
Linking Sensor Data to a Cloud-based Storage Server Using a Smartphone Bridge

David D. Rowlandsa, Jason R. Ridea, Mitchell W. McCarthya, Liisa Laaksob, Daniel A. Jamesa
aCentre for Wireless Monitoring and Applications, Nathan campus
bApplied Physiotherapy and Exercise Science, Gold Coast campus

Griffith University
Brisbane, Queensland, Australia

d.rowlands@griffith.edu.au, j.ride@griffith.edu.au, mitchell.mccarthy@griffithuni.edu.au,
l.laakso@griffith.edu.au, d.james@griffith.edu.au

Abstract – There is a need for systems that unify the processes
of collecting, storing and analysing long-term sensor data in
multi-user contexts. The ubiquity and communication features
of smartphones make them suitable as data aggregation
platforms for standalone sensors. Cloud-based servers are
advantageous for their centralisation and scalability in the
storage and processing of data. This paper conceptualises a
method to link sensors with a cloud server by detailing a
smartphone application design (for collecting, aggregating and
transmitting data from connected sensors), communication
protocol (to preserve security and integrity of data during
transmission) and storage methodology (to protect data during
processing and storage within the cloud server). Overall, this
paper presents design concepts to link sensors with cloud-
based storage and provides details of a health-based
implementation that applies them.

Keywords – sensor; smartphone; security; cloud; data.

I. INTRODUCTION
The development of ultra-low power transmission

protocols for wireless sensor devices has led to an increase in
the number of physiological measurement systems that
typify Body Area Networks (BAN) [1][2]. These networks
typically collect physiological information from multiple
sensors and transmit it to a central receiver for storage,
analysis and/or feedback. The process of linking many
sensors to a central server can be performed by an
aggregation platform tasked with consolidating and securely
re-transmitting all data collected from a single body. Current
generation smartphones have shown to be suitable for this
purpose, in both short-term single-user feedback [3] and
longer-term multi-user feedback [4][5] contexts. However,
many of the existing multi-user systems tend to focus on
direct distribution of data (without analysis) [4] or are
tailored to specific targets and lack versatility [5]. There is a
need for a more generalised system that integrates collection,
aggregation, secure storage and analysis with the potential to
incorporate future data formats and processing methods by
expanding on rather than replacing the fundamental system
design.

This paper outlines the proposed design of a system that
uses a smartphone as an aggregation platform to link
standalone sensors with a cloud-based server. The cloud
server builds on previous work by the authors: a server
platform designed to closely integrate storage and analysis of

data within a scalable distributed architecture [6]. Section II
outlines important design factors in using a smartphone as a
sensor bridge. Section III details a practicable strategy for
securely and reliably transmitting data to the cloud server,
and the methodology employed within the server to protect
data during processing and storage. Section IV describes the
preliminary development track for a health-based
implementation based around the proposed techniques.

II. SMARTPHONE BRIDGE
Traditional methods of collecting data from external

sensors such as pedometers that relied on manual user input
have been shown to require intrusive “compliance-enhancing
features” to sustain a high level of data entry and integrity
[7]. As a promising alternative, smartphones can facilitate
data collection from sensors by acting as an automated
aggregation, storage and communication platform. This
allows them to operate as a standalone aggregation platform
that provides basic analysis and feedback of data to the user,
a bridging device that transfers the data directly to an
external system, or a combination of the two. The concept of
a bridging device is particularly useful when large amounts
of data are being collected, either from one or many users, or
there is computationally heavy analysis to be performed that
would benefit from the use of dedicated tools.

A. Application Design
When designing a persistent application such as a sensor

bridge, the developer must consider that smartphones are
capable of performing many concurrent tasks that may
frequently and randomly require control of the user interface.
Fortunately, smartphone operating systems (OSs) support
background states where an application may operate almost
invisible to the user without disrupting other applications.
This is an ideal method for implementing a sensor bridge, as
the majority of its lifecycle is spent collecting data from
external devices. In using this method, consideration of user
notification, power consumption, and server connectivity
factors is essential.

B. User Interaction
While it was mentioned that user reliance in data

collection resulted in poor compliance, automated methods
may occasionally require some administration in order to
operate correctly. A sensor collection application, for

317Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

instance, will require a means of modifying variable settings,
such as a list of sensors, remote server address or user
credentials. There are a variety of methods to achieve such
tasks, such as a downloaded configuration file or a simple
interface that appears when either the application is installed.

C. User Notification
In the absence of a graphical interface, notification tools

such as icons and pop-up messages provide a mechanism of
either reassuring the user that the service is operating as
intended or to alert them to issues that require their attention.
In the context of a sensor bridge, regular events such as
sensor status updates and successful data transfers to a
remote system do not require user involvement, merely
notifying that the system is operating correctly. Non-
intrusive, non-blocking methods (e.g., Android’s Toast
notifications) that simply appear on the screen before fading
after a short time are suitable for these events.

Critical events such as sensor or communications
hardware failure that may result in data loss demand
immediate attention. Therefore, intrusive methods
incorporating features such as vibration, audio tones and
interface-blocking visual alerts requiring acknowledgement
provide the best chance of notifying the user.

D. Power Management
Background applications typically do not require a user

interface; therefore power consumption caused by screen
lighting is largely insignificant. However, the constant use of
communications hardware for a sensor bridge will have a
noticeable impact on battery life. To alleviate this, methods
are required that help to minimize power use where possible.

It is well established that location tracking using Global
Positioning Systems (GPS) can consume considerable power
[8] and have a high Time To First Fix (TTFF), making it
impractical in applications where location data is requested
infrequently. Fortunately, OSs allow location tracking to be
achieved without the use of GPS, instead using the known
coordinates of cell towers and wireless access points (WiFi)
to triangulate the user’s position. This can be achieved in a
fraction of the time, with a reduced accuracy depending on
the availability of network infrastructure and with a
significant reduction in power consumption.

Smartphones typically have an idle state of activity
where the internal processor enters a low power mode until a
wake up event occurs. However, the use of a background
application for constant sensor communication will prevent
the OS from entering this state, regardless of phone or user
activity. By monitoring the incoming data, it may be possible
to detect periods of user inactivity where collection can be
temporarily suspended (e.g., during sleep).

E. Server Connectivity
A simple implementation of a bridging application may

involve a persistent connection with an external system with
collected data streamed immediately across. However, long-
term collection from multiple sensor devices can generate
significant amounts of data that may consume the limited
mobile phone data allowance available to the user. Use of

WiFi can aid this situation by only uploading when a
network connection is available and reserving the cellular
network for emergency use. Applying a method such as this
will involve the use of temporary storage of data on the
mobile phone, so storage capacity must be considered when
deciding how long data may be allowed to accumulate before
utilizing the cellular network.

In order to ensure that data transfer to an external system
maintains a high level of security and integrity, a robust
communications protocol must be devised. The following
section proposes a protocol that meets these requirements.

III. CENTRALISED SERVER
The data storage methodology used in this system

employs and extends an existing system that integrates the
collection, storage, analysis and visualisation of multi-
channel multi-sensor data within a cloud context [6]. The key
elements explored in this section include securely
communicating sensor data from multiple mobile clients to a
central server, as well as handling reception, manipulation,
storage and protection of data within the server.

A. Authentication and Communication
In this system, each connection from client to server

represents a link between an identifiable user (with a unique
username and secret password) and an arbiter within the
server that controls access to the storage and processing
tools. The functionality provided by the server is intended
for use with private data; this means that all connections
must be authenticated so that eavesdropping, modifying or
otherwise intercepting communication is not foreseeably
possible. Protocols such as HTTPS [9] and WEP/WPA2
(WiFi security) provide some level of protection, but neither
have been proven to be infallible [10][11] and are
conceptually vulnerable to man-in-the-middle style attacks.

The authentication procedure used in this system aims to
prevent man-in-the-middle attacks without the need for a
trusted certification authority by using a private key that is
never communicated over a network. Figure 1 shows a
proposed methodology that implements this authentication
procedure, consisting of three distinct parts – login (A), data
transfer/processing (B) and logout (C).

The authentication process begins when the client
software receives a unique username and confidential
password from the user. The two credentials are encrypted
using a hashing function to generate a secret cipher key that
is stored internally for later use. When a session is required,
the client requests the right to be authenticated (Figure 1
A1), which is reciprocated with a pseudo-random unique
))

Figure 1. Communication protocol for uploading data

318Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

login seed (A2) from the server. The client then uses a
second hashing function to produce an authentication key
from the secret cipher key and the received login seed. This
authentication key (A3) is sent to the server for comparison
with an equivalent (generated internally using the same two
hashing steps). If the two match, the server replies with a
private session key (encrypted using the secret cipher key)
(A4) for use on all messages within the session (B1-B4).

Since the authentication key (A3) is dependent on the
login seed that preceded it, it cannot be re-used to
authenticate illegitimately. By limiting the frequency of login
requests (A1), the risk of dictionary-based attacks can be
minimised. The length of the session key (A4) controls the
relative probability of brute force decryption [11], and is
based upon the maximum number of packets expected within
any given session. Because the session key is private,
symmetric-key encryption techniques such as Integrity
Aware Cipher Block Chaining (IACBC) can be used; this
particular technique combines confidentiality and
verification of correctness into a single computationally
efficient algorithm [12]. Replay attacks can be prevented
within the server.

Messages sent within the context of an authenticated
session may include, but are not limited to, data uploads (B1)
and requests to run data processing scripts (B3), both of
which are reciprocated with an acknowledgement of success
(B2, B4). In data uploads, specific details such as packet
size, format, timing and error handling are defined at the
discretion of each client, but each upload produces a single
data file on the server. Data processing involves collating
these packets, optionally synchronising and filtering the
content and storing the result. Such requests may occur until
the client logs out (C1, C2) or the session is terminated.

This protocol will be further analysed in a future
validation study, with the null hypothesis being that socially
engineered attacks and weaknesses in the smartphone OS
represent the greatest threat to the security of the system. The
performance implications have not yet been analysed.

B. Data Reception
Figure 2 details the internal modules within the server

relating to reception, processing and storage in the context
of uploading data from external clients. Requests from
clients are managed by the Input/Output (I/O) handler,
which communicates with the File Handler, Script Handler
and Session Handler as necessary, depending on the type of
request received. The Session Handler also communicates
authentication details to the Rule Parser, which protects the
Storage Database from unauthorised access.

Figure 2. Server modules for receiving, processing and storing data

Each data packet that is uploaded to the server is stored
as a single unencrypted file within a virtual scratch space.
This space is generated by the File Handler and consists of
symbolic links to folders within the file system that an
authenticated session has read/write access to, with access to
all other folders disabled. These folders include, but are not
limited to, private storage (User/), shared storage belonging
to the user’s group (Group/), a public folder readable by any
entity (Public/), and a cache folder representing the context
in which actions triggered by communication-based requests
takes place (Job/). Data packets would usually be uploaded
to the Job/ folder.

In this system, file-based storage is only intended for
short-term use, with permanent data storage handled by a
Structured Query Language (SQL) database system. Use of
query-based systems such as this shifts the responsibility of
identifying, evaluating and collating the requested data away
from the user level to the database system framework. In
doing so, the system can rely on well-established data
acquisition techniques used within SQL frameworks to
optimise performance. This structure also allows security
features to be implemented by intercepting and manipulating
query syntax, as is performed within the Rule Parser.

C. Data Processing and Storage
The transition from temporary file storage to long-term

database storage is achieved through a process of collating
the uploaded data packets into a contiguous data set,
processing and filtering the data as necessary, and storing the
result into the database. The exact procedure is context
dependent and intended to be versatile, and as such, is suited
to a scripting environment such as MATLAB [6]. For
protection of the server [13], the code execution environment
is sandboxed, with resource access controlled by the Script
Handler. In scripts used to upload data, provisional access is
given to files within the Job/ folder for input and the Storage
Database (via the Rule Parser) for output.

D. Data Protection
The purpose of the Rule Parser is to prevent unauthorised

access to data by validating and amending the syntax of all
SQL queries before they reach the Storage Database. The
current implementation focuses on asserting a
straightforward permission directive – the content of a table
row may only be updated by the same user who created it,
although other users may also be given permission to read it.
To enforce this, all tables within the SQL database contain
two hidden fields (_owner and _readers), which are used to
determine the access rights of the currently authenticated
user ($user) specified by the Session Handler (see Figure 2).

Figure 3. Query evaluation flowchart; simplified Rule Parser

319Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

A simplified representation of the algorithm used to
enforce access rights is shown in Figure 3. Upon receiving a
query, the Rule Parser verifies that the query text contains no
mention of the words _owner or _readers, since either could
constitute an attempt to manipulate or otherwise access
hidden fields. If either keyword is found, the query is
rejected. The query is also rejected if it is not an attempt to
INSERT (create), UPDATE (modify) or SELECT (read) one
or more rows. In the case of an INSERT statement, the query
text is modified to define the _owner as being the $user. In
an UPDATE statement, the query text is modified to ensure
that $user is the _owner in all rows to be updated. In a
SELECT statement, the query text is modified to ensure that
$user exists within a list of _readers. It is noted that the full
implementation will comprehensively evaluate syntax
(including wildcards) to prevent misuse and provide
functionality to add and remove users from the _readers list.

IV. CURRENT DEVELOPMENT
A health-based application is being developed using a

smartphone (running Android OS) containing WiFi, location
tracking, Bluetooth and an ANT receiver for communication
with compatible wireless sensors. The initial development of
this application will involve acquisition of data using an
ANT compatible footpod. The sensor determines stride,
cadence and distance using a triaxial accelerometer and
transmits this information to the phone at a rate of 2Hz.

The application is implemented as a background service
that commences during the boot sequence of the OS. This
service initialises the ANT communications channel with the
sensor and stores the received data into a temporary file.
Location tracking provided by the phone is also utilised to
obtain geographical position intermittently, with the option
of GPS or network services depending on application
requirements. In this system, network services are heavily
favoured over GPS, trading off reduced accuracy for
significantly reduced power consumption and time to first
fix, as the hardware is only required to be active long enough
to triangulate the user’s position before switching off. The
use of GPS allows its impact on battery life to be measured,
as well as providing a relative measurement of accuracy.

Data upload to the server occurs based on the availability
of WiFi and 3G networks. While a WiFi connection is
present, data latency is kept low through frequent uploads. If
WiFi is unavailable, data is accumulated in local storage
until a connection becomes available. Once a local storage
limit is reached, accumulated data is uploaded using the 3G
network. If neither network is available, there is little choice
but to notify the user and request immediate action.

Due to the dependence on network availability, data
packets uploaded to the server may be unpredictable in size
and content. At least once a day, the client will request that a
script be run to collate, process and store all data currently
held within uploaded packets. To do this, the script creates a
contiguous stream of time domain samples, with each sample
stored as an independent entry into the database. Each
sample has an owner, timestamp, source (e.g., ANT or GPS)
and a set of numeric fields used to describe sample content.
An ANT sample will contain stride, cadence and distance,

while a GPS sample will contain latitude, longitude,
accuracy and time to first fix. In future development, the
cloud server will process this data to produce useful statistics
to users and their supervising practitioners.

V. CONCLUSIONS
This paper has outlined the design of a sensor bridge

application and a communication and storage protocol to
allow long-term multi-user sensor data to be securely
uploaded to a remote centralised server. Further work will
involve a validation of the prototype implementation to
expand the capabilities of both the data collection and
analysis aspects of the system. Due to the generalised design
of the overall system, it can be applied to various real world
applications in areas such as health and sport.

REFERENCES
[1] C. Otto, A. Milenkovic, C. Sanders, and E. Jovanov. “System

architecture of a wireless body area sensor network for
ubiquitous health monitoring”, Journal of Mobile Multimedia,
1(4):307--326, 2006.

[2] E. Jovanov, K. Frith, F. Anderson, M. Milosevic and M. C.
Shrove. “Real-time Monitoring of Occupational Stress of
Nurses”, Proc. of the 33rd Annual Conf. of the IEEE Eng. in
Medicine and Biology Society 2011;2011:3640-3

[3] T. McNab, D. A. James, D. Rowlands, “iPhone sensor
platforms: Applications to sports monitoring,” Procedia
Engineering, Volume 13, 2011, pp. 507-512

[4] C.L. Borgman, J. C. Wallis, M. S. Mayernik, A. Pepe.
“Drowning in data: digital library architecture to support
scientific use of embedded sensor networks”, Proc. of the 7th
ACM/IEEE JCDL, 2007, 269-277

[5] A. Bourouis, M. Feham and A. Bouchachia, “Ubiquitous
Mobile Health Monitoring System for elderly (UMHMSE)”,
International Journal of Computer Science & Information
Technology (IJCSIT), Volume 3, Issue 3, June 2011.

[6] J. R. Ride, D. A. James, J. B. Lee and D. D. Rowlands, “A
distributed architecture for storing and processing multi-
channel multi-sensor athlete performance data,” Proc. of the
9th Conf. of the Intl. Sports Engineering Association, in press.

[7] A. A. Stone, S. Shiffman, J. E. Schwartz, J. E. Broderick and
Michael R Hufford, “Patient compliance with paper and
electronic diaries,” Controlled Clinical Trials, Volume 24,
Issue 2, April 2003, Pages 182-199

[8] Aaron Carroll , Gernot Heiser, An analysis of power
consumption in a smartphone, Proceedings of the 2010
USENIX conference on USENIX annual technical
conference, p.21-21, June 23-25, 2010, Boston, MA

[9] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,”
IETF RFC 2246, 1999.

[10] F. Callegati, W. Cerroni and M. Ramilli, “Man-in-the-Middle
Attack to the HTTPS Protocol,” IEEE Security & Privacy,
IEEE, 2009, pp. 78-81.

[11] V. Kumkar, A. Tiwari, P. Tiwari, A. Gupta and S. Shrawne,
"Vulnerabilities of Wireless Security protocols (WEP and
WPA2)", Intl. Journal of Advanced Research in Computer
Engineering & Technology, Volume 1, Issue 2, April 2012.

[12] C. Jutla, “Encryption Modes with Almost Free Message
Integrity,” Advances in Cryptology - EUROCRYPT 2001, B.
Pfitzmann (ed.), LNCS 2045, Springer Verlag, 2001.

[13] K. Gama and D. Donsez, “A self-healing component sandbox
for untrustworthy third party code execution,” Proc. of the
13th Intl. Symp. on Component-Based Software Engineering,
Springer, 2010, pp. 130–149.

320Copyright (c) IARIA, 2012. ISBN: 978-1-61208-207-3

SENSORCOMM 2012 : The Sixth International Conference on Sensor Technologies and Applications

