmware also contains layer 3 routing
protocols and these may cause fractional overheads in terms
of TX duty cycle. An example of one of these overheads is
a periodic probe message to check if the network sink is in
range. The network sink was configured to be in an always
listening state. This reduces the TX duty cycle of nodes which
can communicate with the network sink because they only
ever need 1 RTS/ CTS cycle before the payload data can be
sent. All nodes were programmed to perform receive checks
once a second and forward data packets at the same rate. The
sensor sample interval and hence packet generation intervals
were chosen to be 1, 2, 5, 10, 20, 30, 40 and 60 seconds.

The first experiment was devised to measure only the
difference between nodes with neighbor learning enabled and
disabled. For this experiment which was conducted, a total of
17 nodes were deployed in a large office and a maximum of
2 hops was observed. After having deployed the 17 nodes, it
was observed that 11 of the nodes were able to communicate
directly with the network sink. The remaining 6 were forced
to route their messages through the 11 nodes which had a
path to the network sink. The nodes of interest were the 6
nodes which did not have a direct RF path to the network sink
because they were required to send to duty cycled neighbors. 3
of them were programmed with neighbor learning enabled and
3 without. Tests were conducted for 24 hours and all results
were logged on a PC which was connected to the network
sink. Of the 6 nodes under test, their TX duty cycles were
calculated using Equation 1. ’Packets’ represents the software
packet counter shown in Table III and explained in Section
IV-B.

The second experiment was devised to test the piggyback-
ing and neighbor learning technique combined and a slightly
different topology was required. The reason being that in the
first experiment the leaf nodes were the only nodes sending
to duty cycled neighbors. A controlled 3 hop topology was
required because the nodes under test needed to be parent
nodes, and still forward to duty cycled neighbors. The topology
is depicted in Figure 5 and the nodes under test are the yellow
nodes (2nd row from right).

D. Results

The first experiment was devised to solely measure the
efficiency of our implemented neighbor schedule learning
optimization. The TX duty cycle of a total of 6 leaf nodes
was measured over a 1 day period (3 with neighbor learning,
3 without). The results are summarized in Table IV. Each
test (i.e., each send interval) was carried out a total of 3
times and the maximum,minimum and overall average TX

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-296-7

SENSORCOMM 2013 : The Seventh International Conference on Sensor Technologies and Applications

Under Test

Sink

Normal Nodes

Fig. 5: Topology for 2nd Experiment, Yellow nodes are the
nodes under test

duty cycles are listed in Table IV. In Figure 6 , simulated
and tested results are compared. The empirically tested values
are in extremely close agreement with the modeled results. The
maximum variation in the predicted vs the measured duty cycle
is 0.044% when sending packets every 40 seconds. Minute
variations can be observed between the predicted and tested
results, these variations can be explained by layer 3 routing
protocol overheads. These variations can be explained by the
overheads mentioned in Section IV-C.

The second experiment was designed to measure the effi-
ciency of our piggybacking and neighbor learning algorithm
combined. The TX duty cycle of 3 parent nodes each with 1
child node a piece, was measured. The experiment was car-
ried out using a number of different configurations. Different
combinations of piggybacking/ neighbor learning enabled and
disabled were used. The results are presented in Figure 6. In
the case of piggybacking only being disabled, the parent node
under test forwards packets for its child and generates its own
packet during each data send interval. In the experiment where
piggybacking was enabled, the parent node sends only one
packet during each data send interval. The difference in TX
duty cycle is intuitively approximately 50%, as the workload
of the parent is reduced by a factor of 2 when piggybacking
is enabled. The slight increase in the payload length due to
piggybacking is insignificant when compared to the amount
of time spent in TX mode during the RTS/ CTS phase of the
transmission (each byte adds only 80µs compared to 1ms for
an RTS/ CTS cycle).

In the case of neighbor learning and piggybacking being
enabled we observe a 70 times reduction in TX duty cycle,
0.7% forwarding every second (6b), when both are disabled
this forwarding rate must be increased to almost 50 seconds
to achieve < 1% TX duty cycle (6a). With both optimizations
enabled, parents with a single attached child node can forward
packets every 8 seconds to comply with the < 0.1% TX duty
cycle restrictions (6b), with 2 child nodes attached this figure
increases to 16 seconds.

From Figure 6a, there is very close correlation between
experimental and predicted results. With only piggybacking
enabled the data send interval can be 26 seconds while still
remaining below 1%, with it disabled, the data send interval
must be 52 seconds to comply with the 1% TX duty cycle
restrictions.

TABLE IV: Simulated Duty Cycle Values vs Tested, Experi-
ment 1. Minimum, Maximum and Average values included

Interval Simulated Test (Avg) Test (Min) Test (Max)
1s 0.72% 0.74% 0.71% 0.76%
2s 0.36% 0.37% 0.33% 0.39%

10s 0.072% 0.079% 0.076% 0.078%
20s 0.036% 0.039% 0.036% 0.042%
30s 0.024% 0.026% 0.025% 0.028%

V. RELATED WORK

In terms of the two optimizations and their novelty, there
are some similar concepts to be found in the literature.
Protocols such as WiseMAC [4] and Hui and Culler’s tech-
niques in [5], use similar neighbor schedule learning systems.
The differences between WiseMAC and this work are the
following: WiseMAC uses an uninterrupted preamble wakeup
sequence that doest not contain address information. This work
uses an RTS/CTS system which will stop as soon as the
destination responds (zero over-listening). WiseMAC requires
periodic exchange of scheduling information, this work does
not. WiseMAC relies on a Layer 1 receive check, this work
uses Layer 2 (i.e., lower power in dense networks due to less
overhearing but a slight increase in receive check energy).
WiseMAC is also for infrastructure networks and it only
considers down-link traffic (parent to children).

In [5], the authors briefly mention and describe their neigh-
bor schedule learning system. They improve upon WiseMAC’s
preamble only wakeup stream by adding some address infor-
mation into the wakeup stream. Receive checks are layer 1
based and nodes which overhear can quickly decide the packet
is not destined for them because of the embedded address
information. But still overhearing does occur, unlike this work.
Schedule information is exchanged by including extra data in
acknowledge messages, in this work no extra data is transferred
to provide neighbor schedule learning.

Ye et al. in SCP-MAC [10], present a MAC protocol where
all nodes are scheduled to wake during the same time window.
Transmissions now take place within this window, resulting in
a reduced TX duty cycle compared to standard duty cycled
MAC techniques. SCP-MAC requires additional scheduling
packets to be transmitted and this has an impact on the overall
TX duty cycle, it also suffers from high receive check energy
and high latency.

The authors in [4], [5] and [10] present results on the
reduction in power consumption of their techniques but fail to
investigate the potential reduction in TX duty cycle. This work
leverages some of these concepts and simplifies/ optimizes
them and applies them to industrial applications.

VI. CONCLUSION & FUTURE WORK

In this paper, two techniques to reduce TX duty cycle are
described, simulated and empirically evaluated. WSNs which
must report real time sensor readings are considered and data
aggregation techniques such as in [9] are not considered.
Our techniques improve functionality of WSN deployments
by allowing users of license free bands to increase network
activity, while still remaining within the legal maximum TX

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-296-7

SENSORCOMM 2013 : The Seventh International Conference on Sensor Technologies and Applications

0 10 20 30 40 50 60
0.1

1

10

25

Packet Inter Arrival (seconds)

T
X

D
u
t
y

C
y
c
l
e

(
%
)

Simulated vs Tested Results Piggybacking

Simulated Data with Piggyback
Test Data with Piggyback
Simulated Data without Piggyback
Test Data without Piggyback

(a) Results of simulation showing the reduction in TX duty cycle due
to Piggybacking alone. Upper two curves have piggybacking disabled
and lower two have it enabled. Excellent correlation between predicted
and tested results. In general piggybacking reduces TX duty cycle by
a factor of 2

1 10 20 30 40 50 60
0.01

0.1

0.8
1

Simulated vs Tested Duty Cycle with Neighbor Learning

T
X

D
u
t
y

C
y
c
l
e

(
%
)

Packet Inter Arrival (seconds)

Tested with Piggyback

Simulated with Piggyback

Simulated without Piggyback

Tested without Piggyback

(b) Neighbor Learning Simulated vs Test Data, excellent correlation
between simulated and tested results, maximum error of 0.044% when
packets are being sent every 40 seconds. Upper two curves have
piggybacking disabled and lower two have it enabled

Fig. 6: Empirical Test Results vs Simulated Results

duty cycle requirements. Using both of the aforementioned
techniques, it is demonstrated that sparse (non-dense) networks
can provide sensor readings 70 times more frequently to
comply with the < 0.1% TX duty cycle requirements of some
of the ISM bands.

Specifically, it is shown that using both techniques and
having only 1 dependent child, sensor readings can be for-
warded every 8 seconds while still complying, and every 16
seconds when 2 child nodes are attached. The result is a far
more active network which is able to provide more frequent
sensor readings to the end user. Another important by-product
of the drastic reduction in TX duty cycle is the reduction
in power consumption and increased lifetime of the battery
powered network.

There are a few distinct areas where our work can be
improved upon and developed further. For applications where
latency is not an issue, large savings in TX duty cycle could
be made if nodes which are under a large workload (i.e.,
multiple child nodes) could queue received data packets and
transmit them all in one burst. This would prevent the TX duty
cycle from increasing with workload, the disadvantages of this
approach would be that sensor readings would no longer be
real-time and payload lengths would increase drastically. The
performance of the developed techniques in large scale multi-
hop deployments is also of interest. The authors would also
like to compare their work against other cross layer approaches
such as Dozer and Koala [3], [7].

ACKNOWLEDGMENT

The authors would like to acknowledge and thank the
support of EI Electronics and IRCSET (Irish Research Council
for Science Enterprise and Trade).

REFERENCES

[1] ETSI EN300 220-1, 2012.

[2] Michael Buettner, Gary V Yee, Eric Anderson, and Richard Han. X-
mac: a short preamble mac protocol for duty-cycled wireless sensor
networks. In Proceedings of the 4th international conference on
Embedded networked sensor systems, pages 307–320. ACM, 2006.

[3] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer. Dozer:
ultra-low power data gathering in sensor networks. In Proceedings of
the 6th international conference on Information processing in sensor
networks. ACM, 2007.

[4] Amre El-Hoiydi and Jean-Dominique Decotignie. Wisemac: An ultra
low power mac protocol for multi-hop wireless sensor networks. In
SotirisE. Nikoletseas and JosD.P. Rolim, editors, Algorithmic Aspects of
Wireless Sensor Networks, volume 3121 of Lecture Notes in Computer
Science, pages 18–31. Springer Berlin Heidelberg, 2004.

[5] Jonathan W. Hui and David E. Culler. Ip is dead, long live ip for
wireless sensor networks. In Proceedings of the 6th ACM conference
on Embedded network sensor systems, pages 15–28, Raleigh, NC, USA,
2008. ACM.

[6] D. Moss and P. Levis. Exploiting physical and link layer boundaries in
low-power networking. Technical report, Stanford, 2008.

[7] Razvan Musaloiu-E., Chieh-Jan Mike Liang, and Andreas Terzis. Koala:
Ultra-low power data retrieval in wireless sensor networks. In Proceed-
ings of the 7th international conference on Information processing in
sensor networks. IEEE Computer Society, 2008.

[8] Joseph Polastre, Jason Hill, and David Culler. Versatile low power
media access for wireless sensor networks. In Proceedings of the
2nd international conference on Embedded networked sensor systems,
SenSys ’04, pages 95–107, New York, NY, USA, 2004. ACM.

[9] S. Sivaranjani, S. Radhakrishnan, and C. Thangaraj. Adaptive delay and
energy aware data aggregation technique in wireless sensor networks. In
VinuV Das and Yogesh Chaba, editors, Communications in Computer
and Information Science, volume 296, pages 41–49–. Springer Berlin
Heidelberg, 2013.

[10] Wei Ye, Fabio Silva, and John Heidemann. Ultra-low duty cycle mac
with scheduled channel polling. In Proceedings of the 4th international
conference on Embedded networked sensor systems, pages 321–334,
Boulder, Colorado, USA, 2006. ACM.

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-296-7

SENSORCOMM 2013 : The Seventh International Conference on Sensor Technologies and Applications

	Introduction
	TX on time during transmissions

	Design
	Reducing TX On Time through Neighbor Schedule Learning
	Piggybacking Data Messages

	Simulation
	Empirical Evaluation
	Testbed
	Measuring TX on time
	Experimental Setup
	Results

	Related Work
	Conclusion & Future Work
	References

